

Does low RFI in the drylot mean low RFI on pasture?

J.A. Basarab, V.S. Baron, T. Flesch, J. Wilson, L.E. McKeown, R.R. Doce, M. Swift, M. Undi and K. Ominski

Objectives:

- To determine if RFI_{fat} measured in replacement heifers under drylot conditions relates to their feed intake and performance as bred heifers under summer grazing conditions.
- To measure enteric methane emissions from low \bullet and high RFI_{fat} bred heifers under summer grazing conditions.

Background:

- The majority of cow/calf production costs are associated with feed, bedding and pasture (56 71%); ARD, 2005) and 65 – 85% of the greenhouse gas emissions from beef production are from the cow herd.
- Improving feed efficiency provides an opportunity to reduce both feed costs and methane emissions.
- Using residual feed intake correct for body fatness (RFI_{fat}) to identify feed efficient animals is preferred because it identifies animals that consume less at equal body size, growth and body fatness.
- Presently, RFI_{fat} is measured on young bulls and heifers in the drylot and they are fed different rations from what is consumed when out on pasture.

Distribution of residual feed intake (RFI, backfat adjusted) in 87 crossbred beef heifers tested at the Lacombe Research Centre in 2012

Distribution of residual feed intake (RFI, backfat adjusted) in 80 crossbred beef heifers tested at the Lacombe Research Centre in 2013

Materials and Methods:

Heifers were dosed twice daily with n-alkane labeled pellets from Day 0 – 12 and fecal sampled twice daily from Day 8 - 12.

On Day 13 – 17 in 2013, high and low RFI_{fat} heifers were separated and methane emissions from both pens were measured simultaneously.

heifers in the drylot. Heifers with high and low RFI_{fat} were selected for the grazing trial.

Daily dry matter intake on pasture was calculated based on forage, fecal and n-alkane pellet content of C31 and C32 and intake of n-alkane pellet and dose rate of C32.

Heifers grazed meadow brome grass pasture. Representative forage samples were collected twice daily on Day 8 - 12.

Results:

Table 1. Performance traits of bred heifers selected for low and high residual feed intake (RFI_{fat}) during summer grazing of meadow brome grass in 2012 and 2013.

Trait	High RFI _{fat}	Low RFI _{fat}	<i>P</i> -value
Number of heifers	24	24	•••
Birth weight, lbs	82.9 ± 2.4	83.8 ± 2.0	0.722
200-d wean weight, lbs	573.2 ± 18.1	586.9 ± 15.2	0.478
Pre-wean ADG, lbs per day	2.45 ± 0.09	2.51 ± 0.07	0.501
RFI _{fat} , Kg of DM per day	0.529 ± 0.053	-0.495 ± 0.045	<0.001
Day 0 of grazing trial weight, lbs	980.8 ± 19.0	993.4±16.1	0.594
Day 0 of grazing trial weight to off pasture ADG, lbs per day	1.65 ± 0.11	1.74 ± 0.09	0.508

Summary:

- Heifers in the grazing trial were divergent in RFI_{fat}, but similar in birth weight, 200-d weaning weight and ADG.
- Low RFI_{fat} heifers consumed 5% less forage than high RFI_{fat} heifers at equal metabolic weight.
- Low RFI_{fat} heifers emitted 9% less methane than high RFI_{fat} heifers.

Conclusion:

• Heifers classified as low RFI_{fat} in the drylot

Figure 1. Forage intake of high and low RFIfat heifers while grazing meadow brome grass pasture in 2012 and 2013 (*n*=20, 2012; *n*=28, 2013).

Figure 2. Methane emissions from high and low RFIfat heifers while grazing meadow brome grass pasture in 2013 (n=20).

maintain their efficiency on pasture with no adverse effects on body weight or growth rate, as well as emit less methane when compared to their high RFI_{fat} herd mates.

Acknowledgements:

We acknowledge Alberta Livestock and Meat Agency Ltd., Manitoba Rural Adaptation Council, Manitoba Agriculture, Food and Rural Initiatives, Alberta Beef Producers, Saskatchewan Cattlemen's Association and Manitoba Cattle Producers for their financial support.

In-kind support is acknowledged from Alberta Agriculture and Rural Development, Agriculture and Agri-Food Canada – Lacombe, Livestock Gentec, University of Alberta, University of Manitoba, Brandon Research Centre and Western Beef Development Centre.

Efficient

■ Inefficient

17

Agriculture et Agroalimentaire Canada