GenomeAlberta

Genomic tools for commercial beef herds

Fall Forum, Mayerthorpe November 29, 2018

UNIVERSITY OF

berta

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Improving feed efficiency, product quality, profitability, environmental impact and food security

"who's your daddy" Why It Pays to Parentage Test

- Lasting impact; progeny from sire can impact a herd for 10-25 years
- Developing replacement heifers approaches \$2000
- □ Maintaining herd sire ~ \$1800/year
- Parentage test \$12-20/animal; 8 days turnaround
- □ Small price to pay for a long-term investment
- **Record keeping is a pre-requirement**

Adapted from Kathy Larson, Western Beef Development Centre, www.wbdc.sk.ca

Number of progeny by sire (CCHMS, year 1)

Range in EPDs of sires from 3 different breeding programs for carcass value

Breeding Program	sires used	EPD for carcass value \$/head				
1	29	\$-186 to \$-19/head				
2	48	\$ -22 to \$ 95/head				
3	15	\$ 4 to \$169/head				

<u>Conclusion</u>: There is sufficient range in the genetic value of sires for carcass merit, and that selection amongst yearling bulls using carcass traits improve carcass value (MacNeil, Basarab, Manafiazar and Plastow)

"Ancestry.com" for beef cattle

Genomic breed composition Mate matching

"Precision breeding"

Crossbreeding

- To take advantage of hybrid vigor (heterosis) and breed differences
- Heterosis increases fertility, longevity and lifetime productivity by 20-30%.
- Fertility is the most important trait to cow-calf production (10:2:1 rule of Thumb)
- ✤ Calf Crop % has remained constant at 83-85% over the last 25-30 years
- Steady decline in hybrid vigor due to single breed use since early 2000s
- Asking producer to decide between branded beef premiums and fertility

Calf Crop percentage (%) has remained constant for >25 years

Are crossbreds more variable than purebreds?

Coefficient of variation (CV) for purebreds vs. composite steers

Traits	Purebreds CV, %	Composites CV, %
Birth weight	12	13
Wean weight	10	11
Carcass weight	8	9
Retail product	s 4	6
Marbling	27	29
Shear force	22	21

No difference in variability for reproduction, production and carcass traits U.S. Meat Animal Research Center, Clay Center , NE; Gregory et al. 1999

Adapted from Mehdi Sargolzaei and Steve Miller, University of Guelph

Inheritance of DNA & recombination

Adapted from Mehdi Sargolzaei and Steve Miller, University of Guelph

Genomic breed composition

MyHerdandMe ... genotyping for beef cattle

Genomic-based breed composition & retained heterozygosity

💹 Angus 📃 Hereford 🖾 Simmental 📃 Other

MyHerdandMe ... genotyping for beef cattle

Genomic-based breed composition & retained heterozygosity

Who has more retained heterosis?

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

 Angus
 = 52.9%

 Simmental
 = 39.6%

 Charolais
 = 5.9%

 Others
 = 1.6%

RFI-fat = -0.02

Hybrid Vigor Score = 55.9%

= -0.41

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

 Angus
 = 80.4%

 Simmental
 = 13.6%

 Charolais
 = 4.2%

 Others
 = 1.8%

RFI-fat

Hybrid Vigor Score = 33.3%

Is low %RH and reduced hybrid vigor an opportunity?

Distribution of progeny and their dams for genomic-based retained heterozygosity (Hybrid vigor score)

Yes, 46% of calves and 39% of cows would benefit from more VIGOR

Distribution of progeny and their dams for genomic-based retained heterozygosity (Hybrid vigor score)

Hybrid Vigor Score

Hybrid Vigor Score and RFI_{fat} in crossbred beef cattle.

Groups	Туре	n	<u>Vigor S</u> mean	core SD	Linear effect, kg DM/day per 1% increase in Vigor Score
	ctoor	109	49.5	010	
DW	steer	109	49.5	9.4	-0.016±0.007
JM	steer	99	54.2	17.0	-0.007±0.005
LRC	heifer	95	41.5	18.8	-0.006±0.002
			at a		
All		303	48.4	16.2	-0.008±0.002

Each 10% increase in Hybrid Vigor Score improves feed efficiency by 0.08 kg DM/d. Thus increasing Vigor Score from 30% to 60% would save \$18/head in feed costs over 250 days of feeding.

Genomic Hybrid Vigor, longevity, and profitability

412 replacement heifers followed over 5 calvings (1050 matings)

Linear effects of genomic heterozygosity

200-d weaning weight Age at first calving +3 lb/10% change -2 days/10% change

Pregnancy rate Weaning rate Lifetime productivity Days in the herd +2 percentile points/10% change +3 percentile points/10% change +79 lb over 5 parities/10% change +51 days/10% change

Basarab et al. 2018. Genomic retained heterosis effects on fertility and lifetime productivity in beef heifers. <u>https://doi.org/10.1139/CJAS-2017-0192</u>

Genomic retained heterozygosity (gRH) and its effect on cumulative net income over 5 calvings in commercial beef heifers

Correlations: RFI on other traits

Traits	Direction in low RFI	phenotypic & genetic correlation		
DMI	lower intake	0.60 to 0.79		
FCR	improved	0.53 to 0.88		
Feeding behaviours	lower	0.18 to 0.57		
Cow productivity	no affect	0.03		
34 meat quality traits	no affect	-0.09 to 0.12		
DM & CP digestibility	2-5% improv.	-0.33 to -0.34		

Summary of 20 studies from Australia, Canada, Ireland and USA

CH4, CO2 and feed intake in high and low REPcattle

ALBERTA BEEF, FORAGE & GRAZING CENTRE

Data – Respiration vs. Eructation

Rumen and Lung CO₂ and CH₄ from Four Animals over a 25 Minute Period

Winter Sampling

Summer Sampling

Two basic hypotheses: low RFI & low CH₄

<u>Feed intake driven</u> low RFI, lower DMI and lower CH_4 production (g/day) but no effect on digestibility or CH_4 yield (g/kg DMI)

Two basic hypotheses: low RFI & low CH₄

Inherent differences in feeding behaviours, lower feed intake, longer rumen retention time \rightarrow differences in rumen microbial communities, increased digestibility, more H⁺ and increased <u>?</u> CH₄ yield (g/kg DMI)

What did we observe? LOW RFI heifers consumed 7.1% less feed 8.09±0.26 vs. 8.71±0.21 kg DM/day

emitted 6.5% less daily CH₄ 196±1.4 vs. 210±1.4 g/day BUT emitted 2.7% more CH₄/kg DMI compared to HIGH RFI heifers

Economic and Environmental Benefits

Selection for feed efficiency (annual rate of genetic progress=0.8%)

2.9 million feeders – 92,800 tons/yr

4.7 million cows – 296,000 bales/yr

Increase accuracy of gEPDs & Value Indices

34 million variants screened for functional impact on feed efficiency and carcass quality traits;

gEPDs for 18 traits with > 35% accuracy in crossbred cattle;

Canadian Angus Animal Details RED WILBAR REPLICA 904Z

Home Animal Inquiry EPD Inquiry Mating Predictor Member Inquiry Sale Catalogs Semen Catalogs Download Files Online Transactions

Registration #:	1696969
Colour:	Red
Sex:	Male
Tattoo:	WDM 904Z
Birth Date:	03/04/2012
Calving Year:	2012
Status:	Active
Registration Status:	Registered
Certificate Electronically Store	ed: No
Sire:	RED WILBAR RÉPLICA 836T
Dam:	RED WILBAR HELGA 612S
Breeder:	Wilbar Cattle Co
Current Owner:	Lacombe Research Centre
Progeny:	None
Pedigree:	[View]
EPD Graph:	[View]
Performance Data:	[View]
	2

	Based on November 2018 EPDs Angus														
	Birth Weight	Weaning Weight			Total Maternal		Calving Ease	Mat Calving Ease			Carcass Weight	Marbling	Fat	Stay	HPG
EPD	+1.6	+43	+57	+23	+45	-	+1.0	+7.0	-	-	-	-	-	-	-
Acc	36	31	19	18	<u> </u>	-	17	12	-	-	-	-	-	-	-
TOP %	30	55	85	30	40	-	70	55	-	-	-	-	-	-	-
Average EPDs for all Calves born in 2018 Click for Percentiles															
EPD	+1.9	+41	+71	+20	+40	+0.69	+2.9	+6.5	n/a	+0.37	+29	+0.32	+0.010	n/a	n/a

23 November 2018

Birth weight and 205-day weaning weight for sire WDM_904Z (Red Angus)

Same year, mating group (AI), sire, cow age, but very different wean wt. WHY?

Accuracy of progeny gEPDs and relationship between gEPD and actual progeny performance

Traits			Correlation (r) gEPD vs. actual trai		
Marbling	32.6	28-45	0.440		
Grade fat, mm	35.0	30-48	0.362		
Rib eye area, cm2	38.1	33-51	0.483		
Lean Meat Yield, %	37.1	32-50	0.476		
Yield Grade	36.1	31-50	0.476		
DMI, kg DM/day	43.3	36-58	0.316		
Sire gEPD for marbling is related to progeny carcass marbling score (79 sires; 3 or more calves)

Conclusions

 Genomic tools – EnVigour HX[™] (>\$200 return; cost \$45/DNA test)

Use to make better mating and culling decisions

Use for more accurate genetic selection

Use to refine branding programs

Project Team Members

From top left: John Basarab, Donagh Berry, John Crowley, Paul Stothard

From middle left: Dawn Trautman, Michelle Miller, Graham Plastow, Changxi Li,

From bottom left: Mohammed Abo-Ismail, Kirill Krivushin, Tara Carthy, Tiago Da Silva Valente

Livestock are a producer of man-made Greenhouse Gases (GHG) through the belching of methane from cattle, sheep and goats. Methane is 25 times more powerful as a GHG than CO₂.

Environmental Sustainability

□Global livestock production is <u>14.5%</u> of global man-made GHG
□Global beef production is <u>5.95%</u> of global man-made GHG

Canada's beef production is <u>0.072%</u> of global man-made GHG,
 Canada's beef production is <u>3.6%</u> of Canada's man-made GHG and while lands that grow grasses and legumes for cattle sequester carbon

□conversion of perennial grassland into annual cropland, or worse yet, urban-industrial areas, typically leads to a <u>20-60%</u> reduction in soil C

Richard Branson dinner

Genomic breed composition

Relationship between breed composition by pedigree and genomic-based breed composition in crossbred beef heifers (Akanno et al. 2017. Can. J. Anim. Sci. 94: 431-438)

CCGP reference databases

- > 379 sequences; 7 breeds and 3 xbreds;
- ➢ 4800 HD and 5600 50K genotypes
- 34 million variants identified.
- >>10,000 DMI, ADG, RFI all with 50K genotypes
- >>8500 carcass traits; 2995 WBSF

>1000 Bull Genomes Project International coordination

2000 DMI, ADG, RFI; 1500 WBSF; 40000+ carcass traits all with 50K genotypes; 138 new sequences

3000 DMI, ADG, RFI, carcass traits, WBSF all with 50K genotypes

Relationship between genomic retained heterozygosity (gRH) and longevity in crossbred beef heifers

Estimated increase in performance from different mating systems

Mating Type	in calf y per	ted increase wean weight cow o breeding (%)
Pure breeds	6	0
2-breed rotation		15.5
3-breed rotation	NUN CONTRACTOR OF	20.0
Composites	Each 10% increase in %RH (Vigor)	
F3-5/8A, 3/8B;	results in 2.3% increase in calf weight	0.9
F3 - 3/8A, 3/8B	weaned per cow exposed to breeding	5.3
F3 - 3/8A, 3/8B	, 1/8C, 1/8D	16.0
F3 - 1/4A, 1/4B	, 1/4C, 1/8D, 1/8E	18.2
F3 - 1/4A, 1/4B	, 1/8C, 1/8D, 1/8E, 1/8F	18.9
F3 - 3/16A, 3/10	6B, 1/8C, 1/8D, 1/8E, 1/8F, 1/8G	19.8
F3 - 1/8A, 1/8B	, 1/8C, 1/8D, 1/8E, 1/8F, 1/8G, 1/8H	20.4

Gregory et al. 1990

Trait variation in high vs. low vigor replacement heifers

Selection for low RFI-fat will:

Have no effect on growth, carcass yield & quality grade

Reduce feed intake at equal weight and ADG

Improve feed to gain ratio by 10-15%

Reduce NE_m and methane production

Life Cycle assessment of GHG emissions from high vs. low Vigor herds

Carbon		HIGH	LOW	
Footprint		Vigor	Vigor	
kg CO ₂ e/kg ca	rcass beef	22.48	24.14	
kg CO ₂ e/385 k	g (850 lb) carcass	8655	9294	
Difference			639 kg CO ₂ e/animal slaughtered worth \$19 at \$30/t carbon	
Assuming:	30% replacement ra 40% of cows could l 4.9 million beef cow 375,732t CO ₂ e/yr =	b enefit from incre s	ease in hybrid vigor	

Includes enteric CH₄, manure N₂O, manure CH₄, cropping N₂O and energy CO₂ and is based on procedures described by Basarab et al. 2012, *animals 2*, *195-220*

Trends in estimated breeding values for residual feed intake (RFI) for High and Low feed efficiency selection lines from 1993 to 1999

Trangie Agricultural Research Centre, NSW, Australia. Adapted from Arthur et al. 2001

Archer and Barwick 1999 Archer et al. 2004