

Christine Noronha
Crops and Livestock Research
centre Charlottetown PEI

Pollen beetle (Brassicogethes viridescens)

Pollen beetle (Brassicogethes viridescens)

Adults emerge in the spring.
Lay eggs on newly forming
buds Larvae bore into and feed
on the developing bud.
Adults feed on pollen from
flowers.

Pollen beetle (Brassicogethes viridescens) larvae

Pollen beetle (Brassicogethes viridescens) adults

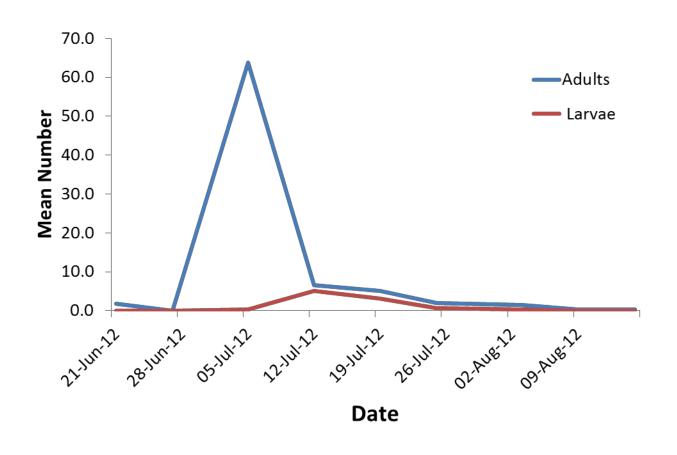
Damage by the pollen beetle (Brassicogethes *viridescens*)

What do we know about pollen beetles

- First reported in Maine (1993), Nova Scotia,
 Prince Edward Island (1994), and Quebec (date ?).
- Adults emerge from overwintering in the spring.
- They are polyphagous feeding on pollen from many different plant families before moving to cruciferous plants.
- Chew holes in the base of green buds and lay eggs inside.
 200-250 eggs, generally 2-3 eggs /bud.
- Larvae feed on pollen inside the buds.
- Two instars, 1st feeds for 5-10 days on the pollen inside the bud, 2nd feeds on pollen from open flow
- Drop off the plant to pupate in the soil.

What do we know about pollen beetles

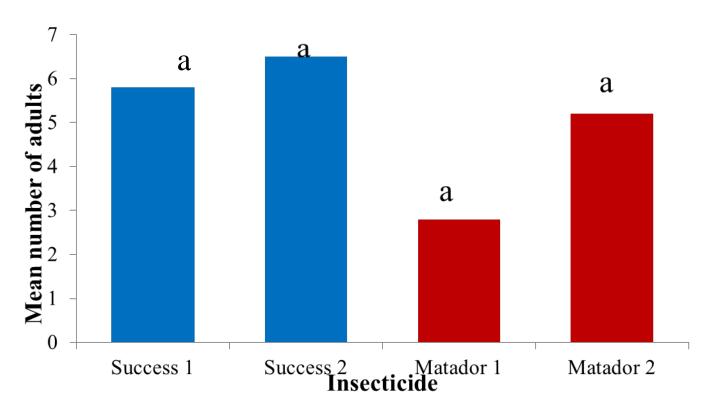
- Adults emerge and feed on pollen from other flowers over the rest of the summer before seeking overwintering sites.
- Especially damaging to spring crop.
- Threshold in Europe for spring crop is 0.5 5 per plant.
- Threshold is lower, 1 per 5 plants, for composite hybrids.
- Plant may compensate, but pods smaller and with reduced oil content.
- Plants may overcompensate with more pods but they mature later and may not give an even harvestable crop.



Field sites in PEl

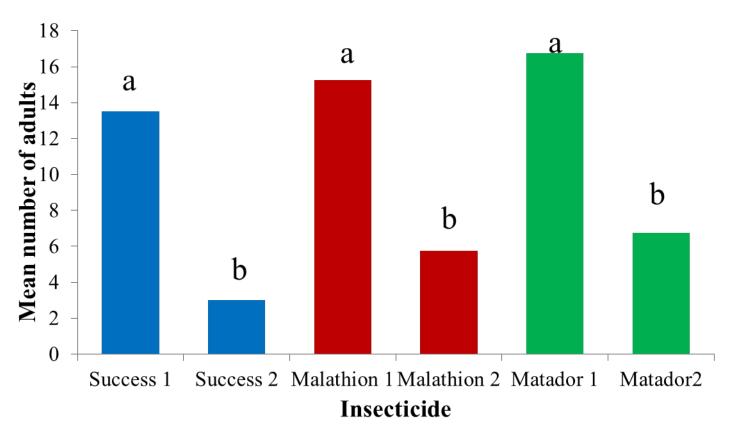
- Samples were collected from nine commercial fields across PEI
- In June four sticky traps were placed per field.
- Ten samples consisting of ten sweeps / sample were taken in each field.
- Sweep samples were collected weekly from early July- early August.

Figure 1. Mean number of adults and larvae found over the season



Insecticide trial

- Plots 4X6m were established at Harrington research farms (PEI)
- Four replicates per treatment in a randomized complete block design
- Treatments were
- Pre bloom
 - Success 480SC (spinosad @ 182ml/ha)
 - Matador 120EC (Lambda-cyhalothrin) @ 83ml/ha)
- 10% bloom
 - Success 480SC(Spinosad @ 182ml/ha)
 - Matador 120EC (Lambda-cyhalothrin @ 83ml/ha)
 - Malathion 500EC (Diethyl dimethoxythiophosphorylthio) succinate @ 1.12l/ha)


Figure 2. Mean number of adult *B.viridescens* present in the crop before and after an insecticide application at pre-bloom.

(1= Number before application; 2= Number four days post application)

Figure 2. Mean number of adult *B. viridescens* present in the crop before and after an insecticide application at 10% bloom

(1 = Number before application; 2 = Number four days after application)

Conclusion

- B.viridescens peak in mid- June in the field under maritime conditions
- Adults can be controlled by insecticides at 10%bloom

Next steps

- Develop life tables for this insect in the Maritimes.
- Establish early season detection techniques.
- Assess the impact of natural

