

ALBERTA SCALING MANUAL

APPENDICES

11.0 Appendices

Appendix 1 – Application for Scale Site

Appendix 2 – Mass Scaling for Small Timber Operations

Appendix 3 – Example of Mass Scale Analysis

Appendix 4 – Tree Length - Sampling for Butt Distribution

Appendix 5 – Common Stains and Defect

Appendix 6 – Definitions

Appendix 7 – <u>Scaling Tables</u>

Appendix 1 – Application for Scale Site

SUSTAINABLE RESOURCE DEVELOPMENT	APPLICATION FOR SCALE SITE
NAME:	MILL NUMBER
MAILING ADDRESS:	
TELEPHONE:	SITE LOCATION:
APPLICATION FOR:	MASS SCALE SITE NON-MASS SCALE SITE
REQUESTED DATE FO	R IMPLEMENTATION:
EXISTING INVENTORY	- ROUNDWOOD VOLUME: PRODUCT VOLUME:
FOR MASS SCALE	SITES:
SCALER:	PERMIT # EXPIRY DATE:
	CERTIFICATION DATE: SCALE CAPACITY:
	SCALE ATTENDANT (yes or no):
FOR NON-MASS SC	ALE SITES:
SPECIES:	ESTIMATED VOLUME: PRODUCT:
TREELENGTH (yes c	r no): SHORTWOOD (yes or no): SHORTWOOD LENGTH:
SITE OWNER:	LFD REPRESENTATIVE:
SIGNATURE:	SIGNATURE:
DATE:	DATE:

Appendix 2 - Mass Scaling for the Smaller Timber Operation

Application

There are many smaller timber operations in Alberta who do not have the assurance of a defined long-term wood supply, and an on-site weigh scale for timber harvest accounting is not an economic reality.

Weigh scale accounting of harvested timber is a proven and effective method authorized by the Public Land and Forest Division (PLFD). To make this system possible for smaller timber operations, the use of departmental approved weigh scales owned by another person/company will be considered. These approvals are deviations from standard accepted practices and are therefore limited to the following:

Operations which currently determine the harvested volumes on a manufacture basis and which are:

- 1. Processing community timber and/or directed FMA incidental (and which may include private or salvage) timber.
- 2. Approved by the local PLFD area office for this purpose. (Refer to "Agreement").

To obtain consideration for mass scaling the first step is to complete a "Mass Scaling Agreement". (Refer to sample form). This form is to be fully completed by all parties and a copy forwarded to the Provincial Scaling Supervisor.

Before a PLFD representative signs the form that person will address inventories, fixed tare weight determinations, and ensure all mass scaling practices and are in place with the timber operator. (Refer to those sections following the sample form).

Mass Sc	ealing Agreement
I,	of,
have read, and understand, the requirements	of weigh scale accounting for timber (attached). I
hereby request that all timber, or as otherwis	se directed by the Public Land and Forest Division
(PLFD), which is delivered to my mill (proc	essing site) located at
	, be accounted for by weighing across the weigh
scales of	Sample log scaling or the application if
fixed weight to volume ratios will be impler	mented as directed by the PLFD. The request date for
commencing weigh scale accounting is	I am in agreement to follow
proper procedures for weigh scale accounting	g and that I shall maintain and submit weigh scale
records to the PLFD as required. I further u	nderstand that I am to abide by all relevant
legislation in the Forests Act and its associa-	ted regulations, and that failure to do so may result in
penalty action and/or forfeiture of this agree	ment.
<u>Applicant</u>	Weigh Scale Owner
Signed:	Signed:
Printed Name:	Printed Name:
Date:	Date:
Public Land and Forest Division Representative	
Printed Name:	Date:
Phone Number:	Signature:

Handling Existing Inventory

Manufactured products and log inventory hauled into a yard prior to approving the use of the weigh scale is to be segregated from weigh scaled timber. Timber manufactured and sold under the non-scale system is reported separately.

Scale Populations

Scaling populations and sample intensities are to be established through discussions with the Forest Area and Company. Form TM262 "Scaling Populations", is to be completed each timber year.

Weighing

- 1. Weights and date/times are to be printed on every load ticket (using a printer attached to the weigh scale).
- 2. Gross weights are to be taken for every load.
- 3. Tare weights will be required for every sample load and are to be taken immediately after unloading.
- 4. Average tare weights will be accepted providing the procedures for establishing and testing fixed tare weights is followed (Refer to the section below titled "Procedure for Average Tare Weights").

Sample Load Selection and Scaling

- ♦ Where sample loads are requested, sample cards or random load generators will be used to select the scale loads as they cross the scale.
- Sample scale trees are to be bucked and the scaling is to be done by a permitted scaler.
- ◆ The scale loads are to be left in the same condition as they were scaled until checked scaled or released by the local PLFD area staff.

Weigh Scale Records

- ◆ A mill number and mill code will be assigned by the Forest Management Branch of the PLFD, and which are to be used on all records requiring such.
- ◆ The weigh scale information must be summarized on departmental approved forms and submitted within 21 days following each month of weigh scale activity.
- ♦ Forms which must be completed and submitted include the TM35 "Weigh Scale Load Record Sheet" and TM44 "Volume Compilation Sheet". The sample scale loads are to be compiled using the Micro Logscale program and submitted on a computer disk along with the other required scale forms.
- Unless authorized by PLFD area staff, all timber including private and salvage timber hauled to the mill site is to be accounted for by the weigh scale process.

Procedure for Average Tare Weights

Weigh scaling for the smaller timber operator provides for the use of average tare weights. This acceptance of this practice will be subject to the following requirements:

- 1. The average tare must be based on at least 10 sample weights for each truck. If a truck changes configuration the average must be re-established by the same process.
- 2. The average tare weight for any one truck must not have a coefficient of variation of more than \pm 2%. Trucks having a variance of more than \pm 2% must continue to reweigh out until the variance is within range.
- 3. The average tare must be randomly sampled at a minimum of 20 load intervals to determine if the weight is still within \pm 2% of the average. If not, repeat step 1.
- 4. Calculation of the average tare and the variance must be documented and included with scale data submissions.

The average tare cannot be used for sample loads. The trucks must obtain tare weights for sample loads.

Calculation of Average Tare and Variance

	Tare	Difference	Difference
Truck	Weight (kg)	from Average	Squared
1	15350	4	16
	15240	114	12996
	15360	-6	36
	15310	44	1936
	15390	-36	1296
	15260	94	8836
	15160	194	37636
	15490	-136	18496
	15350	4	16
	15630	-276	76176
	153540		157440

Average tare =
$$\frac{153540}{10}$$
 = 15354
SD = $\sqrt{\frac{157440}{(10-1)}}$ = \pm 132 C.V. % = $\frac{\text{SD}}{\text{Avg. Tare}}$ x 100% = 0.86%

Appendix 3 - Example of Mass Scale Analysis

Load	Net	Sw & Pl	Fb	Total	Scale		
No.	Weight	Scale	Scale	Scale	Estimate	Diff.	Diff. ²
38	43 400	42.196	0.000	42.196	51.764	+9.568	91.547
81	36 360	41.682	0.000	41.682	43.367	+1.685	2.839
174	48 220	60.829	0.000	60.839	57.513	-3.326	11.062
19	43 400	56.057	1.161	57.218	51.764	+5.454	29.746
38	37 780	49.188	1.708	50.896	45.061	-5.835	34.047
141	50 220	55.902	0.000	55.902	59.898	+3.996	15.968
153	44 980	50.001	0.487	50.488	53.648	+3.160	9.986
256	38 460	44.845	0.123	44.968	45.872	+0.904	0.817
277	44 760	53.628	1.021	54.649	53.386	-1.263	1.595
177	<u>41 960</u>	49.816	3.666	<u>53.482</u>	<u>50.046</u>	-3.436	<u>11.806</u>
	429 540			512.320	512.319		209.413

Ratio =
$$\frac{429540}{512.320}$$
 = 838.421

Avg. Volume/Load =
$$\frac{512.320}{10}$$
 = 51.232

$$SD = \sqrt{\frac{209.413}{(10-1)}} = 4.823$$

$$CV\% = \frac{4.823x100}{51.232} = 9.41\%$$

Projected Cut:

5,000,000 fbm (21 500 m³)

$$N = \frac{21.500}{51.232} = 420 \text{ loads}$$

$$n = \frac{Nt^2C^2}{NE^2 + t^2C^2}$$

Where:

n = number of samples

N = number of loads

t = probability (2)

E = allowable sampling error

n =
$$\frac{420(2)^2 x(9.41)^2}{420(5)^2 + [(2)^2 x(9.41)^2]} = \frac{148761}{10854} = 13.7 \text{ (14 samples)}$$

Revised t = $(14-1=13)=2.16$

n =
$$\frac{420(2.16)^2 x(9.41)^2}{420(5)^2 + [(2.16)^2 x(9.41)^2]} = \frac{173515}{10913} = 15.8 \text{ (16 samples)}$$

% Sampling = $\frac{15.8}{420} x100 = 3.7 = 4\%$

Appendix 4 - Tree Length Scaling

Example of Calculation of Sampling Intensity for Butt Distribution

Sample Number	Stems	Sample Volume m ³ (1000x)	Average Vol./Stem m ³ (1000x)	Difference from Group Estimate	Difference Squared
1	24	14 753	615	-216	46656
2	20	25 536	1 277	446	198916
3	27	26 427	979	148	21904
4	11	9 490	863	32	1024
5	29	26 427	911	80	6400
6	19	12 064	635	-196	38416
7	9	7 975	886	55	3025
8	23	19 731	858	27	729
9	19	13 151	692	-139	19321
10	23	14 013	609	-222	49284
	204	169 567	831		385675

Total stems tallied = 4000

$$\sum D^2 = 385675$$

$$SD = \sqrt{\frac{385 675}{(10-1)}} = 207$$
 Avg. volume/stem = $\frac{169 567}{204} = 831$

Avg. volume/stem =
$$\frac{169\ 567}{204}$$
 = 831

$$C.V.\% = \frac{207 \times 100}{831} = 24.9\%$$

$$n = \frac{Nt^2C^2}{NA^2 + t^2C^2}$$

Where:
$$N = 4000/20.4 = 196$$

 $t = 2$
 $A = 5$
 $C = 24.9$

$$n = \frac{196(2)^2(24.9)^2}{196(5)^2 + (2)^2(24.9)^2} = 66 \text{ samples}$$

% sampling =
$$\frac{66 \times 100}{196}$$
 = 33.7%

Appendix 5 - Common Stains and Defects Found When Scaling

STAINS

1. Red Heart Stain - Pine and Spruce

This is an early stage of *Phellinus pini* (Thore:Fr.) Ames, referred to as white pitted rot or white pocket rot. This rot generally attacks pine and spruce, but does not advance after the tree is cut. The stained wood is as strong as unstained wood and can be used for building construction except where extra strength or unstained appearance is required. Various stages of the rot are referred to as white speck and honeycomb. Firm white speck is still acceptable in the middle grades of lumber.

2. Red Brown Stain - Balsam Fir

This is an early stage of *Haematostereum sanguinolentum* (Alb. and Sch.:Fr.) Fir., referred to as red heart rot. The rot first shows as a firm red-brown stain, often in streaks. The decay does not advance after the tree has been cut, and the stained wood is not significantly weaker than unstained material. Also, the pulp strength is not likely to be affected by the stain.

3. Red stain - Aspen

This stain is a result of *Peniophora polygonia* (Pers.:Fries) Bourd. & Galzin, resulting in stained columns coming from infected branches in aspen. The stained wood is suitable for pulp and oriented strandboard with some considerations. There can be some rot pockets or ring separation from an associated rot, which will result in extra fines in the oriented strand- board wafers or in pulp chips. As well, if the material is used for CTMP pulp, bleaching out the stain may be a problem.

4. Blue stain - All species

Blue stain often develops in stored logs or on dead trees. This stain often results from mountain pine beetle attacks. It has the most effect on CTMP pulping processes because of the added bleaching cost. Since the stain develops mainly after logging and during storage of the wood, damage can be controlled or prevented to some extent. For kraft pulp processes, oriented strandboard and lumber products, the stain does not present any strength problems.

5. Black stain - Black Poplar

This stain is seen as greyish-black with some brownish pockets and is common in black poplar. Although black stain eliminates the use of black poplar for the CTMP pulping process, it can be bleached out in the kraft pulp processes.

HEART OR STEM ROTS

1. White Pitted Rot or White Pocket Rot (*Phellinus pini* [Thore:Fr.] Ames)

This rot generally attacks pine and spruce. The first stage is referred to as red stain. The stained area is as strong as unstained wood. The rot does not advance after the tree is cut. Various stages of the rot are referred to as white speck and honeycomb. Firm white speck is still acceptable in the middle grades of lumber. Wood with advanced rot (honeycomb) is usually quite weak, although it is used for the bottom grades of lumber providing it holds together. It is appropriate to make deductions for honeycomb.

2. Red Heart Rot (Haematostereum sanguinolentum [Alb. & Sch.:Fr.] Fir.)

This rot is usually associated with balsam fir. The rot first shows as a firm red-brown stain, often in streaks. As it advances, a white rot develops that is light to red-brown in colour, and dry and somewhat stringy. In logs, it usually forms a circular mass around the pith. The most serious problem with the rot is that it causes separation in the annual rings, thus degrading the lumber. In making deductions, look for the white rot developing along the annual rings.

3. White Heart Rot (*Phellinus tremulae* [Bond.] Bond. & Boriss., *Phellinus igniarius* [Linnaeus:Fries] Quel., *Fomes igniarius* [Linnaeus:Fries] J.Kickx fil.)

This is the most common trunk rot that attacks aspen in Alberta. A prominent black line surrounds and often occurs within the decayed areas. The rot is a yellowish to white colour and has a soft and spongy texture. This rot is very weak and usually crumbles when put through chippers or wafer machines.

BUTT OR ROOT ROTS

1. Armillaria Butt Rot (mostly Armillaria ostoyae [Romagn.] Herink)

Can attack either coniferous or deciduous trees. The yellow, stringy rot is often covered by dark brown fungal material mixed with wood. The decay occurs at the bottom of the tree and tapers off quickly, seldom extending more than 1 m up the tree.

2. Brown Cubical Rot (Coniophora puteana [Schum.:Fries] Karst.)

Frequently found as a butt rot in pine and spruce. The decay usually tapers off quickly. This rot is usually referred to in lumber grading as soft rot and is normally trimmed off to make better grades. Deductions for small isolated pockets can be made by making a visual deduction of 1 to 10 cubes.

Appendix 6 - Definitions

Accuracy - means the degree of agreement with an accepted reference value of individual measurements, test, or observations made under prescribed conditions, or of estimates computed from them, and refers to the success of estimating the true value of quantity

Bark - means all the tissues, including the cambium, taken collectively and forming the exterior covering of the xylem of a tree.

Bias - means consistent or systematic error that will be of the same amount in all individuals of a set of measurements made under similar circumstances; alternatively, a systematic distortion due to some flaw in measurement, to the method of selecting the sample, or to the technique of estimating the parameter.

Bolt - means any short log specifically cut to length

Butt end – the end of larger diameter usually the stump end.

Butt swell - means that part of a log outside its normal taper and extending from where the normal taper ends and the flare begins to the large end of the log.

Catface – means a defect on the surface of a tree or log resulting from a wound where healing has not re-established the normal cross section.

Check – means a lengthwise separation of the wood in a log or piece of timber, which usually extends across the rings of annual growth, commonly resulting from stresses set up in the wood during seasoning.

Coefficient of variation – means an expression of variability among units in the form of the ratio of the standard deviation(s) to the mean (x) and is usually expressed by the formula C = s/x

Crook – means an abrupt bend or curvature in the length of a log.

Decay – the decomposition of wood substance caused by the action of wood-destroying fungi, resulting in softening, loss of strength and mass, and often change of texture and colur.

Advanced decay – the late stage of decay in which the decompostion is readily recognized, as the wood becomes punky, soft, stringy, pitted or crumbly. Heart rot – means any rot characteristically confined to the heartwood. It generally originates in the living tree.

Butt rot – means any decay or rot developing in, and sometimes characteristically confined to, the base or lower stem of a tree

Heart rot – any rot generally confined to the heartwood.

Pocket rot – any rot localized in small areas, generally forming rounded or lenshaped cavities, honeycomb decay.

Ring rot – any rot localized mainly in the earlywood of the annual rings, giving a concentric pattern of decayed wood in cross section.

Sap rot – means any rot characteristically confined to the sapwood.

Defect – means any of the following imperfections occurring in and affecting the utility of logs: advanced decay, charred wood, and missing wood.

Fork – means a division of a log or a stem of a tree into two or more branches

Fuelwood – means roundwood, whole or split, produced for burning.

Hardwoods – trees of the botanical group that generally have broad leaves, in contrast to the conifers. The term has no reference to the actual hardness of the wood.

Heart shake – means a shake that originates at the pith of a log and extends across the annual rings.

Heartwood – means the inner core of a woody stem wholly composed of nonliving cells and usually differentiated from the outer enveloping layer (sapwood) by its darker colour. It is usually more decay resistant than sapwood.

Local volume table – means a table showing, for one or more species, the average cubic contents for tree lengths by diameter classes, within a smaller geographic region.

Mass – means the property of a body that is a measure of its inertia that is commonly taken as a measure of the amount of material it contains, and that causes it to have weight in a gravitational field.

Moisture content – means the mass of water in wood expressed as a percentage of its total mass.

Net Volume – means the volume remaining after all deductions for defect from gross volume have been made; in stacked measure, deductions include voids.

Ovendry – means a condition in which the wood has ceased to lose moisture after being subjected to a temperature of 103 +/-2^oC in a ventilated oven, for purposes of determining moisture content.

Piece – means a part of a whole (as of a tree)

Pile face – means, in tree-length scaling, the surface formed by butt ends that have been piled with the butts all aligned in a nearly vertical plane.

Precision – means the closeness of agreement among a set of measurements made under prescribed conditions, and refers to the clustering of sample values about their own average.

Roundwood – means any section of the stem, or of the thicker branches, of a tree of commercial value that has been felled or cut but has not been processed beyond removing the limbs or bark, or both, or splitting the section (for fuelwood).

Sample size – means the number of items, specimens, observations, or measurements to be included in the sample.

Sampling Error – the difference between a true value for a population and an estimate of this value, which is due to the fact that only sample values are being observed. The standard error is a measure of the sampling error.

Sapwood – means the living wood of pale colour near the outside of the log. Under most conditions the sapwood is more susceptible to decay than heartwood.

Scale – means the measured or estimated quantity, expressed as the volume, or area, or length, or mass, or number of products obtained from trees after they are felled.

Scaler – means a person qualified to scale primary forest products and usually licensed or appointed by a government agency.

Shake – means a separation along the grain of a log or tree and occurring between or across the annual rings but not extending from one surface to another.

Ring shake – means a shake that partially or completely encircles the pith.

Softwood – means, generally, one of the botanical groups of trees that in most cases have needle or scale like leaves; the conifers. The term has no reference to the actual hardness of the wood.

Stack – means, for scaling purpose, an orderly arrangement of bolts less than or equal to the 2.60 m class in length.

Stacked cubic metre – means the total amount of wood, bark, and airspace contained in a stack of roundwood, as determined by its external dimensions, equal to 1 m³.

Standard deviation – means the square root of the variance, and is symbolized by s.

Standard error of the mean – a measure of the variability of the sample means.

Sweep – means a gradual curve in the length of a log, as distinct from an abrupt bend or curvature.

Taper – means the progressive decrease or increase in the diameter of a log from one end or point on its length to another.

Tolerance – means the total range of variation permitted for a required size.

Tree length – the bole of a tree that has been felled, had the top removed, and generally but not necessarily been limbed.

Variance (of a population) – means a measure of the dispersion of individual unit values about their mean.

Wood – means the hard fibrous substance, basically xylem, that makes up the greater part of the stems and branches of trees or shrubs, beneath the bark.

Woodchip – a small, thin, flat piece of wood cut from a larger piece of wood by knife action, mechanically operated. A woodchip shall show two knife cuts and its width shall always be greater than its thickness.

Appendix 7

SCALING TABLES

1. Basal Area Basal Area

2. Volume of Cylinders Volume of Cylinders

3. t Adjustment Table <u>t Adjustment Table</u>

4. Samples Required Samples Required

5. Percent Samples Required Percent Samples Required

6. Summary of General Conversion Factors Conversion Factors

7. Smalian Half Volume Table <u>Smalian 1/2 Volume Table</u>

	Table 1 - Basal	Area -m² (1000x)	
Diameter (cm) 4	Basal Area 1	Diameter (cm) 42	Basal Area 139
6	3	44	152
8	5	46	166
10	8	48	181
12	11	50	196
14	15	52	212
16	20	54	229
18	25	56	246
20	31	58	264
22	38	60	283
24	45	62	302
26	53	64	322
28	62	66	342
30	71	68	363
32	80	70	385
34	91	72	407
36	102	74	430
38	113	76	454
40	126	78	478

Tab	ole 2 - Vol	ume of (Cylinders	- m³ (10	000x)
Diameter (cm)	Length 2.4 m	Length 2.6 m	Diameter (cm)	Length 2.4 m	Length 2.6 m
4	2	3	44	365	395
6	7	8	46	398	432
8	12	13	48	434	471
10	19	21	50	470	510
12	26	29	52	509	551
14	36	39	54	550	595
16	48	52	56	590	640
18	60	65	58	634	686
20	74	81	60	679	736
22	91	99	62	725	785
24	108	117	64	773	837
26	127	138	66	821	889
28	149	161	68	871	944
30	170	185	70	924	1001
32	192	208	72	977	1058
34	218	237	74	1032	1118
36	245	265	76	1090	1180
38	38 271		78	1147	1243
40	302	328	80	1207	1308
42	334	361			

Table 3 - t ADJUSTMENT TABLE

Calculated (n-1)	Revised t	Calculated (n-1)	Revised t
1	12.70	16	2.12
2	4.30	17	2.11
3	3.18	18	2.10
4	2.78	19	2.09
5	2.57	20	2.09
6	2.45	21	2.08
7	2.36	22	2.07
8	2.31	23	2.07
9	2.26	24	2.06
10	2.23	25	2.06
11	2.20	26	2.06
12	2.18	27	2.05
13	2.16	28	2.05
14	2.14	29	2.05
15	2.13		

Table 4 - Samples Required $(t = 2, A = \pm 5\%)$

Coefficient of Variation %

Total Loads/	2	3	4	5	6	7	8	9	10	11	12
Trees	_		•	3	· ·	,	Ü		10	11	12
100	13	13	13	13	13	13	14	16	18	20	22
200	13	13	13	13	13	13	15	17	19	21	24
300	13	13	13	13	13	13	15	17	19	22	25
400	13	13	13	13	13	13	15	17	20	23	26
500	13	13	13	13	13	14	15	17	20	23	26
600	13	13	13	13	13 13	14	15	17	20	23	26
700	13	13	13	13		14	15	17	20	23	26
800	13	13	13	13	13	14	15	18	20	23	26
900	13	13	13	13	13	14	16	18	20	23	26
1000	13	13	13	13	13	14	16	18	20	23	26
1100	13	13	13	13	13	14	16	18	20	23	26
1200	13	13	13	13	13	14	16	18	20	23	26
1300	13	13	13	13	13	14	16	18	20	23	26
1400	13	13	13	13	13	14	16	18	20	23	26
1500	13	13	13	13	13	14	16	18	20	23	26
1600	13	13	13	13	13	14	16	18	20	23	26
1700	13	13	13	13	13	14	16	18	20	23	26
1800	13	13	13	13	13	14	16	18	20	23	27
1900	13	13	13	13	13	14	16	18	20	23	27
2000	13	13	13	13	13	14	16	18	20	23	27
2100	13	13	13	13	13	14	16	18	20	23	27
2200	13	13	13	13	13	14	16	18	20	23	27
2300	13	13	13	13	13	14	16	18	20	23	27
2400	13	13	13	13	13	14	16	18	20	23	27
2500	13	13	13	13	13	14	16	18	20	23	27
2600	13	13	13	13	13	14	16	18	20	23	27
2700	13	13	13	13	13	14	16	18	20	23	27
2800	13	13	13	13	13	14	16	18	20	23	27
2900	13	13	13	13	13	14	16	18	20	23	27
3000	13	13	13	13	13	14	16	18	20	23	27
3100	13	13	13	13	13	14	16	18	20	23	27
3200	13	13	13	13	13	14	16	18	20	23	27
3300	13	13	13	13	13	14	16	18	20	23	27
3400	13	13	13	13	13	14	16	18	20	23	27
3500	13	13	13	13	13	14	16	18	20	23	27
3600	13	13	13	13	13	14	16	18	20	23	27
3700	13	13	13	13	13	14	16	18	20	23	27
3800	13	13	13	13	13	14	16	18	20	23	27
3900	13	13	13	13	13	14	16	18	20	23	27
4000	13	13	13	13	13	14	16	18	20	23	27
4100	13	13	13	13	13	14	16	18	20	23	27
4200	13	13	13	13	13	14	16	18	20	23	27
4300	13	13	13	13	13	14	16	18	20	23	27
4400	13	13	13	13	13	14	16	18	20	23	27
4500	13	13	13	13	13	14	16	18	20	23	27
4600	13	13	13	13	13	14	16	18	20	24	27
4700	13	13	13	13	13	14	16	18	20	24	27
4800	13	13	13	13	13	14	16	18	20	24	27
4900	13	13	13	13	13	14	16	18	20	24	27
5000	13	13	13	13	13	14	16	18	20	24	27

Table 4 (cont'd) - Samples Required $(t = 2, A = \pm 5\%)$

Coefficient of Variation %

Total											
Loads/	13	14	15	16	17	18	19	20	21	22	23
Trees											
100	24	26	27	29	32	34	37	39	41	44	46
200	27	30	31	34	38	41	45	48	52	56	59
300	28	30	32	36	40	44	48	53	57	62	66
400	29	30	33	37	41	46	50	55	60	65	70
500	29	30	34	38	42	47	52	57	62	67	72
600	30	30	34	38	43	48	53	58	63	69	74
700	30	30	34	39	43	48	53	59	64	70	76
800	30	30	34	39	44	49	54	59	65	71	77
900	30	30	35	39	44	49	54	60	65	71	77
1000	30	30	35	39	44	49	55	60	66	72	78
1100	30	30	35	39	44	50	55	60	66	72	79
1200	30	31	35	40	45	50	55	61	67	73	79
1300	30	31	35	40	45	50	55	61	67	73	79
1400	30	31	35	40	45	50	55	61	67	73	80
1500	30	31	35	40	45	50	56	61	67	74	80
1600	30	31	35	40	45	50	56	62	68	74	80
1700	30	31	35	40	45	50	56	62	68	74	81
1800	30	31	35	40	45	50	56	62	68	74	81
1900	30	31	35	40	45	50	56	62	68	74	81
2000	30	31	35	40	45	51	56	62	68	75	81
2100	30	31	35	40	45	51	56	62	68	75	81
2200	30	31	35	40	45	51	56	62	68	75	82
2300	30	31	35	40	45	51	56	62	68	75	82
2400	30	31	35	40	45	51	56	62	68	75	82
2500	30	31	35	40	45	51	56	62	69	75	82
2600	30	31	36	40	45	51	57	62	69	75	82
2700	30	31	36	40	45	51	57	63	69	75	82
2800	30	31	36	40	45	51	57	63	69	75	82
2900	30	31	36	40	46	51	57	63	69	75	82
3000	30	31	36	40	46	51	57	63	69	75	82
3100	30	31	36	40	46	51	57	63	69	76	82
3200	30	31	36	40	46	51	57	63	69	76	82
3300	30	31	36	40	46	51	57	63	69	76	83
3400	30	31	36	40	46	51	57	63	69	76	83
3500	30	31	36	40	46	51	57	63	69	76	83
3600	30	31	36	40	46	51	57	63	69	76	83
3700	30	31	36	41	46	51	57	63	69	76	83
3800	30	31	36	41	46	51	57	63	69	76	83
3900	30	31	36	41	46	51	57	63	69	76	83
4000	30	31	36	41	46	51	57	63	69	76	83
4100	30	31	36	41	46	51	57	63	69	76	83
4200	30	31	36	41	46	51	57	63	69	76	83
4300	30	31	36	41	46	51	57	63	69	76	83
4400	30	31	36	41	46	51	57	63	69	76	83
4500	30	31	36	41	46	51	57	63	69	76	83
4600	30	31	36	41	46	51	57	63	69	76	83
4700	30	31	36	41	46	51	57	63	70	76	83
4800	30	31	36	41	46	51	57	63	70	76	83
4900	30	31	36	41	46	51	57	63		76	83
5000	30	31	36	41	46	51	57	63	70	76	83

Table 5 - Percent Samples Required $(t = 2, A = \pm 5\%)$

Coefficient of Variation %

Total											
Loads/ Trees	2	3	4	5	6	7	8	9	10	11	12
100	13.0	13.0	13.0	13.0	13.0	13.2	14.4	16.0	17.7	19.8	22.0
200	6.5	6.5	6.5	6.5	6.5	6.5	7.3	8.4	9.4	10.7	12.1
300	4.3	4.3	4.3	4.3	4.3	4.4	5.0	5.7	6.5	7.4	8.4
400	3.3	3.3	3.3	3.3	3.3	3.3	3.8	4.3	4.9	5.6	6.3
500 600	2.6	2.6	2.6	2.6 2.2	2.6 2.2	2.7	3.0 2.5	3.4 2.9	3.9 3.3	4.5 3.8	5.1 4.3
700	1.9	1.9	1.9	1.9	1.9	1.9	2.2	2.5	2.8	3.2	3.7
800	1.6	1.6	1.6	1.6	1.6	1.7	1.9	2.1	2.5	2.8	3.2
900	1.4	1.4	1.4	1.4	1.4	1.5	1.7	1.9	2.2	2.5	2.9
1000	1.3	1.3	1.3	1.3	1.3 1.2	1.3	1.5 1.4	1.7	2.0	2.3	2.6
1100 1200	1.2	1.2 1.1	1.2 1.1	1.2 1.1	1.1	1.1	1.4	1.6 1.4	1.8 1.6	2.1	2.3 2.1
1300	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.3	1.5	1.7	2.0
1400	0.9	0.9	0.9	0.9	0.9	0.9	1.1	1.2	1.4	1.6	1.8
1500	0.9	0.9	0.9	0.9	0.9	0.9	1.0	1.1	1.3	1.5	1.7
1600 1700	0.8	0.8	0.8	0.8	0.8	0.8	0.9 0.9	1.1	1.2 1.1	1.4	1.6 1.5
1800	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	1.1	1.2	1.4
1900	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.9	1.0	1.2	1.3
2000	0.7	0.7	0.7	0.7	0.7	0.6	0.7	0.8	1.0	1.1	1.3
2100	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.8	0.9	1.1	1.2
2200 2300	0.6	0.6	0.6	0.6 0.6	0.6 0.6	0.6	0.7 0.6	0.8	0.9 0.8	1.0	1.2 1.1
2400	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.8	0.9	1.1
2500	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.7	0.8	0.9	1.0
2600	0.5	0.5	0.5	0.5	0.5	0.5	0.6	0.6	0.7	0.9	1.0
2700 2800	0.5	0.5	0.5 0.5	0.5 0.5	0.5 0.5	0.5	0.5 0.5	0.6	0.7 0.7	0.8	0.9
2900	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.6	0.7	0.8	0.9
3000	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.7	0.8
3100	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.7	0.8
3200 3300	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5 0.5	0.6 0.6	0.7	0.8
3400	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7
3500	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.5	0.5	0.6	0.7
3600	0.4	0.4	0.4	0.4	0.4	0.3	0.4	0.4	0.5	0.6	0.7
3700 3800	0.4	0.4	0.4	0.4 0.3	0.4	0.3	0.4	0.4	0.5 0.5	0.6	0.7 0.7
3900	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.6	0.7
4000	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5	0.6
4100	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.6
4200	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.6
4300 4400	0.3	0.3	0.3	0.3 0.3	0.3 0.3	0.3	0.3	0.4	0.4	0.5	0.6 0.6
4500	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5
4600	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.5	0.5
4700	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.4	0.5	0.5
4800 4900	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.4	0.4	0.5 0.5
5000	0.3	0.3	0.3	0.3 0.3	0.3 0.3	0.2	0.3 0.3	0.3	0.4	0.4	0.5

Table 5 (Cont'd) –Percent Samples Required $(t = 2, A = \pm 5\%)$

Coefficient of Variation %

Total											
Loads/	13	14	15	16	17	18	19	20	21	22	23
Trees	24.5	26.7	29.2	30.0	31.6	34.1	36.6	39.0	41.4	43.6	45.8
200	13.6	15.0	15.2	17.0	18.8	20.6	22.4	24.2	26.1	27.9	29.7
300	9.3	10.0	10.7	12.0	13.3	14.7	16.1	17.6	19.0	20.5	22.0
400	7.2	7.5	8.2	9.3	10.3	11.5	12.6	13.8	15.0	16.2	17.5
500	5.8	5.9	6.7	7.5	8.4	9.4	10.4	11.3	12.4	13.4	14.5
600	4.9	4.9	5.6	6.3	7.1	7.9	8.8	9.6	10.5	11.4	12.4
700	4.2	4.2	4.8	5.5	6.2	6.9	7.6	8.4	9.2	10.0	10.8
800	3.7	3.7	4.3	4.8	5.4	6.1	6.7	7.4	8.1	8.8	9.6
900	3.3	3.3	3.8	4.3	4.8	5.4	6.0	6.6	7.3	7.9	8.6
1000	3.0	3.0	3.4	3.9	4.4	4.9	5.5	6.0	6.6	7.2	7.8
1100	2.7	2.7	3.1	3.5	4.0	4.5	5.0	5.5	6.0	6.6	7.1
1200	2.5	2.5	2.9	3.3	3.7	4.1	4.6	5.1	5.6	6.1	6.6
1300	2.3	2.3	2.6	3.0	3.4	3.8	4.3	4.7	5.1	5.6	6.1
1400 1500	2.1	2.1	2.5	2.8	3.2	3.6 3.3	4.0	4.4	4.8 4.5	5.2 4.9	5.7 5.3
1600	1.8	1.9	2.3	2.4	2.8	3.1	3.7	3.8	4.2	4.9	5.0
1700	1.7	1.8	2.0	2.3	2.6	3.0	3.3	3.6	4.0	4.4	4.7
1800	1.6	1.7	1.9	2.2	2.5	2.8	3.1	3.4	3.8	4.1	4.5
1900	1.5	1.6	1.8	2.1	2.3	2.7	3.0	3.3	3.6	3.9	4.3
2000	1.5	1.5	1.7	2.0	2.2	2.5	2.8	3.1	3.4	3.7	4.1
2100	1.4	1.4	1.6	1.9	2.1	2.4	2.7	3.0	3.3	3.6	3.9
2200	1.3	1.4	1.6	1.8	5.0	2.3	2.6	2.8	3.1	3.4	3.7
2300	1.3	1.3	1.5	1.7	1.9	2.2	2.4	2.7	3.0	3.3	3.5
2400	1.2	1.2	1.4	1.6	1.8	2.1	2.4	2.6	2.9	3.1	3.4
2500	1.2	1.2	1.4	1.6	1.8	2.0	2.3	2.5	2.7	3.0	3.3
2600	1.1	1.1	1.3	1.5	1.7	2.0	2.2	2.4	2.6	2.9	3.2
2700 2800	1.1	1.1 1.1	1.3	1.4 1.4	1.6 1.6	1.9 1.8	2.1	2.3	2.5	2.8	3.0 2.9
2900	1.0	1.0	1.2	1.3	1.5	1.8	2.0	2.2	2.4	2.6	2.8
3000	1.0	1.0	1.1	1.3	1.5	1.7	1.9	2.1	2.3	2.5	2.7
3100	0.9	1.0	1.1	1.3	1.4	1.6	1.8	2.0	2.2	2.4	2.7
3200	0.9	0.9	1.1	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6
3300	0.9	0.9	1.0	1.2	1.3	1.5	1.7	1.9	2.1	2.3	2.5
3400	0.8	0.9	1.0	1.1	1.3	1.5	1.7	1.8	2.0	2.2	2.4
3500	0.8	0.8	1.0	1.1	1.3	1.5	1.6	1.8	2.0	2.2	2.4
3600	0.8	0.8	0.9	1.1	1.2	1.4	1.6	1.7	1.9	2.1	2.3
3700 3800	0.8	0.8	0.9	1.0	1.2	1.4	1.5	1.7	1.9	2.1	2.2
3800 3900	0.7	0.8 0.7	0.9	1.0	1.2	1.3	1.5 1.5	1.7	1.8	2.0	2.2
4000	0.7	0.7	0.9	1.0	1.1	1.3	1.4	1.6	1.7	1.9	2.1
4100	0.7	0.7	0.8	0.9	1.1	1.2	1.4	1.5	1.7	1.9	2.0
4200	0.7	0.7	0.8	0.9	1.0	1.2	1.4	1.5	1.7	1.8	2.0
4300	0.6	0.7	0.8	0.9	1.0	1.2	1.3	1.5	1.6	1.8	1.9
4400	0.6	0.7	0.8	0.9	1.0	1.2	1.3	1.4	1.6	1.7	1.9
4500	0.6	0.6	0.7	0.9	1.0	1.1	1.3	1.4	1.5	1.7	1.8
4600	0.6	0.6	0.7	0.8	0.9	1.1	1.2	1.4	1.5	1.7	1.8
4700	0.6	0.6	0.7	0.8	0.9	1.1	1.2	1.3	1.5	1.6	1.8
4800	0.6	0.6	0.7	0.8	0.9	1.1	1.2	1.3	1.4	1.6	1.7
4900	0.6	0.6	0.7	0.8	0.9	1.0	1.2	1.3	1.4	1.6	1.7
5000	0.6	0.6	0.7	0.8	0.9	1.0	1.1	1.3	1.4	1.5	1.7

Table 6 - Summary of General Conversion Factors

Conversion factors are generally average values.

Volume

```
1 cubic metre (m3) = 35.315 cubic feet

1 cord = 128 cubic feet (air and bark)

1 cord = 85 cubic feet (solid)
```

Fuelwood

Solid means the actual roundwood volume whereas stacked represents the solid volume plus air and bark. Due to the fact that deciduous is less cylindrical and has more branching than coniferous, there is less solid volume for a given cord or stacked m3.

Coniferous

```
1 cord(solid)= 2.407 m3(solid)
1 m3 (stacked) = 0.664 m3 (solid)
```

Deciduous

```
1 cord(solid) = 2.010 m3 (solid)
1 m3 (stacked) = 0.557 m3 (solid)
```

Lumber

1 m3 = 233 foot board measure (fbm)

Wood Chips

```
1 bone dry unit = 1.089 tonnes
= 100 cubic feet
= 2.603 m3 (solid)
```


Table 7 – Smalian Half Volume Table

			79		1	댇	11	T.	2	2,	12	2	12	12	3	3	6	m	3	4	4	4	4	4	ru .	15	2	ru	ru.	9	9	9	9	9	92	22	87
				5 91	3 121	1 151	0 181	8 211	6 242	4 272	3 302	1 332	9 362	8 392	6 423	4 453	2 483	1 513	9 543	7 574	5 604	4 634	2 664	0 694	9 725	7 755	5 785	3 815	2 845	0 876	906 8	7 936	996 5	3 996	1 1026	0 1057	8 1087
		-	+	85	5 113	2 141	9 170	5 198	1 226	3 254	1 283	311	339	368	396	5 424	3 452	9 481	5 509	537	3 565	5 594	1 622	8 650	1 679	107	735	3 763	792	820	848	877	905	933	196	990	1018
			+	79	106	132	159	185	211	238	264	291	317	343	370	396	423	449	476	502	528	552	581	608	634	661	687	713	740	166	793	819	845	872	868	925	951
				74	66	123	148	172	197	222	246	271	296	320	345	369	394	419	443	468	493	517	542	266	591	616	640	665	069	714	739	764	788	813	837	862	887
				\dashv	92	115	137	160	183	206	229	252	275	298	321	344	366	389	412	435	458	\neg	504	527	550	573	595	618	641	664	687	710	733	756	779	802	824
	-		\dashv	\neg	106	127	149	170	191	212	234	255	276	297	319	340	361	382	404	425	446	467	488	510	531		573	595	919	637	658	680	701	722	743	765	
		H	-	59	79	98	118	137	157	177	196	216	236	255	275	295	314	334	353	373	393	412	432	452	471	491	511	530	550	569	589	609	628	648	899	687	707
			+	54	72	9.0	109	127	145	163	-	199	217	235	253	271	290	308	326	344	362		398	416	434	452	470	489	507	525	543	561		597	615	633	651
			46	20	99	83	100	116	133	150	166	183	199	216	233	249	266	283	299	316	332	349	366	382	399	415	432	449	465	482	499	515	532	548	565	582	598
SMALIAN SCALE VOLUMES OF CYLINDERS M3 (1000x)			44	46	61	16	91	106	122	137	152	167	182	198	213	228	243	258		289	304	319	335	350	365	380	395	411	426	441	456	471	487	502	517	532	547
			42	42	52	69	83	97	111	125	139	152	166	180	194	208	222	236	249	263	277	291	305	319	333	346	360	374	388	402	416	429	443	457	471	485	499
	ķ	- 100	40	38	20	63	75	88	101	113	126	138	151	163	176	188	201	214	226	239	251	264	276	289	302	314	327	339	352	364	377	390	402	415	427	440	452
		Bar	38	34	45	57	68	79	16	102	113	125	136	147	159	170	181	193	204	215	227	238	250	261	272	284	295	306	318	329	340	352	363	374	386	397	408
	00x) Inside Bark	nside	36	31	41	51	61	71	81	92	102	112	122	132	143	153	163	173	183	193	204	214	224	234	244	254	265	275	285	295	305	316	326	336	346	356	366
	100(34	27	36	45	54	64	73	82	91	100	109	118	127	136	145	154	163	173	182	191	200	209	218	227	236	245	254	263	272	281	291	300	309	318	327
SMALIAN	M3	er (c	32	24	32	40	48	26	64	72	80	88	97	105	113	121	129	137	145	153	161	169	177	185	193	201	209	217	225	233	241	249	257	265	273	281	290
SM. HALF VOI		Diameter (cm)	30	21	28	35	42	49	57	64	71	78	85	92	66	106	113	120	127	134	141	148	156	163	170	177	184	191	198	205	212	219	226	233	240	247	254
	THU	ä	28	18	25	31	3.7	43	49	22	29	89	74	80	98	92	66	105	111	117	123	129	135	142	148	154	160	166	172	179	185	191	197	203	209	216	222
	•		26	16	21	27	32	37.	42	48	53	58	64	69	74	80	85	06	96	101	106	111	117	122	127	133	138	143	149	154	159	165	170	175	181	186	191
			24	14	18	23	27	32	36	41	45	50	54	59	63	68	72	77	81	98	90	95	100	104	109	113	118	122	127	131	136	140	145	149	154	158	163
			22	11	15	19	23	27	3.0	34	38	42	46	49	53	57	19	9	68	72	92	8.0	84	87	91	95	99	103	106	110	114	118	122	125	129	133	137
			20	0	13	16	19	22	25	28	31	35	38	41	44	47	50	53	57	09	63	99	69	72	75	79	82	85	88	91	94	16	101	104	107	110	113
			18	œ	10	13	15	18	20	23	25	28	31	33	36	38	41	43	46	48	51	53	56	59	61	64	99	69	71	74	92	79	81	84	87	89	92
			16	9	89	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	20	52	54	99	58	09	62	64	99	89	70	72
			14	Ŋ	9	80	6	11	12	14	15	17	18	20	22	23	25	26	28	29	31	32	34	35	37	38	40	42	43	45	46	48	49	51	52	54	55
			12	е	2	9	7	00	o	10	11	12	14	15	16	17	18	19	20	21	23	24	25	26	27	28	29	31	32	33	34	35	36	37	38	40	41
			10	2	3	4	2	2	9	7	ω	0	o,	10	11	12	13	13	14	15	16	16	17	18	19	20	20	Н	22	23	24	24	25	26	27	27	28
			œ	2	2	ж	3	4	4	2	2	9	9	7	7	80	8	6	0	10	10	11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18
		Ш		9.0	8.0	1.0	1.2	1.4	1.6	₩.	2.0	2.2	2.4	2.6	2.8	3.0	3.2	3.4	3.6				4.4		4.8	0	5.2		5.6		0.9	6.2	6.4	9.9	6.8	7.0	

Ê

24