

•BB •

gEPDs for commercial beef cattle

John Basarab, John Crowley & Donagh Berry

Livestock Gentec Conference, 18-19 October 2016 Edmonton, Canada

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

easas

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Improving feed efficiency, product quality, profitability, environmental impact and food security

gEPDs for commercial beef cattle

GOAL: accelerate genetic improvement using genomics to generate gEPDs and multi-trait indices that perform well in crossbreds

Deliverables:

1) 34 million variants screened for functional impact on feed efficiency and carcass quality traits;

2) gEPDs for 10 traits with > 35% accuracy in crossbred cattle;

3) two multi-trait value indices for commercial producers; and

4) Deploy genomic tools with immediate impact and value (sire assignment, genomic breed composition and retained heterozygosity).

Project Team Members

From top left: John Basarab, Donagh Berry, John Crowley, Paul Stothard

From middle left: Colin Coros, Michelle Miller, Graham Plastow, Changxi Li,

From bottom left: Dawn Trautman, Mohammed Abo-Ismail, Kirill Krivushin, Tara Carthy

Project Management Committee

Cory Van Groningen (VG Meats) Kajal Devani (Canadian Angus Association) Jennifer Stewart-Smith (Beefbooster Inc.) Troy Drake (Cow-Calf Health Management Services) John Basarab (Principal investigator, AAF & Gentec/UofA) Donagh Berry (Co-PI, Teagasc) John Crowley (Co-PI, CBBC & Gentec/UofA) Paul Stothard (Activity lead, Gentec/UofA) Colin Coros / Michelle Miller (Activity lead, Delta Genomics) Dawn Trautman (Project manager, Gentec/UofA) Ryan Mercer (Genome Alberta ex-officio)

End-User Committee

Brian Groten (Cargill Canada) David Bolduc (Producer, Cudlobe Angus) Jared Sherman (Soderglen Ranches Ltd.) Jay Cross (Producer, Barpipe Farms & Professor, UofC) Milton Scott (Thorlakson Feedyards Inc.) John Basarab (Principal investigator, AAF & Gentec/UofA) John Crowley (Co-PI, CBBC & Gentec/UofA) Dawn Trautman (Project manager, Gentec/UofA)

Whole Genome Sequencing

Breed	CCGP	new
Simmental	61	27
Limousin	34	30
Charolais	41 ై	42
Angus	47 ¹	15
Hereford	33	15
Gelbvieh	31	
Holstein	48	
Other	43	9
Composite / crossbred	41	
Total	379	138

Stothard et al., 2015 GigaScience 4:49

Sequence-level genotypes for gEPDs

Progress

<u>Genotyped 2311 feeder progeny</u> with GGP-LD (31k SNPs) and 133 sires with Illumina BovineSNP50

<u>Completed sire assignment</u> for 1428 progeny (success rate = 64%)

<u>Completed genomic breed composition</u> and retained heterozygosity on 2280 progeny, 2274 dams and 133 sires

Completed short duration RFI on 650 crossbred steers and heifers.

Received carcass data on over 2400 project cattle

Sire assignment

Steer progeny feed efficiency by sire

(number of progeny/sire are in parenthesis)

Sire assignment Bull progeny feed efficiency by sire

Genomic breed composition

Relationship between breed composition by pedigree and genomic-based breed composition in crossbred beef heifers

(Lacombe Research and Development Centre; 2015 born, n=102)

Genomic breed composition

🖪 Angus 🗖 Hereford 📲 Simmental 🗖 Other

MyHerdandMe ... genotyping for beef cattle

Genomic-based breed composition & retained heterozygosity

Angus - Hereford - Simmental - Other

Is low %RH and reduced hybrid vigor an opportunity?

Proportion of calves with less than 50% retained heterozygosity (RH) by beef cattle herds

(numbers in parenthesis are calves per herd)

Yes, 10 of 13 herds could improve hybrid vigor in crossbred cattle

Groups	Туре	n	%RH		Linear effect, kg DM/day per 1%
			mean	SD	increase in %RH
514/		4.0.0	10 5		
DW	steer	109	49.5	9.4	-0.016±0.007
JM	steer	99	54.2	17.0	-0.007±0.005
LRC	heifer	95	41.5	18.8	-0.006±0.002
			at a		
All		303	48.4	16.2	-0.008±0.002

Each 10% increase in RH improves feed efficiency by 0.08 kg DM/d. Thus increasing RH from 30% to 60% would save \$18/head in feed costs over 250 days of feeding.

Next Steps

1) Continue to detect genomic variants and rank for functional impact on feed efficiency and carcass quality;

2) Generate gEPDs for10 traits (< 30%accuracy);

 develop two multitrait value indices for commercial producers; and

4) Continue to deploy genomic tools to producers

Is low %RH and reduced hybrid vigor an opportunity?

Retained heterozygosity (RH) in calves born to 13 commercial								
beef cattle herds								
Herd	calves	RH, % SD		% < 50% RH				
1	161	30.4	14.2	84.5				
2	64	67.7	9.1	3.1				
3	221	49.8	6.3	43.4				
4	395	55.6	0 16.7	26.3				
5	118	53.0	10.7	27.1				
6	62	43.5	19.8	59.7				
7	139	60.6	10.0	14.4				
8	53	49.5	11.2	35.8				
9	120	47.2	13.4	50.0				
10	73	48.0	16.9	57.5				
11	130	59.9	9.7	13.8				
12	497	40.7	14.7	68.6				
13	247	48.8	10.0	54.7				
Total	2280							

Yes, 10 of 13 herds could improve hybrid vigor in crossbred cattle