

Alberta's experiences with Greenhouse Gases: The Beef Cattle Protocols

J.A. Basarab, P.Ag., Ph.D.

2010 ADSA, PSA, AMPA, CSAS and ASAS Joint Annual Meeting, July 11-15, 2010, Denver, CO, USA

Freedom To Create. Spirit To Achieve.

Carbon as a New Commodity

- Improving efficiency of nutrient use reduces cost of production; "just good practice".
- World interest in reducing greenhouse gas (GHG) emissions is increasing
- The World Bank estimated the 2008 global carbon market at \$126 B USD, doubling from the year previous

Capoor and Ambrosi, 2009

Global Climate Change Initiatives

The Evolving Global Carbon Market

Alberta's GHG Emissions in the Canadian Context (MT of CO₂ e/yr; 2006=759.2 MT)

How did Alberta get there

- 2002 Taking Action on Climate Change
- 2003 Climate Change & Emissions Management Act
 Mandatory Reporting for large industry
 - ➢ Specified Gas Emitters Regulation
 - Intensity reduction targets for large facilities starting July 1, 2007
 - Requires companies emitting > than 100,000 T of CO2e y-1 to reduce emission intensities by 12 % annually

≻Offset Trading System

Large Industrial Emitters Profile (>100,000 tonnes CO2e/yr)

Options to Achieve Targets

1. Facility Improvements

adapting new technologies, retrofitting existing equipment, or changing to more efficient practices

2. Emission Performance Credits

- Credits for better than target performance (implementation of operational improvements)

3. Alberta Technology Fund Credits

Invest in the Climate Change and Emissions Management Fund at \$15/tonne – funds used to develop or invest in Alberta based technologies, programs, and other priority areas

4. Emission Offsets

Voluntary emission reduction opportunities in support of achieving environmental objectives

Freedom To Create. Spirit To Achieve.

Offset Demand Increases, 2007 to 2009

SGER, Specific Gas Emitters Regulation; CCEM, Climate Change Emission Management EPCs, Emission Performance Credits

No Till largest 2009 Offset Project type

Credits from Ag totals 3.2 mt CO₂e worth >\$35 million

Alberta Offset System

Activity	2007	2008	2009	Total
No. of Projects	7	25	26	58
Tillage Management	3	10	15	28
Other Types of Projects	4	15	11	30
Total Registered (tCO2e)	1,555,037	3,471,495	4,432,124	9,458,656
Total Retired (submitted for compliance)	986,700	2,845,763	3,828,232	7,660,695
Agriculture tonnes		100		
registered (tCO2e)	558,714	1,000,976	1,654,084	3,213,774
Agriculture tonnes retired	202,210	821,836	1,584,108	2,608,154

Note: Tonnes must be registered first and then they can be "retired" (used) or kept for he next year. Source: Climate Change Central.

Fundamentals of Offset Projects: Offsets=Baseline - Project

Fundamental Principle:

- > ISO 14064-2 Standard
- > above and beyond Business as Usual.
- Need to be quantified
- Requires data monitoring and management

Baseline Condition:

common industry practice before the change?

Project Condition:

> What is the improved technology?

Alberta Approved Quantification Protocols – Agriculture (28)

- **GHG Emission Removals** = Carbon Sinks (remove GHGs from atmosphere)
 - Reduced/No-Tillage
 - Afforestation (Planting Trees)
- GHG Emission Reductions
 - **Pork** (Feeding/Manure Storage & Spreading)
 - **Biogas** (Anaerobic Decomp. Ag Materials)
 - Feeding Edible Oils to Beef Cattle
 - Reducing Days On Feed for Beef Cattle
 - Reducing Age at Harvest in youthful Beef Cattle
 - **Biofuels**
 - **Biomass** (Combustion facilities)
 - Energy Efficiency (pork, dairy, poultry facility process changes/retrofit)

Potential Alberta Quantification Protocols for Agriculture

Potential Protocols Under Review

- Nitrogen Efficiency Reduction
- Reducing Summerfallow
- Selection for low Residual Feed Intake (RFI) in Beef cattle

Other Protocol Areas Under Consideration

- Wetlands Management
- Conversion to Perennial Forages
- Lagoons
- Pasture Management
- Dairy Cattle

Relative proportion of various GHG emissions (CO₂e) resulting from a beef farm in western Canada

1. Enteric CH₄ Eq. 10.21 (IPCC 2006) Ration comp., DOF, N, DMI

2. Manure CH₄ Eq. 10.23 & 10.24 (IPCC 2006) DMI, DOF, TDN or DE of ration Defaults for UE, ASH of manure, etc

3. Manure N₂O direct

Eq. 10.32, 10.25 &10.26 (IPCC 2006) DMI, CP of ration, NE Defaults for NR or 7%

4. Soil N₂O Eq. 10.27 & 10.28 (IPCC 2006) Volatilization & leaching DOF, NE, default values

1. Feeding edible oils to beef cattle

Edible oils including tallow – 20% decrease in methane - oilseeds processed or masticated for reductions to be realized - requires the free oil to interact with rumen microbes

i)

ii)

Total fat should not exceed 6-7% of dietary DM - reduced DMI and performance

Biological mechanisms:

- decreasing fibre digestibility,
 - suppressing the metabolic activity of methanogens & protozoa,
- iii) enhancing relative propionate production and,
 iv) through provision of an alternative means of electron disposal.

Enteric Methane emissions

Each Animal Group within ration

= SUM (N cattle x DOF x DMI x GE_{diet} x (EF/100)/EC),

 GE_{diet} = gross energy content of the diet or 18.45 MJ/kg DM 19.10 MJ/kg DM for diets containing 4%-6% edible oils

EF = default CH₄ emission factor; 4.0% for diets greater or = 85% concentrates, no edible oil; 6.5% for diets <85% concentrates, no edible oil 3.2% for diets greater or = 85% concentrates, 4%-6% edible oil 5.2% for diets <85% concentrates, 4%-6% edible oil</p>

 $EC = conversion factor of energy to methane or 55.65 MJ/kg CH_4$

BASELINE vs. PROJECT

calculated on actual pen-average mid-point weights and DMI

Table 1. Diet ingredients and composition for FEEDLOT 1.								
Diet Ingredients	Baseline Diets (No Oil)			Project Diets (Oil Added)				
and composition ^z	1	2	3	4	1	2	3	4
Days on diet	14	7	7	94-146	14	7	7	94-146
Barley grain	50.3	62.5	74.9	87.0	46.3	58.5	70.9	83.0
Barley Silage	23.4	17.1	6.8	4.4	23.4	17.1	6.8	4.4
Corn Silage	21.8	15.9	13.9	4.1	21.8	15.9	13.9	4.1
Canola oil	0.0	0.0	0.0	0.0	4.0	4.0	4.0	4.0
Supplement	4.5	4.5	4.4	4.5	4.5	4.5	4.4	4.5
Dry matter, %	53.6	59.9	67.4	78.0	65.0	60.1	67.6	78.4
NEm, Mcal/kg DM	1.71	1.83	1.87	1.95	1.81	1.89	1.96	2.04
NEg, Mcal/kg DM	1.09	1.20	1.23	1.30	1.17	1.23	1.30	1.37
Crude Protein, %	12.5	12.2	12.9	13.3	11.9	12.2	12.4	12.8
Cost, \$/kg DM ^y	0.132	0.140	0.145	0.150	0.151	0.166	0.172	0.175

Production parameters for feedlot steers under BASELINE and PROJECT conditions

Diet	DOF	N	Wt in, kg	Wt out, kg	ADG	BASELINE DMI kg/day	PROJECT DMI kg/day
1	14	117	392	411	1.32	9.60	9.41
2	7	117	411	421	1.40	9.80	9.51
-3	7	117	421	431	1.47	9.81	9.49
4	130	117	431	631	1.54	11.41	11.00

BASELINE EF, kg CH4/hd/period

=[((9.60 kg/day x 18.45 MJ/kg DM) * (6.5/100))/55.65] x 14d = 2.90 kg/hd

PROJECT EF, kg CH₄/hd/period

=[((9.41 kg/day x 19.10 MJ/kg DM) * (5.2/100))/55.65] x 14d = 2.35 kg/hd

The Size of the Prize

Alberta's potential – 223,856 to 302,769 t CO_2e/yr Worth \$2.2 to \$3.0 million/yr in carbon credits (@ \$10/t CO_2e)

However,

At \$800-900/t for edible oils, the cost of mitigation would be very high at ~ 0.27 to 0.30/kg CO₂e, while the benefit in carbon credits would only be worth 0.01/kg CO₂e

Edible oil price would need to drop to \$400-500/t to be economically feasible

Feasible with corn grain (4% fat) & corn-based DDGs (11% fat) wheat-based DDGs (5-7% fat)??

2. Reducing days in the feedlot

- Feeding ractopamine hyrochloride
 - beta 1 adrenergic agonist similar to natural catecholamines

- increases muscle mass through increased protein synthesis with minimal effect on protein breakdown

- Fed to cattle at 200 mg/hd/day during the last 28 days before slaughter
 - -Improves ADG and gain to feed by 20%
 -Carcass weight by 1.9-2.8%
 -No effect on DMI and USDA quality and yield grade

Example

BASELINE

- Steers, entry weight=700 lb (317.5 kg)
- 28 day adj. period, ADG= 1.0 kg/day
- Diet 84.2% barley, 10.5% barley silage, 5.3% sup
- DM basis, 13.1% CP, 80% TDN
- ADG = 1.50 kg/day; DMI = 10 kg DM/day over 178 days
- 612.5 kg live slaughter wt or 355.25 kg carcass wt

PROJECT

- 200 mg RAC/hd/day during last 28 days
- ADG = 1.50 kg/day during first 144.4 days
- ADG = 1.80 kg/day during last 28 days
- $\mathbf{DMI} = 10 \text{ kg DM/day}$
- slaughter wt = 612.5 kg; carcass wt = 357.03 kg
- $-\mathbf{DOF} = \mathbf{172}$

Example

BASELINE

- 355.25 kg carcass in 178

PROJECT

- 357.03 kg carcass in 172.4 days
- 1.78 kg more carcass wt or 2.1 fewer days on feed (1.78/0.58)/1.5 kg/day = 2.1

TOTAL = 7.7 fewer days on feed (5.6 + 2.1)

GHG Sources:

1: CH₄ from enteric fermentation, kg/hd/period

Total Volatile Solids Excreted, kg/hd/day 2: CH₄ from manure handling, storage & land app, kg/hd/period

Nitrogen excreted, kg/hd/day

- 3: Direct manure N₂O, kg/hd/period
- 4. Direct manure storage N₂O, kg/hd/period
- 5. Indirect volatilization N₂O, kg/hd/period (NH₃ & NO_x)
- 6. Indirect manure leaching N₂O, kg/hd/period

\$0.38/animal fed RAC during last 28 days before harvest

3. Reducing Age at slaughter in youthful beef cattle Mechanism: fewer days on feed, less CH4, manure and N2O Source: CCIA database as of June 1, 2009

Age at slaughter may be over-estimated by 0.5-1 months as some producers register birth date for a group of calves as the date of first born. This only affect the average birth date slightly as most (75-79%) calves are born in the first 42 days of the calving season (Alberta Cow-Calf Audit 2001).

BASELINE diets

Calf 0-3 months
 Calf 3-6 mo
 Calf 6-9 mo

4. Feeder 9-12.6 mo

91 days on pasture92 days on pasture92 days on pasture

104 days in feedlot

5. Feeder 13-16 mo

6. Feeder 16-18 mo

92 days on pasture75 days in feedlot

100% milk 43% milk, 57% Alf-MBG 100% Alf-MBG

35% barley silage,40% barley grain; 23% hay1% molasses & 1% beef sup

100% Alf-MBG

10.5% barley silage,84.2% barley grain,1.6% molasses & 3.6% beef sup

PROJECT diets

1. Calf0-3 mo91 days on pasture2. Calf3-6 mo92 days on pasture

3. Feeder 6-7 mo 31 days in feedlot

100% milk 43% milk, 57% Alf-MBG

40.0% barley silage,58.0% barley grain,1.0% molasses & 1.0% beef sup

4. Feeder

7-14 mo 212 days in feedlot

10.5% barley silage,84.2% barley grain,1.6% molasses & 3.6% beef sup

The Size of the Prize Reducing age at slaughter by 1-4 months

\$2.84 to \$11.35/hd or about \$2.83/mo reduction

Additional benefits from reduced yardage, interest costs and possible increased selling price – **could be substantial**

Alberta's potential – 0.681 to 2.73 million t CO_2e/yr Worth \$6.81 to \$27.3 million/yr in carbon credits (@ \$10/t CO_2e)

4. Selection For Low Residual Feed Intake in Beef Cattle

4. Selection for improved efficiency of feed utilization; LOW Residual Feed Intake (RFI)

Mechanism (s): 1. Reduces feed intake at equal body size & ADG rp = 0.60-0.72; rg = 0.69-0.79 (Arthur et al. 2001; Basarab et al. 2003;Herd et al. 2002)

Mechanisms, independent of intake, are related to metabolizability and animal variation in NEm, HIF & host mediated methanogenesis

MEI = RE + HP $HP = NE_m + HIF$

In LOW RFI: MEI = \uparrow RE + \downarrow HP

Increased apparent digestability -ruminal retention time -feeding behavior -saliva production Lower NEm -lower visceral organ wt (40-50% of daily HP) -protein turnover -ion pumping -protein leakage - leptin, IGF1, UCPs, ATP synthase, NPY

$\downarrow \mathbf{HP} = \downarrow \mathbf{NE}_{\mathbf{m}} + \downarrow \mathbf{HIF}$

decreased HIF at lower levels of DMI (Ferrell and Jenkins 1998)

Progeny Test Diet (as fed basis): 73.3% barley grain 22.0% barley silage 1.6% molasses 3.1% Feedlot sup (32% CP) ad libitum twice daily Feb 2003 – Jul 2006 (113 d)

GrowSafe

<u>Estimated Breeding value</u> A Simple Example

Bull RFI-p EBV = -1.25 kg DM/day x 0.40 = -0.5 kg DM/day Cow RFI-p EBV = 0.00 kg DM/day X 0.40 = 0.0 kg DM/day

Expected Progeny Difference = (-0.5 +0.0)/0.5 = -0.25 kg DM/day

BASELINE (EBV=0 or ?) vs. PROJECT (EBV=-0.5 kd DM/day)

100 cows; 4 low RFI bulls (avg. EBV=-0.5 kg DM/day)

- 86% calf crop weaned; 43 steers; 23 heifer; 20 repl. Heifer
- slaughtered at 18 months of age
- monitored for 3 years from bull purchase
- Diet composition was determined for each category of beef cattle
- CowBytes used to formulate diet
- DMI at the desired ADG was predicted using CowBytes

Assumed: thermal neutral environmental conditions, average mid-point weight & days on each diet

NOTE: EBV=Estimated Breeding Value

PROJECT feed intake and emission factors

FOR SIRES:

 \Box RFI-p = -1.25 kg DM/day

 $\Box Average DMI in bull test = 10 kg DM/hd/day$

□% Change = (-1.25 kg DM/day x 0.75)/10 kg DM/day = 9.375% less DM/day

□ So if BASELINE is 12 kg DM/day then the reduced feed intake = 12 kg DM/day x (1-0.09375)=10.875 kg DM/day

Similarly, PROJECT methane lost as % of GEI = $6.5 \times (1-0.09375) = 5.89\%$

PROJECT feed intake and emission factors

FOR PROGENY: Certified RFIp EBV, kg DM/day; Sire = -0.5; Dam = 0.0

DBase year DMI in bull test = 10 kg DM/day

Change in progeny = [(-0.5 + 0.0)/2] = -0.25 kg DM/day

 \Box % Change= (-0.25 kg DM/day/10 kg DM/day) x 100 = 2.5%

□ If BASELINE feed intake is 12 kg DM/day then PROJECT feed intake = 12 kg DM/day x (1-0.025)=11.7 kg DM/day

Similarly, PROJECT methane lost as % of GEI = $6.5 \times (1-0.025) = 6.34\%$

GHG Sources: Baseline (no selection for RFI)

1: CH₄ from enteric fermentation, kg/hd/period

Total Volatile Solids Excreted, kg/hd/day 2: CH₄ from manure handling, storage & land app, kg/hd/period

Nitrogen excreted, kg/hd/day

- 3: Direct manure N₂O, kg/hd/period
- 4. Direct manure storage N₂O, kg/hd/period
- 5. Indirect volatilization N₂O, kg/hd/period (NH₃ & NO_x)
- 6. Indirect manure leaching N₂O, kg/hd/period

Conversion of CH_4 to $CO_2e = x \ 21$ Conversion of N_20 to $CO_2e = x \ 310$ Adjusted for carcass weight (kg CO_2e/kg carcass beef)

Comparative Greenhouse Gas emissions from selecting for low RFI (EBV of 0 vs. -0.5 kg DM/day) in beef cattle

GHG emissions of 4 bulls, slaughter steers & slaughter heifers and replacement heifers; 3 years from bull purchase

SPECIFIED GAS EMITTERS REGULATION

QUANTIFICATION PROTOCOL FOR INCLUDING EDIBLE OILS IN CATTLE FEEDING REGIMES

CONCLUSION

- ✤ 4 beef cattle protocols developed
- * reduce GHG by 0.02-1.0 t CO_2e/hd
- ✤ guidance documents developed

http://environment.alberta.ca/02275.html

Barriers to Adoption

- Informational barriers-LCA, FAO
- Complexity of establishing baseline
- ✤ Acceptance of IPCC/Nat. Inventory
- Social Barriers farms/ranchers??
- Investment/Cost Barriers
- Institutional barriers