FINAL REPORT

EVALUATING ENVIRONMENTAL AND ECONOMIC IMPACT FOR BEEF PRODUCTION IN ALBERTA USING LIFE CYCLE ANALYSIS -PHASE 2

Prepared For: Alberta Agriculture and Rural Development

MARCH 2011 Ref. no. 057586 (6)

This report is printed on recycled paper.

Government of Alberta

EXECUTIVE SUMMARY

Conestoga-Rovers & Associates (CRA) was retained by Alberta Agriculture and Rural Development (ARD) to complete Phase 2 of Evaluating Environmental and Economic Impact for Beef Production in Alberta using Life Cycle Analysis (LCA). CRA teamed with JRG Consulting Group (JRG) to form a project team (Project Team) for this assignment.

The Phase 1 component of the overall project, as completed by CRA, yielded an estimate of the carbon footprint intensity and other environmental impacts such as eutrophication, acidification, and non-renewable energy consumption, of the beef sector on a per kilogram basis (live shrunken weight, up to the door of the slaughterhouse). Conclusions were made in the report regarding the various hotspots in the production cycle, and identified that enteric fermentation emissions were the most significant overall emission as it pertains to greenhouse gas emissions (GHGs) (accounting for more than half of the total), followed by on-farm energy consumption, nitrous oxide emission from soil and manure management, and total forage and cereal activities.

The aim of this Phase 2 study is to build on the results of Phase 1 in terms of quantifying the relative benefits of the selected beneficial management practices (BMPs) from an environmental footprint standpoint, but also to assess the relative cost/benefit of these practices such that the cost implications of implementation are understood.

The five BMPs, as selected by ARD, have been modeled using the LCA model completed during Phase 1:

- 1. Composting and other improved solid manure management practices
 - Windrow composting of manure to determine GHG emission changes, nutrient capture, and costs/benefits
- 2. Increased efficiency in cow/calf feeding and grazing
 - Use of swath grazing and stockpile grazing to determine effects of both grazing systems
- 3. Use of ionophores in roughage diets (cow/calf operation)
 - Effects of addition of ionophores to all cattle on pasture using the Phase 1 diet
- 4. Reducing age to slaughter
 - Reduction of age to slaughter through the use of a supplement to increase weight gain during the last days on the feedlot, and through the removal of the backgrounding stage and the modification of diets to introduce higher concentrate diets sooner

- 5. Superior residual feed intake (RFI) genetics in breeding animals
 - Testing potential breeding bulls for the RFI genes for the purpose of breeding and uptake of the gene

The Phase 1 model is based on a baseline year of 2001. As requested by ARD, the Phase 1 model was updated to reflect the implementation of the BMPs in 2010. The costs and benefits were then analyzed based on any additional implementation of the BMPs from 2010 conditions.

During the completion of Phase 2, some modifications were made to the Phase 1 2001 baseline model as a starting point for the Phase 2 work. Generally, these were undertaken for the sake of completeness. As a result of these modifications, the total GHG emissions of the Alberta beef production system are now 14.7 kg carbon dioxide equivalents (CO_{2e})/kg shrunk live weight. In the original Phase 1 work, the total GHG emissions were calculated as 14.5 kg CO_{2e} /kg shrunk live weight.

The scenarios modeled and the environmental and economic impact results are summarized below. All results are based on one calf crop.

BMP 1 – Composting of feedlot manure

Four scenarios were created for BMP1 to capture the most likely variables that would occur with the implementation of this BMP:

- BMP 1.1a windrow turning machine and on-site source of clay for compost pad
- BMP 1.1b windrow turning machine and off-site source of clay for compost pad
- BMP 1.2a existing front-end loader and on-site source of clay for compost pad
- BMP 1.2a existing front-end loader and off-site source of clay for compost pad

Composting of feedlot manure is currently being conducted by about 15 percent of feedlots in Alberta. The Phase 1 model was updated to reflect this participation in the practice. The 2010 baseline model assumes that only on-farm equipment is being used to turn the composting material and that clay was obtained from off-site sources (conservative assumption).

The changes in emissions for all environmental impact categories from 2010 to 100 percent adoption of BMP 1 are summarized below:

	Global warming potential	Acidification	Eutrophication	Non-renewable energy resources
BMP 1.1a	4.5% increase	9.6% increase	18.9% increase	3.1% increase
BMP 1.1b	4.6% increase	9.7% increase	18.9% increase	3.1% increase
BMP 1.2a	4.8% increase	8.6% increase	20.4% increase	12.0% increase
BMP 1.2b	4.9% increase	8.6% increase	20.4% increase	12.0% increase

BMP 2 - Extended grazing on winter pasture

The two most likely scenarios that would occur with the implementation of extended grazing on winter pasture were modeled for BMP 2:

- BMP 2.1 swath grazing on annual crops
- BMP 2.2 stockpile grazing on perennial crops

There was no data to indicate the current participation of either of these practices in Alberta, and therefore the 2001 baseline model was not updated to 2010 conditions.

The changes in emissions for all environmental impact categories from 2001/2010 to 100 percent adoption of BMP 2 are summarized below:

	Global warming potential	Acidification	Eutrophication	Non-renewable energy resources
BMP 2.1	1.0% reduction	2.4% reduction	1.8% increase	7.6% reduction
BMP 2.2	4.2% increase	7.6% increase	9.2% increase	0.3% reduction

BMP 3 – Ionophores in roughage diets

The use of ionophores in roughage diets on cow/calf operations results in improved feed efficiency in cows and replacement heifers.

There was no data to indicate the current participation of this practice in Alberta, and therefore the 2001 baseline model was not updated to 2010 conditions.

The changes in emissions for all environmental impact categories from 2001/2010 to 100 percent adoption of BMP 3 are summarized below:

	Global warming potential	Acidification	Eutrophication	Non-renewable energy resources
BMP 3	1.4% reduction	0.7% reduction	1.1% reduction	0.3% reduction

BMP 4 - Reduced age to slaughter

Based on the draft quantification protocol guidance documents in Alberta, the two scenarios modeled for reducing the age to slaughter are as follows:

- BMP 4.1 reduction in the number of days on feed in feedlot during the final stages of growth (introduction of Ractopamine Hydrochloride [RAC] during the last 28 days on feed to allow cattle to gain more weight during the last stage of feeding)
- BMP 4.2 reduction in the age at harvest by adjusting the diet to introduce feeder and finishing diets sooner (removal of the backgrounding stages of feeding regimes for calf-fed cattle)

Based on discussions with slaughterhouse personnel, BMP 4.1 is currently in use by about 40 to 50 percent of operations in Alberta. Forty five percent implementation of BMP 4.1 was assumed for the 2010 baseline. There was no data to indicate the current participation of BMP 4.2 in Alberta, and therefore the 2001 baseline model was updated to 2010 conditions.

The changes in emissions for all environmental impact categories from 2010 (BMP 4.1) and from 2001 (BMP 4.2) to 100 percent adoption of BMP 4 are summarized below:

	Global warming potential	Acidification	Eutrophication	Non-renewable energy resources
BMP 4.1	0.3% reduction	0.5% reduction	0.8% reduction	0.5% reduction
BMP 4.2	2.8% reduction	1.7% reduction	5.6% reduction	7.7% reduction

BMP 5 – Superior residual feed intake (RFI) genetics for breeding animals

The intent of this BMP is to select beef breeding bulls through RFI testing and placing this genetic potential into the cow/calf sector such that feed consumption and feed requirements will be reduced in both the cow/calf and feedlot sectors.

Data was obtained for the total number of potential breeding bulls tested in Alberta from 2001 to 2008 and the capacity of commercial testing facilities in Alberta. The maximum testing capacity in Alberta was the limitation placed on the BMP 5 model, and this capacity was assumed to be reached by 2010. The 2001 baseline was updated with available data for maximum testing capacity for 2010, based on the guidance available in the draft Alberta quantification protocol for this practice.

The changes in emissions for all environmental impact categories from 2010 to 2029 (linear results after maximum testing capacity used for 5 years straight) for BMP 5 are summarized below:

	Global warming potential	Acidification	Eutrophication	Non-renewable energy resources
BMP 5	0.02% reduction	0.03% reduction	0.006% reduction	0.006% reduction

Cost Benefit Analysis Results

A ranking of each BMP by their contribution to reducing emissions as measured by the total change in GHG emissions (ΔCO_2e) is provided in the table below.

BMP	Description	∆ CO ₂ e	ΔCO ₂ e per kg all beef	∆ CO ₂ e per kg affected beef	Net Annual Benefits	Market NPV BCR ¹
		tonnes	kg	kg	\$ million	ratio
BMP 4.2	Fewer days on feed	-853,667	-0.406	-1.513	\$56.12	2.24
BMP 3	Ionophores in roughage diets	-292,611	-0.205	-2.244	\$101.53	2.85
BMP 2.1	Swath grazing	-218,177	-0.153	-1.673	\$243.31	1.94
BMP 4.1	Growth promotant - last 28 days	-59,659	-0.042	-0.046	\$12.41	12.48
BMP 5	Selection for superior RFI	-3,839	-0.003	-1.285	\$0.23	2.91
BMP 2.2	Stockpile grazing	882,725	0.619	0.007	\$2.79	0.96
BMP 1.1a	Composting - Windrow on-site clay	962,702	0.675	0.743	(\$322.35)	0.18
BMP 1.1b	Composting - Windrow off-site clay	974,634	0.683	0.752	(\$322.35)	0.17
BMP 1.2a	Composting - Loader on-site clay	1,022,630	0.717	0.789	(\$413.76)	0.16
BMP 1.2b	Composting - Loader off-site clay	1,042,414	0.731	0.804	(\$413.76)	0.14

Note:

¹ BCR (benefit-cost ratio): ratio of NPV of benefits to NPV of costs

Results are presented in this table in terms of impact on GHG emissions across all produced beef, and also on the basis of the beef affected by implementation of the BMP to provide additional context for the results. As the data indicates, the relative environmental benefits or costs of the BMPs show different rankings when considering only the affected beef, indicating that some BMPs have proportionally greater impact on the relevant subset of beef production than they do on the entire beef production cycle.

BMP	Description	∆ CO ₂ e	∆CO2e per kg all beef	$\Delta CO_2 e per kg$ affected beef	Net Annual Benefits	Market NPV BCR
		tonnes	kg	kg	\$ million	ratio
BMP 4.1	Growth promotant - last 28 days	-59,659	-0.042	-0.046	\$12.41	12.48
BMP 5	Selection for superior RFI	-3,839	-0.003	-1.285	\$0.23	2.91
BMP 3	Ionophores in roughage diets	-292,611	-0.205	-2.244	\$101.53	2.85
BMP 4.2	Fewer days on feed	-853,667	-0.406	-1.513	\$56.12	2.24
BMP 2.1	Swath grazing	-218,177	-0.153	-1.673	\$243.31	1.94
BMP 2.2	Stockpile grazing	882,725	0.619	0.007	(\$29.91)	0.79
BMP 1.1a	Composting - Windrow on-site clay	962,702	0.675	0.743	(\$322.35)	0.18
BMP 1.1b	Composting - Windrow off-site clay	974,634	0.683	0.752	(\$322.35)	0.17
BMP 1.2a	Composting - Loader on-site clay	1,022,630	0.717	0.789	(\$413.76)	0.16
BMP 1.2b	Composting - Loader off-site clay	1,042,414	0.731	0.804	(\$413.76)	0.14

A ranking of each BMP based on the economics of the practice is provided in the table below.

The above suggests that the following BMPs be further considered for implementation in the Alberta beef sector (based on [1] reducing CO_2e emissions, and [2] an attractive BCR in the sector):

- BMP 4.1 Growth promotant (RAC) last 28 days
- BMP 5 Selection for superior RFI
- BMP 3 Ionophores in roughage diets
- BMP 4.2 Fewer days on feed
- BMP 2.1 Swath grazing

Although the results of the models for BMP 4.1 and 4.2 indicate reductions in GHG emissions and a positive cost benefit analysis, it is advised that further research be completed on this BMP to ensure that positive results for beef quality are achievable.

ACKNOWLEDGMENT

Alberta Agriculture and Rural Development (ARD) would like to thank the Project Steering and Technical Committees which comprise members from ARD, Alberta Livestock and Meat Agency Ltd., Alberta Cattle Feeders' Association and Alberta Beef Producers. The Steering and Technical Committee members provided valuable contributions of their time, expertise and industry contacts in developing the project Terms of Reference, data, information and advice in the implementation of the project.

Project steering committee:

Emmanuel Anum Laate (Project Manager) – Alberta Agriculture and Rural Development Richard Stadlwieser/Nabi Chaudhary (Project Champions) – Alberta Agriculture and Rural Development Clinton Dobson– Alberta Livestock and Meat Agency Ltd. Russell Evans - Alberta Cattle Feeders' Association John Kolk - Alberta Cattle Feeders' Association Rich Smith - Alberta Beef Producers Tom Goddard – Alberta Agriculture and Rural Development Arron Best – Alberta Agriculture and Rural Development Jeffrey Bauer – Alberta Agriculture and Rural Development Rod Carlyon – Alberta Agriculture and Rural Development Tanya Moskal-Hebert – Alberta Agriculture and Rural Development Darren Chase – Alberta Agriculture and Rural Development

Project technical committee:

Wesley Johnson – Alberta Agriculture and Rural Development Dale Kaliel – Alberta Agriculture and Rural Development

TABLE OF CONTENTS

1.0	INTROD	UCTION1
	1.1	COST BENEFIT ANALYSIS OF BMPS IN THE BEEF SECTOR
	1.1.1	ACTIVITIES REQUIRED FOR COST BENEFIT ANALYSIS4
	1.2	THE LINKAGE BETWEEN LCA AND CBA5
	1.3	MODIFICATION TO PHASE 1 2001 BASELINE
2.0	CBA OF I	8 BMP 1 – COMPOSTING OF FEEDLOT MANURE
	2.1	DESCRIPTION OF BMP 1 - COMPOSTING OF FEEDLOT MANURE8
	2.2	BMP 1 - MODELLING LCA AND IMPACT11
	2.2.1	CHANGES TO THE PHASE 1 BASELINE LCA MODEL11
	2.3	BMP 1 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS17
	2.4	CBA AND BMP 1 – COMPOSTING OF FEEDLOT MANURE
		(2010 BASELINE)
	2.5	CBA AND BMP 1.1A – COMPOSTING OF FEEDLOT MANURE WITH
		WINDROW TURNING AND USING EXISTING ON-SITE CLAY
	2.6	CBA AND BMP 1.1B – COMPOSTING OF FEEDLOT MANURE WITH
		WINDROW TURNING AND USING OFF-SITE CLAY
	2.7	CBA AND BMP 1.2A – COMPOSTING OF FEEDLOT MANURE WITH
		EXISTING EQUIPMENT AND USING EXISTING ON-SITE CLAY
	2.8	CBA AND BMP 1.2B – COMPOSTING OF FEEDLOT MANURE
		WITH EXISTING EQUIPMENT AND USING OFF-SITE CLAY
3.0	CBA OF I	BMP 2 -
	INCREAS	SED EFFICIENCY IN COW/CALF FEEDING AND GRAZING
	3.1	DESCRIPTION OF BMP 2 – INCREASED EFFICIENCY IN
		COW/CALF FEEDING AND GRAZING
	3.2	BMP 2 – MODELLING LCA AND IMPACT
	3.3	BMP 2 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS
	3.4	CBA AND BMP 2.1 - SWATH GRAZING53
	3.5	CBA AND BMP 2.2 - STOCKPILE GRAZING
4.0	CBA OF I	BMP 3 – USE OF IONOPHORES IN ROUGHAGE DIETS62
	4.1	DESCRIPTION OF BMP 3 -
		USE OF IONOPHORES IN ROUGHAGE DIETS62
	4.2	BMP 3 - MODELLING LCA AND IMPACT64
	4.3	BMP 3 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS65
	4.4	CBA AND BMP 3 - USE OF IONOPHORES IN ROUGHAGE DIETS70
5.0		RMD 4 DEDUCED ACE TO SUALICHTED 74
	CBA OF I	DMIF 4 – REDUCED AGE IO SLAUGITIER
	CBA OF 1 5.1	DIMP 4 - REDUCED AGE TO SLAUGHTER
	5.1 5.2	DESCRIPTION OF BMP 4 – REDUCED AGE TO SLAUGHTER
	5.1 5.2 5.2.1	DMP 4 - REDUCED AGE TO SLAUGHTER
	5.1 5.2 5.2.1 5.3	DESCRIPTION OF BMP 4 – REDUCED AGE TO SLAUGHTER

TABLE OF CONTENTS

	5.4	CBA AND BMP 4.1 -
		USE OF GROWTH PROMOTANT FOR LAST 28 DAYS
	5.5	CBA AND BMP 4.2 – FEWER DAYS ON FEED
6.0	CBA OF B	MP 5 – USE OF BEEF ANIMALS POSSESSING
	SUPERIO	R RESIDUAL FEED INTAKE GENETICS102
	6.1	DESCRIPTION OF BMP 5 – USE OF BEEF ANIMALS POSSESSING
		SUPERIOR RESIDUAL FEED INTAKE GENETICS
	6.2	BMP 5 - MODELLING LCA AND IMPACT105
	6.2.1	CHANGES TO THE PHASE 1 BASELINE LCA MODEL105
	6.3	BMP 5 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS 108
	6.4	CBA AND BMP 5 – USE OF BEEF ANIMALS POSSESSING
		SUPERIOR RESIDUAL FEED INTAKE GENETICS IN 2029 - 2030113
	6.5	CBA AND BMP 5 – USE OF BEEF ANIMALS POSSESSING
		SUPERIOR RESIDUAL FEED INTAKE GENETICS
		- INCREASES IN BENEFITS OVER TIME
7.0	RANKING	G OF BMPS122
8.0	LIMITAT	ONS OF THE STUDY125
9.0	REFEREN	CES127
10.0	DISCLAIN	/IER

LIST OF FIGURES

FIGURE 2.1	BMP 1 – GHG EMISSIONS AND PERCENT ADOPTION
FIGURE 2.2	BMP 1 – ACIDIFICATION AND PERCENT ADOPTION
FIGURE 2.3	BMP 1 – EUTROPHICATION AND PERCENT ADOPTION
FIGURE 2.4	BMP 1 – NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
FIGURE 3.1	BOUNDARY AND POTENTIAL RESOURCE IMPACTS IN THE COW/CALF SECTOR
FIGURE 3.2a	BMP 2.1 SWATH GRAZING - GHG EMISSIONS AND PERCENT ADOPTION
FIGURE 3.2b	BMP 2.2 STOCKPILE GRAZING - GHG EMISSIONS AND PERCENT ADOPTION
FIGURE 3.3a	BMP 2.1 SWATH GRAZING - ACIDIFICATION AND PERCENT ADOPTION
FIGURE 3.3b	BMP 2.2 STOCKPILE GRAZING – ACIDIFICATION AND PERCENT ADOPTION
FIGURE 3.4a	BMP 2.1 SWATH GRAZING – EUTROPHICATION AND PERCENT ADOPTION
FIGURE 3.4b	BMP 2.2 STOCKPILE GRAZING – EUTROPHICATION AND PERCENT ADOPTION
FIGURE 3.5a	BMP 2.1 SWATH GRAZING – NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
FIGURE 3.5b	BMP 2.2 STOCKPILE GRAZING – NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
FIGURE 4.1	BOUNDARY AND POTENTIAL RESOURCE IMPACTS IN THE COW/CALF SECTION
FIGURE 4.2	BMP 3 - GHG EMISSIONS AND PERCENT ADOPTION
FIGURE 4.3	BMP 3 - ACIDIFICATION AND PERCENT ADOPTION
FIGURE 4.4	BMP 3 – EUTROPHICATION AND PERCENT ADOPTION

LIST OF FIGURES

- FIGURE 4.5 BMP 3 NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
- FIGURE 5.1 BOUNDARY AND POTENTIAL RESOURCE IMPACTS IN THE FEEDLOT SECTOR
- FIGURE 5.2a BMP 4.1 GHG EMISSIONS AND PERCENT ADOPTION
- FIGURE 5.2b BMP 4.2 GHG EMISSIONS AND PERCENT ADOPTION
- FIGURE 5.3a BMP 4.1 ACIDIFICATION AND PERCENT ADOPTION
- FIGURE 5.3b BMP 4.2 ACIDIFICATION AND PERCENT ADOPTION
- FIGURE 5.4a BMP 4.1 EUTROPHICATION AND PERCENT ADOPTION
- FIGURE 5.4b BMP 4.2 EUTROPHICATION AND PERCENT ADOPTION
- FIGURE 5.5a BMP 4.1 NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
- FIGURE 5.5b BMP 4.2 NON-RENEWABLE RESOURCES AND PERCENT ADOPTION
- FIGURE 6.1 BMP 5 GHG EMISSIONS FROM 2001 TO 2029
- FIGURE 6.2 BMP 5 ACIDIFICATION FROM 2001 TO 2029
- FIGURE 6.3 BMP 5 EUTROPHICATION FROM 2001 TO 2029
- FIGURE 6.4 BMP 5 NON-RENEWABLE RESOURCES FROM 2001 TO 2029

- TABLE 2.1PERCENT CHANGE IN GHG EMISSIONS WITH BMP 1
- TABLE 2.2BENEFITS AND COSTS OF BMP 1 AT THE FEEDLOT IN 2010 MARKET
VALUES
- TABLE 2.3BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1 IN 2010 MARKET
VALUES
- TABLE 2.4BENEFIT OF EMISSIONS REDUCTION AT THE FEEDLOT IN 2010 BMP 1
- TABLE 2.5BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1 IN 2010
- TABLE 2.6BENEFITS AND COSTS OF BMP 1.1a AT THE FEEDLOT MARKET
VALUES
- TABLE 2.7BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1.1a IN 2010 -
MARKET VALUES
- TABLE 2.8BENEFIT OF EMISSIONS REDUCTIONS AT THE FEEDLOT BMP 1.1a
- TABLE 2.9BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1.1a VALUING
EMISSIONS
- TABLE 2.10BENEFITS AND COSTS OF BMP 1.1b AT THE FEEDLOT MARKET
VALUES
- TABLE 2.11BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1.1b IN 2010 -
MARKET VALUES
- TABLE 2.12BENEFITS AND COSTS OF BMP 1.2a AT THE FEEDLOT MARKET
VALUES
- TABLE 2.13BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1.2a IN 2010 -
MARKET VALUES
- TABLE 2.14BENEFITS AND COSTS OF BMP 1.2b AT THE FEEDLOT MARKET
VALUES
- TABLE 2.15BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 1.2b IN 2010 -
MARKET VALUES
- TABLE 3.1.1PERCENT CHANGE IN GHG EMISSIONS WITH BMP 2.1 SWATH
GRAZING

- TABLE 3.1.2PERCENT CHANGE IN GHG EMISSIONS WITH BMP 2.2 STOCKPILE
GRAZING
- TABLE 3.2BENEFITS AND ANNUAL COSTS OF BMP 2.1 FOR COW/CALF
OPERATIONS MARKET VALUE
- TABLE 3.3BENEFIT COST RATIO FOR BMP 2.1 MARKET VALUES
- TABLE 3.4CAPITAL COSTS OF BMP 2.1 FOR COW/CALF OPERATIONS MARKET
VALUES
- TABLE 3.5CHANGE IN EMISSIONS AT COW/CALF OPERATIONS BMP 2.1
- TABLE 3.6BENEFIT COST RATIO AT COW/CALF OPERATIONS FOR BMP 2.1
- TABLE 3.7CHANGE IN EMISSIONS BEYOND COW/CALF OPERATIONS BMP 2.1
- TABLE 3.8SYSTEM WIDE BENEFIT COST RATIO FOR BMP 2.1
- TABLE 3.9BENEFITS AND ANNUAL COSTS OF BMP 2.2 FOR COW/CALF
OPERATIONS MARKET VALUE
- TABLE 3.10BENEFIT COST RATIO FOR BMP 2.2 MARKET VALUES
- TABLE 3.11CAPITAL COSTS OF BMP 2.2 FOR COW/CALF OPERATIONS MARKET
VALUES
- TABLE 3.12CHANGE IN EMISSIONS AT COW/CALF OPERATIONS BMP 2.2
- TABLE 3.13BENEFIT COST RATIO AT COW/CALF OPERATIONS FOR BMP 2.2
- TABLE 3.14CHANGE IN EMISSIONS BEYOND COW/CALF OPERATIONS BMP 2.2
- TABLE 3.15SYSTEM WIDE BENEFIT COST RATIO FOR BMP 2.2
- TABLE 4.1PERCENT CHANGE IN GHG EMISSIONS WITH BMP 3
- TABLE 4.2BENEFITS AND COSTS OF BMP 3 AT THE COW/CALF OPERATION -
MARKET VALUES
- TABLE 4.3BENEFIT COST RATIO AT THE COW/CALF OPERATION FOR BMP 3 -
MARKET VALUES

- TABLE 4.4BENEFIT OF EMISSION REDUCTION AT THE COW/CALF OPERATION -
BMP 3
- TABLE 4.5BENEFIT COST RATIO AT THE COW/CALF OPERATION FOR BMP 3 -
MARKET VALUES
- TABLE 4.6ADDITIONAL BENEFITS OF SYSTEM WIDE EMISSIONS REDUCTION -
BMP 3
- TABLE 4.7SYSTEM WIDE BENEFIT COST RATIO FOR BMP 3 FULL ADOPTION
- TABLE 5.1PERCENT CHANGE IN GHG EMISSIONS WITH BMP 4
- TABLE 5.2BENEFITS AND COSTS OF BMP 4.1 AT THE FEEDLOT IN 2010 MARKET
VALUES
- TABLE 5.3BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 4.1 IN 2010 -
MARKET VALUES
- TABLE 5.4BENEFITS AND COSTS OF BMP 4.1 AT THE FEEDLOT WITH FULL
ADOPTION MARKET VALUES
- TABLE 5.5BENEFIT COST RATIO FOR BMP 4.1 AT THE FEEDLOT WITH FULL
ADOPTION MARKET VALUES
- TABLE 5.6BENEFIT OF EMISSION REDUCTION AT THE FEEDLOT WITH BMP 4.1 -
2010
- TABLE 5.7BENEFIT OF EMISSION REDUCTION AT THE FEEDLOT WITH BMP 4.1 -
FULL ADOPTION
- TABLE 5.8BENEFITS OF SYSTEM WIDE EMISSION REDUCTION WITH BMP 4.1 -
2010
- TABLE 5.9SYSTEM WIDE BENEFIT COST RATIO FOR BMP 4.1 IN 2010
- TABLE 5.10BENEFITS OF SYSTEM WIDE EMISSION REDUCTION WITH BMP 4.1 -
FULL ADOPTION
- TABLE 5.11SYSTEM WIDE BENEFIT COST RATIO FOR BMP 4.1 FULL ADOPTION
- TABLE 5.12BENEFITS AND COSTS OF BMP 4.2 WITH FULL ADOPTION MARKET
VALUES

- TABLE 5.13BENEFIT COST RATIO FOR BMP 4.2 AT THE FEEDLOT WITH FULL
ADOPTION MARKET VALUES
- TABLE 5.14BENEFIT OF EMISSION REDUCTION AT THE FEEDLOT WITH BMP 4.2 -
FULL ADOPTION
- TABLE 5.15BENEFIT COST RATIO FOR BMP 4.2 AT THE FEEDLOT WITH FULL
ADOPTION INCLUDING VALUATION OF REDUCED GHG AT THE
FEEDLOT
- TABLE 5.16BENEFITS OF SYSTEM WIDE EMISSION REDUCTION WITH BMP 4.2 -
FULL ADOPTION
- TABLE 5.17SYSTEM WIDE BENEFIT COST RATIO FOR BMP 4.1 FULL ADOPTION
- TABLE 6.1PERCENT CHANGE IN GHG EMISSIONS WITH BMP 5
- TABLE 6.2BENEFITS AND COSTS OF BMP 5 AT THE COW/CALF OPERATION IN
2029 MARKET VALUES
- TABLE 6.3BENEFIT COST RATIO AT THE COW/CALF OPERATION IN 2029 -
MARKET VALUES
- TABLE 6.4BENEFIT OF EMISSIONS REDUCTIONS AT THE COW/CALF
OPERATION IN 2029 BMP 5
- TABLE 6.5BENEFIT COST RATIO AT THE COW/CALF OPERATIONS FOR BMP 5 IN
2029
- TABLE 6.6BENEFITS AND COSTS OF BMP 5 AT THE FEEDLOT IN 2029 MARKET
VALUES
- TABLE 6.7BENEFIT COST RATIO AT THE FEEDLOT IN 2030 MARKET VALUES
- TABLE 6.8BENEFIT OF EMISSIONS REDUCTIONS AT THE FEEDLOT IN 2030 -
MARKET VALUES
- TABLE 6.9BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 5 IN 2030
- TABLE 6.10BENEFIT COST RATIO FOR THE BEEF SUPPLY CHAIN FOR BMP 5 IN
2029-2030
- TABLE 6.11OTHER EMISSIONS REDUCTIONS IN 2029 WITH BMP 5

- TABLE 6.12SYSTEM WIDE BENEFITS AND COSTS FOR BMP 5 IN 2029-2030
- TABLE 6.13BENEFIT COST RATIO AT THE COW/CALF OPERATION IN 2010 AND
2029 MARKET VALUES
- TABLE 6.14BENEFIT COST RATIO AT THE COW/CALF OPERATION FOR BMP 5 IN
2010 AND 2029
- TABLE 6.15BENEFIT COST RATIO AT THE FEEDLOT IN 2011 AND 2030 MARKET
VALUES
- TABLE 6.16BENEFIT COST RATIO AT THE FEEDLOT FOR BMP 5 IN 2011 AND 2030
- TABLE 6.17BENEFIT COST RATIO FOR THE BEEF SUPPLY CHAIN (COW/CALF
AND FEEDLOT) FOR BMP 5 IN 2010-2011 AND 2029-2030
- TABLE 6.18SYSTEM WIDE BENEFITS AND COSTS FOR BMP 5 IN 2010-2011 AND
2029-2030
- TABLE 7.1SUMMARY OF BMP IMPACT ON GHG EMISSIONS AND BEEF SUPPLY
CHAIN OPERATORS
- TABLE 7.2RANKING OF BMPs BASED ON GHG REDUCTION
- TABLE 7.3RANKING OF BMPs BASED ON ECONOMICS

LIST OF APPENDICES

PRINCIPLES GUIDING CBA ANALYSIS APPENDIX A APPENDIX B NET PRESENT VALUE APPENDIX C OTHER ECONOMIC MEASURES USED WITH A LCA APPENDIX D ECONOMIC CONCEPTS AND CBA APPLIED TO LCA: A LITERATURE REVIEW APPENDIX E **BMP 1 - COMPOSTING OF FEEDLOT MANURE** ACTIVITY MAPS AND DATA COLLECTION APPENDIX F BMP 2 - INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING ACTIVITY MAPS AND DATA COLLECTION APPENDIX G BMP 3 – USE OF IONOPHORES IN COW AND HEIFER DIETS ACTIVITY MAPS AND DATA COLLECTION APPENDIX H **BMP 4 - REDUCED AGE TO SLAUGHTER** ACTIVITY MAPS AND DATA COLLECTION APPENDIX I BMP 5 - USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS ACTIVITY MAPS AND DATA COLLECTION

1.0 <u>INTRODUCTION</u>

Conestoga-Rovers & Associates (CRA) was retained by Alberta Agriculture and Rural Development (ARD) to complete Phase 2 of Evaluating Environmental and Economic Impact for Beef Production in Alberta using Life Cycle Analysis (LCA). CRA teamed with JRG Consulting Group (JRG) to form a project team (Project Team) for this assignment.

ARD has initiated this project to assess the environmental and economic impacts of beef production in order to create the opportunity for Alberta to offer products that will provide the desired environmental benefits. This type of initiative is especially important given the current and future expected changes in regulations that have, at their core, an emphasis on greenhouse gas (GHG) reporting and mitigation.

The Phase 1 component of the overall project, as completed by CRA, yielded an estimate of the carbon footprint intensity and other environmental impacts such as eutrophication, acidification, and non-renewable energy consumption, of the beef sector on a per kilogram basis (live shrunken weight, up to the door of the slaughterhouse). Conclusions were made in the report regarding the various hotspots in the production cycle, and identified that enteric fermentation emissions were the most significant overall emission as it pertains to GHGs (accounting for more than half of the total), followed by on-farm energy consumption, nitrous oxide emission from soil and manure management, and total forage and cereal activities.

The completion of Phase 1 offers opportunities for mitigation projects that can reduce the overall environmental impact of the beef production sector in Alberta. Of note, as the baseline year for the Phase 1 study was 2001, various modifications to the beef production sector have already been initiated in the interim. Further modifications, or implementation of select beneficial management practices (BMPs), offer opportunity for additional reductions in environmental footprint. The aim of this Phase 2 study is to build on the results of Phase 1 in terms of quantifying the relative benefits of the selected BMPs from an environmental footprint standpoint, but also to assess the relative cost/benefit of these practices such that the cost implications of implementation are understood.

The boundary placement for the Phase 2 study is identical to the boundaries placed for Phase 1.

The five BMPs, as selected by ARD, have been modeled using the LCA model completed during Phase 1:

- 1. Composting and other improved solid manure management practices
 - Windrow composting of manure to determine GHG emission changes, nutrient capture, and costs/benefits
- 2. Increased efficiency in cow/calf feeding and grazing
 - Use of swath grazing and stockpile grazing to determine effects of both grazing systems
- 3. Use of ionophores in roughage diets (cow/calf operation)
 - Effects of addition of ionophores to all cattle on pasture using the Phase 1 diet
- 4. Reducing age to slaughter
 - Reduction of age to slaughter through the use of a supplement to increase weight gain during the last days on the feedlot, and through the removal of the backgrounding stage and the modification of diets to introduce higher concentrate diets sooner
- 5. Superior residual feed intake (RFI) genetics in breeding animals
 - Testing potential breeding bulls for the RFI genes for the purpose of breeding and uptake of the gene

A cost/benefit analysis (CBA) has been conducted for each BMP to provide ARD with an understanding of the effects of the implementation of each BMP. CRA is the lead on this project, and is responsible for the majority of the data collection and modelling; JRG is involved to complete the CBA.

The Phase 1 model is based on a baseline year of 2001. As requested by ARD, the Phase 1 model was updated to reflect the implementation of any of the BMPs in 2010. The costs and benefits were then analyzed based on any additional implementation of the BMPs from 2010 conditions. It is important to note that many of the assumptions inherent to the modeling provide a linear cause-effect relationship, and thus the relative cost/benefit aspect is generally independent of assumptions related to the percent adoption (or uptake) of the BMPs.

This Final Report provides the results of Phase 1 (Literature Review), Phase 2 (Data Collection), and Phase 3 (Quantification of Environmental Footprint and Estimation of Costs/Benefits of Selected BMPS) of the project, and follows the Draft Report and Final Draft Report. This report has been organized into the following sections:

- Section 1.0: Introduction to report and CBA, and outline of edits to Phase 1 2001 baseline
- Section 2.0: CBA of BMP 1 composting of feedlot manure
- Section 3.0: CBA of BMP 2 increased efficiency in cow/calf feeding
- Section 4.0: CBA of BMP 3 use of ionophores in roughage diets
- Section 5.0: CBA of BMP 4 reduced age to slaughter
- Section 6.0: CBA of BMP 5 use of animals possessing superior residual feed intake genetics
- Section 7.0: BMP ranking
- Section 8.0: Limitations of the study
- Section 9.0: References
- Section 10.0: Disclaimer

The technical analysis, modeling assumptions, modeling outputs, and CBA are presented for each BMP in Sections 2 through 6.

1.1 COST BENEFIT ANALYSIS OF BMPS IN THE BEEF SECTOR

Cost benefit analysis (CBA) is an analytical approach where the benefits of a certain initiative, or change, are compared to the costs associated with that initiative or change. CBA is often used by government to evaluate the feasibility of a regulatory intervention, a policy change, or infrastructure project. CBA is sometimes refereed to as benefit cost analysis (BCA), where the term places the initial emphasis on benefits of a change. CBA weighs the expected costs of a new project, or initiative, in relation to the benefits where benefits are costs that are measured using the same unit of measurement – usually in dollar terms. The results of the analysis can be expressed as net benefits, which are the measured benefit minus measured cost (B – C). Another measure is the benefit to cost ratio; a B/C ratio >1 indicates that measured benefits exceed measured costs.

There is no standard approach for each cost-benefit analysis; however, industry insight and input is required for a meaningful analysis. As noted in a Treasury Board (1998) guide on cost benefit analysis,

"There is no 'cookbook' for benefit-cost analysis. Each analysis is different and demands careful and innovative thought. It is helpful, however, to have a standard sequence of steps to follow. This provides consistency from one analysis to another, which is useful to both the analysts doing the study and the managers reading the report.

Obviously, the ... "steps cannot be performed by the analyst in isolation and will require consultations with the decision-maker and others, the gathering of a wide variety of information, and the use of a number of analytical techniques. It is important that, as the analyst proceeds, the decision-maker is kept in touch with the form of the analysis and the assumptions being made".

- Treasury Board, Benefit-Cost Analysis Guide, 1976"

There is no standard approach to CBA; however, there are a few **principles** that should be used to guide the analysis¹. These principles that have guided prior CBA analyses conducted by JRG are provided in Appendix A.

1.1.1 ACTIVITIES REQUIRED FOR COST BENEFIT ANALYSIS

The CBA principles listed in Appendix A suggest that the following activities are embedded in our CBA of BMPs:

- 1. The **objectives** for the major stakeholders are documented for each proposed BMP.
- 2. **Stakeholders** are identified along with **system boundaries** and identification of the stakeholder groups that have **standing**.
- 3. A solid **description and documentation is provided for each proposed BMP**. The **BMP is contrasted to the current situation** (or status quo). This description includes the operating environment and any changes in the operating environment.
- 4. The **changes** that occur with moving from the current situation to the BMP are well described.
- 5. **Data** is gathered that allows for **measurement of costs and benefits** associated with the current situation, the BMP, and the associated change this includes physical data such as input-output relationships, as well as price data to measure costs and returns.
- 6. **Benefits and costs** are computed for **each affected stakeholder group** to show the net benefit or cost on this group – the costs and benefits that are internal to a stakeholder group are first considered to indicate the net marketplace benefit. Time horizon considerations are included in the analysis as required. A

¹ For interested readers, a classic in the areas of cost benefit analysis is Gittinger, J. Price, "Economic Analysis of Agricultural Projects", Economic Development Institute, The World Bank, 1984. The book is written for analysis of development projects; however, a number of the concepts and illustrations apply to most analyses.

secondary computation can include the non-market benefits and associated externalities, such as the reduction in GHGs.

- 7. **Calculations of benefit** are provided, which can include the benefit-cost ratio (BCR), absolute net benefits, internal rate of return, and cost effectiveness (\$ of cost/unit of GHG reduction). If the costs and/or benefits vary over time, a net present value analysis should be conducted. A net present value example is provided in Appendix B.
- 8. **Sensitivity analyses** of the results are provided based on changes in key operating parameters, or assumptions.
- 9. **Suggestions for change** are provided based on the analysis and a reasoned consideration of the quantifiable and non-quantifiable costs and benefits throughout the beef supply chain.
- 10. **Presentation of findings** for potential decision making.

1.2 <u>THE LINKAGE BETWEEN LCA AND CBA</u>

LCA and CBA are not two alternative approaches to help make decisions on BMPs. A LCA highlights all of the "cradle-to-grave" (or other ending point) impacts of a technology, practice, or sector. A LCA is only concerned with physical units and physical impacts, such as feed required and equivalent carbon dioxide emissions (CO₂e) emitted, and changes therein with adoption of a BMP. A LCA usually does not consider non-environmental costs and benefits. From a policy perspective, a LCA does not offer any obvious decision rules for investing in a BMP.

A LCA is required to conduct a CBA on a BMP. The strength of a LCA is the identification of the physical units required for a BMP and outputs resulting from a BMP. A CBA starts with the output of a LCA (or more precisely the LCA associated with a base case and with alternatives [options]) and the CBA begins with placing values in a common unit of measurement on these inputs and outputs. Such valuation would be on inputs and outputs with a market price (e.g., finished beef cattle going to slaughter, feed purchased and/or produced to finish an animal), and those outputs (and inputs) that do not have a market value such as the emitted GHG in each stage of the beef supply chain (the externalities).

CBA is a second but important step after completing a LCA. Moreover the requirements of a CBA must be considered within a LCA, such as the ability to compare alternatives (e.g., two BMPs, or a BMP relative to the current situation).

There are other economic measures that have been used along side a LCA. These include cost-effectiveness analysis (CEA), the cost effectiveness ratio (CER) and life cycle costing (LCC). These are not as robust a measure as a CBA for helping in the decision making process. These other measures are briefly overviewed in Appendix C.

A CBA that involves environmental issues will invariably have to deal with **externalities** or spillovers. An externality is when an action by one party has an impact on others – whether a benefit or a cost. Within the beef sector, methane emissions can be considered an externality – a cost imposed on other by the action of the beef cow/calf operation. Placing a value on an externality is a requirement in conducting a full CBA, and when attempting to have decision makers internalize the cost of an externality. Without valuing externalities such as emissions into the environment, there is little information available to illustrate whether a BMP has benefits that exceed costs, whether viewed by a decision maker such as feedlot operator, or viewed from a societal perspective. Thus a value is required for emissions affect by the implementation of a BMP, such as methane (CH₄), CO₂, etc. Various approaches have been used to place monetary values on flows that do not have a market-determined price (e.g., hedonic prices, travel cost, willingness to pay studies, revealed preferences, stated preferences, etc). Without such valuations *"recommendations based on LCA fail to address possible trade-offs between environmental protection and both social and economic concerns in the product life cycle"* (Dreyer et al., 2006).

A literature search indicated that very few CBA have been applied to LCA, and those that have been conducted were not in the agri-food sector. A literature review is provided in Appendix D of some cost benefit analysis and other economic approaches that were used as part of an LCA. This literature review highlighted a few key points. These include:

- A comprehensive (environmental) CBA must be integrated with a LCA, or have access to a LCA findings for the base case as well as to considered alternatives
- Many of the comments in the literature revolve around issues of not having a full CBA linked to a LCA
- The literature is long on suggestions on how to improve LCA, but short on applications using CBA linked to a LCA

1.3 MODIFICATION TO PHASE 1 2001 BASELINE

During the completion of Phase 2, some modifications were made to the Phase 1 2001 baseline model as a starting point for the Phase 2 work. Generally these were

undertaken for the sake of completeness; otherwise, the intent was to maintain the model formulation and boundaries established during Phase 1. These modifications are outlined below:

- Diet Supplements tab, Cell B12: Number of days the cows/bulls are included in the model for each calf crop. This value was 182.5 days, and has been modified to 365 days to represent 1 full year.
- Cattle N excretion tab: The ADG values were inserted in lbs, not kg, as the stated units in the table. The values have been converted from lbs to kg.
- The Phase 1 model assumed that both the cow/calf and the feedlot operations both managed manure by allowing a fraction of the manure to be left on pasture and for the remaining to be collected and stockpiled as solid storage prior to pick-up. This baseline model was updated to apply the manure left on pasture to only the cow/calf operations and the manure solid storage to only the feedlot. This had an effect on the Cattle CH₄ Manure Emission tab, the N₂O Dir Manure emission HOLOS tab, and the N₂O Indir Manure emiss Holos tab.

As a result of these modifications, the total GHG emissions of the Alberta beef production system have increased slightly from 14.5 to 14.7 kg carbon dioxide equivalents (CO_2e)/kg shrunk live weight. This forms the basis of the models modified to reflect the BMPs.

2.0 <u>CBA OF BMP 1 - COMPOSTING OF FEEDLOT MANURE</u>

BMP 1 considers the composting of managed beef manure in Alberta. As it is understood that the majority of managed manure is on the feedlot, only manure generated on the feedlot has been included in this analysis.

2.1 DESCRIPTION OF BMP 1 - COMPOSTING OF FEEDLOT MANURE

The intent of this BMP is to generate fewer GHG emissions through composting instead of the current practice of storing manure in a pile prior to transportation off site.

The operating assumptions include:

- A percentage of feedlot manure will be composted. For the 2010 baseline, ARD advised that about 15 percent of the current beef feedlots in Alberta are composting manure.
- Two separate technologies will be used to turn the compost material:
 - 1. Using a windrow turning machine (BMP 1.1)
 - 2. Using existing farm equipment (front-end loader) (BMP 1.2)
- It was assumed that compacted clay will be used as the compost pad. Two separate scenarios have been assumed for the construction of the clay composting pad:
 - 1. Clay is available on site (scenario "a")
 - 2. Clay must be purchased from off-site sources and shipped to the site (scenario "b")
- Assumptions made for the 2010 baseline were that 15 percent of feedlots currently compost manure, existing on-farm equipment is used to turn the material, and clay was acquired from off-site sources to build the compost pad (a conservative assumption).
- Four scenarios in addition to the 2010 baseline (BMP 1) will be run to assess the impact of existing machinery to turn compost and the source of clay for the composting pad. These are BMP 1.1a, BMP 1.1b, BMP 1.2a, and BMP 1.2b.
- Labour requirements will increase with the BMP involving a front-end loader, as compared to a windrow turner.
- There are capital expenditures associated with this BMP, with a life expectancy of 20 years for a windrow machine and for a front-end loader.

- The clay used for the composite pad has a 20-year useful life, with a new compost pad with equipment developed every 20 years.
- Transportation of compost off of the feedlot is assumed to be arranged by the buyer/user of the material.
- Transportation of manure off of the feedlot is assumed to be arranged by the feedlot owner using on-farm trucks and equipment. The cost of fuel used to transport the manure off of the feedlot is saved by the feedlot owner if composting is conducted as a function of the volume/mass reduction involved in composting.
- There will be no impact on the volume or quality of beef supplied to the slaughter plant.
- Available amendment material for the composting process was divided into northern and central/southern Alberta regions, where wood waste/wood chips were assumed to be the available amendment material in northern Alberta and straw was assumed to be the available amendment material in central/southern Alberta.

The direct impacts in the feedlot sector include:

- Outputs:
 - No change in the annual volume of finished beef supplied to slaughter plants.
 - Fewer emissions from the stored manure that is subject to composting (at least the methane emissions from manure storage). It is noted here that the HOLOS model used to calculate the emissions from manure during storage and composting assumes that the direct nitrous oxide emissions increase with the passive windrow composting process; however, in reality, if composting was conducted properly, this may not be the case. Emissions of nitrous oxide and methane from the composting process tend to be a function of the success of the composting operation to provide adequate control over the windrows and appropriate aeration of the material. The current model formulation and constraints are a key element of the final results in terms of emissions from composting and the consequences on the cost-benefit analysis. Please refer to Section 2.2 for further information.
 - Change in the volume of manure/compost shipped off of the feedlot operation due to composting. Note that the price of compost is for compost picked up from the composting location, and therefore, the transportation of compost off site has not been included in the analysis (emissions or costs).
 - Change in the value of the manure/compost shipped off site. The compost is valued at \$6/tonne for use in cropping activities. A higher value, such as bagged for retail (residential) use, is not used to value the output. The bagged residential

market is a local market, with a limited market requirement. This market is assumed to be well served, and expansion of this volume can significantly lower prices due to over-supply. As well, compost cannot be shipped long distances, such as to other major cities (e.g., Vancouver) as the trucking costs can soon outweigh the value of the compost. For this reason, a cropping value is used.

- Inputs:
 - No change in the inputs purchased to produce beef (e.g., feed, supplements, etc.).
 - Purchase of equipment (windrow turner).
 - Higher usage of existing front-end loader. Assume replacement not required for 20-year analysis, as this equipment typically has a lifespan in this range.
 - Higher labour requirements for use of front-end loader for turning compost.
 - Higher energy consumption for composting; higher energy consumption for the front-end loader compared to the windrow turner.
 - Lower energy consumption for disposing of manure.
 - Purchase and transportation of amendment materials for the composting process.
 - Construction of the clay composting pad required for the composting process (may include the purchase, transportation, and compaction of the clay).

In addition to these direct impacts, there are potential indirect impacts based on linkages. These include:

- Reduction in emissions from trucking manure off site
- Increase in emissions due to the excavation, transportation, and compaction of clay for construction of the composting pads
- Emissions from transportation of wood waste for the composting process
- Emissions from production and transportation of straw for the composting process
- Emissions from manufacturing and transportation of windrow turners
- Emissions from production and combustion of diesel required for composting process

It should be noted here that the LCA model is linear throughout adoption rate, and does not capture curvilinear tendencies, which may be realized through actual implementation. These may include increased efficiencies in labour, decreases in capital costs as the practice becomes widespread and investment costs reduce.

2.2 <u>BMP 1 - MODELLING LCA AND IMPACT</u>

This BMP consists of utilizing feedlot beef manure for compost as an alternative to chemical fertilizers and current disposal methods.

Based on assumptions applied to the current LCA model, manure deposited in feedlots is collected using a removal vehicle. The manure is then transferred and stockpiled in a specific area of each feedlot where it is temporarily stored.

After the manure has been stockpiled, it may be managed using any of the following options:

- <u>Dispose of Manure (baseline)</u>: The manure is transported off site for land application or left unmanaged on site. In the baseline, 48 percent of Alberta's beef manure was collected for further use (47 percent solid manure, 1 percent liquid slurry) (assumed feedlot). The currently "managed" portion of the manure may be treated to improve manure management practices (i.e., composting) or may continue to be transported off site for direct land application. Only the managed fraction as generated in the feedlots has been considered for this BMP.
- <u>Compost Manure On Site</u>: The manure will be composted on feedlots and transported off site for land application; this option was not included in the baseline scenario and comprises the major element of this BMP.
- <u>Compost Manure Off Site</u>: The manure will be transported from the feedlots to a composting facility and then transported for land application (bulk sale or commercial sale). It is expected that consolidated composting operations in a central location will be quite rare, given the negative economics of transporting materials. The actual emission profile from this activity is identical to the baseline scenario, in that the manure undergoes emissions during storage prior to trucking off site. Emissions due to trucking of the material off site are considered; however, emissions produced or mitigated once off site are beyond the boundaries of the project and have not been considered. This is consistent with the boundaries drawn for the baseline.

2.2.1 <u>CHANGES TO THE PHASE 1 BASELINE LCA MODEL</u>

CBA compares the costs of a change (i.e., the BMP) to the benefits associated with the change for the relevant decision makers. Accordingly, the change in outputs and inputs

used by the feedlot sector are of major concern, along with the values of these inputs and outputs.

2010 Baseline Model

The Phase 1 LCA model was updated to 2010 conditions to include the percentage of beef manure composting that is currently occurring on farms in Alberta (15 percent, as provided by ARD) (scenario BMP 1). The Phase 1 LCA model assumed that no manure composting was being conducted in 2001. ARD noted that windrow composting would be the most prominent and likely type of composting to be used on beef farms. The remaining 85 percent was assumed to be transported off site for land application, as in the 2001 baseline.

As there are currently no specific regulations for the operation of a windrow composting facility in Alberta, ARD's Facilities and Environment: Composting Animal Manures document (ARD, October 2009) was used for guidance. The main part of a windrow composting facility is the 0.5 m compacted pad. Clay-type soil was assumed to be the material as very low permeability rates of the pad must be obtained (5×10^{-8} metres per second [m/sec]). The clay pad was the only construction activity assumed in the LCA model as the other controls for the compost pad will vary depending on site (i.e., run-on and run-off control systems). A suitable source of clay may not be available at the composting site, and thus may need to be purchased and transported to the site.

In order to turn the composting material, either a front-end loader or a windrow turning machine can be used. The front-end loader has been assumed to already be available at the site, while a windrow turner must be purchased. The windrow turner requires a smaller composting pad, and uses less time and fuel to turn the material, but is generally more suitable for larger operations.

The 2010 baseline model assumes that only on-farm equipment is being used to turn the composting material and that clay was obtained from off-site sources (conservative assumption).

Additional Model Scenarios

Based on the variables outlined above (source of clay and turning equipment), the updated 2010 model was then revised to create four additional scenarios:

- BMP 1.1a windrow turning machine and on-site source of clay for compost pad
- BMP 1.1b windrow turning machine and off-site source of clay for compost pad
- BMP 1.2a existing front-end loader and on-site source of clay for compost pad
- BMP 1.2a existing front-end loader and off-site source of clay for compost pad

For each scenario, there is an option to revise the following:

- Percent of feedlot beef manure composted on site in Alberta
- Percent of farms using existing equipment to turn compost
- Percent of farms using windrow turners to turn compost
- Percent of farms using an on-site source of clay for compost pad
- Percent of farms using an off-site source of clay for compost pad

As the model is linear in nature, the four scenarios above were run assuming 100 percent of feedlot beef manure is composted on site, with 100 percent of each of the two variables, in order to formulate the CBA. This allows the impact of each variable to be separated, to realize the impacts of the costs/benefits of each option. The percent of feedlot manure that is transported off site for either composting or land application is also automatically adjusted based on the inputs.

Overview of Additional Changes to the LCA Model for On-Site Composting

Construction activities included excavating clay, transporting clay (if from off-site source), compacting clay, manufacturing windrow turners, and transporting windrow turners to the site. It was assumed that clearing of land or any additional construction activity would not be required and would be too variable to be included in this study. No maintenance was assumed for the clay pad, as it should have at least a 20-year life span.

The total amount of manure generated on Alberta beef feedlots for one calf crop, as indicated in the model, was divided into the northern and central/southern Alberta regions, based on Statistics Canada feedlot information, in order to identify the type of amendment and to calculate the amount required for the composting process. It was assumed that wood waste/wood chips would be the source of amendment material in northern Alberta, while straw was assumed for central/southern Alberta. ARD's Manure Composting Manual was used to calculate the total amount of amendment required to compost the beef manure (ARD, 2005).

The space for a composting area compared to an area for storage of manure varies as composting requires a windrow configuration of piles that are of manageable height and that must be turned. The overall assumption is that appropriate, controlled composting using consistent turning and application of amendment will be used.

The size of the composting pad, total labour time required to turn the material, total amount of diesel consumed during the process, and the total number of units was calculated assuming typical farm front-end loader information and a windrow turner model that maximizes composting space and turning time (Vermeer, 2010). All of these inputs have been adjusted in the model calculations.

The existing manure storage area was assumed to be part of the total size of the composting pad requirements. According to the Province of Alberta, Agricultural Operation Practices Act, Standards and Administration Regulation (Alberta Regulation 267/2001), there must be adequate manure storage on feedlots to contain nine consecutive months of manure generation. Therefore, assuming a maximum height of 2.5 m for manure (Guidelines to Beneficial Management Practices: Environmental Manual for Poultry Producers in Alberta. November 2003. Section 7), an existing manure storage area was calculated and the total amount of clay was offset by this existing area.

Windrow composting time periods include an active composting period where the composting material is turned 15 times in the first 6 weeks (5.5 turns per week for first 2 weeks, and 1 turn per week for next 4 weeks), and the curing period where the material is turned every 4 weeks for 13 weeks (0.25 turns per week). The total composting time is 19 weeks. This is based on CRA's experience with composting, the Ontario Regulation 101/94, "*Recycling and Composting of Municipal Waste*" where pathogen reduction is acquired by achieving 55 degrees C for a minimum of 15 days, and from ARD's and Saskatchewan Ministry of Agriculture's composting manure guidelines for composting times (ARD, 2005) (Saskatchewan Ministry of Agriculture, 2008).

Pathogen reduction is achieved by maintaining a temperature of 55 degrees C within a composting pile for a minimum of 15 days. This pathogen reduction phase is then followed by a curing period of at least 6 months, during which the compost is turned at least once per month.

Transportation emissions and costs for trucking manure off site have been adjusted for the amount of feedlot manure composted on site. Transportation emissions for trucking compost off site have been assumed to be outside the boundaries of the current study as the cost for composted manure is based on bulk weight picked up from the composting site; construction and operations activities for off-site composting are also excluded, being outside of the project boundaries.

Typically, the biggest market for manure compost is supplying it to farms for spreading on agricultural land as a replacement for chemical fertilizers. The displacement of chemical fertilizer will reduce the emissions associated with the production of those chemicals; the amount of fertilizer displaced depends on the nutrient content supplied by the finished compost as compared to fertilizer and in incremental benefit compared to unprocessed manure, as in the baseline situation. The finished compost may be used for: soil amendment, fertilizer supplement, top dressing for pastures and hay crops, mulch for homes and gardens, or a potting mix component. In the baseline scenario, the usage of the final manure in terms of emissions ended at the door of the receiving entity, although transportation of the material off site was included (average distance of 7 km). For this BMP, the displacement of fertilizer resulting from application of manure off site will not be included in order to maintain consistency with the baseline; the primary effect of composting on site should thus relate to the mitigation of methane and nitrous oxide during the storage/composting phase and the reduced off-site trucking requirements. Although the final emissions created or mitigated off site attributed to raw or composted manure are outside of the boundaries of this analysis, the economic value differential between the two products has been considered in the CBA for the feedlot.

The total nutrient content of the compost as compared to the manure is outlined below:

- Feedlot manure
 - Nitrogen content 1.30 kg/kg dry wt
 - Phosphorus content 0.37 kg/kg dry wt
 - Water content 68%
- Amendment material (wood waste)
 - Nitrogen content 0.14 kg/kg dry wt
 - Phosphorus content 0 kg/kg dry wt
 - Water content 15%
- Compost from manure and wood waste
 - Nitrogen content
 0.85 kg/kg dry wt
 - Phosphorus content 0.30 kg/kg dry wt
 - Water content 27%

- Amendment material (straw)
 - Nitrogen content 1.10 kg/kg dry wt
 - Phosphorus content 0 kg/kg dry wt
 - Water content 16%
- Compost from manure and straw
 - Nitrogen content
 1.21 kg/kg dry wt
 - Phosphorus content 0.28 kg/kg dry wt
 - Water content 25%

Methane and nitrous oxide emissions associated with the baseline were assumed to have been reduced as composting practices increase based on CRA's composting knowledge, but are additionally dependent on the efficacy of the composting practiced. The HOLOS model was used to calculate the methane and nitrous oxide emissions from manure in the baseline. This model is based on IPCC methodology updated with Canadian-specific information; however, the calculations for emissions from manure hold many limitations. Manure emissions due to composting affect backgrounding cattle, and calf-fed and vearling-fed steers and heifers on feedlots. Emissions are calculated for each animal within a certain period, such as a feeding period. Once they leave that feeding period (i.e., backgrounding) the emissions from the manure generated during that period cease emitting. HOLOS is not able to capture those emissions over a longer period of time, which means that it is assumed that the manure is collected after each feeding period and no additional emissions are emitted. It is noted that additional functionality on this subject is being considered as an area of interest for future versions of the HOLOS model.

In order to update the manure emissions in the model, it was assumed that feedlot manure is collected at least on a monthly basis to allow for the materials composted to be adequate for proper composting. For any period of feeding in the model that was longer than 1 month, the emissions were divided between 1 month and the remaining time to assume that the manure only sat on the feedlot for a maximum time of 1 month, and that emissions were only emitted from that entire amount of manure generated during that time period for a total of 1 month. For any feeding period less than 1 month, it was assumed that the manure was collected and composted immediately. There is no methodology to accurately divide emissions generated between different manure management systems, such as solid storage (baseline) and passive windrow composting (BMP). HOLOS provides different methane conversion factors for solid storage of manure and passive windrow composting which decreases the methane emissions from manure by approximately 75 percent. Based on HOLOS, the indirect nitrous oxide

emissions do not change from solid storage to passive windrow composting, but the direct nitrous oxide emissions increase; the nitrous oxide emission factor for passive windrow composting is two times higher than the emission factor for solid storage. This methodology may prove to be an oversimplification of the manure emissions profile; however, there are no other means to quantify changes in emissions.

After further review, CRA was unable to find any other emission factors for manure composting to be used for comparison with the results obtained using the HOLOS model. This data gap is a significant issue as it relates to establishing the actual benefits of composting as it relates to reducing GHG emissions.

In reality, a properly configured and operated composting operation with appropriate amendment should mitigate nitrous oxide and methane emissions. The HOLOS formulation currently prevents this characterization of the composting operation such that nitrous oxide emissions increase during composting; this is likely an overestimation of actual likely conditions. The modeling approach for composting has been one of assuming best management composting practice, which should prevent these emissions.

Refer to Appendix E for the activity maps and data collected to model this BMP.

2.3 <u>BMP 1 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS</u>

The impacts on the four environmental impact categories (GHG, acidification, eutrophication, and non-renewable resources) were modelled for the entire Alberta beef production system to reflect the changes to the model with the implementation of the BMP. The graphs in this section show the total impact of each category from the entire system for the baseline years, and also show the difference in these impacts from the baselines to the implementation of the BMP based on percent adoption of the BMP.

The following graph shows the total GHG emissions versus the percent adoption for all four scenarios.

Table 2.1 illustrates the major components of the model where the changes in GHG emissions are occurring from the 2001 baseline, to the 2010 baseline, to the other four scenarios.

The change in GHG emissions from 2010 to 100 percent adoption (in kg CO_2e/kg shrunk live weight) are shown in Table 2.1 and below:

- BMP 1.1a (windrow turner/on-site clay) 4.5% increase
- BMP 1.1b (windrow turner/off-site clay) 4.6% increase
- BMP 1.2a (existing loader/on-site clay) 4.8% increase
- BMP 1.2b (existing loader/off-site clay) 4.9% increase

Note that construction-related activities are a one-time event, and therefore, these impacts would only be applied to the year of construction and not on an annual basis. All LCA results presented in this report include the impacts of construction activities. Table 2.1 provides the change in overall GHG impact both with and without the effect of the construction activities, for comparison purposes. The construction activities do increase the GHG emissions and the impacts for the other three environmental impact
categories; however, the impacts of the construction activities do not affect the overall conclusions of this report and cannot be excluded.

The main sources of GHG emissions changes occur from the following components:

- Construction activities (excavate clay, transport clay, construct compost pad, manufacture windrow turners, transport windrow turners)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel all for equipment used to turn composting material)
- Feedlot activities (dispose of manure off site, transport wood waste to site for amendment material, produce straw for amendment material, transport straw for amendment material)
- Methane emissions from manure
- Nitrous oxide emissions from manure

All sources of GHG emissions changes are increases in emissions, except for the transportation of manure off site and methane emissions from manure.

For the windrow turner scenarios, the components that contributed to over 95 percent of the changes in GHG emissions were the manufacturing of the windrow turners, the production of straw for amendment material, methane emissions reductions from manure, and the nitrous oxide emission increases from manure.

For the existing equipment scenarios, the components that contributed to over 98 percent of the changes in GHG emissions were all emissions associated with the production and combustion of diesel, the production of straw for amendment material, methane emissions reductions from manure, and the nitrous oxide emission increases from manure.

Although the modeling indicates, based on the methods used in the baseline, that there will be an increase in GHG emissions from the implementation of this BMP, CRA does not believe that this would actually be the case if the composting process was conducted in a reasonable manner. The model formulation and the data sources (IPCC) have forced the results into an increase in GHG emissions. Approximately 20 percent of the total GHG emissions for all four scenarios are contributed by methane and nitrous oxide emissions from manure. With proper composting techniques, it is expected that these emissions would be essentially negligible. However, as stated above in Section 2.2.1, there are currently no other methodologies to estimate the reduction in these emissions.

The following graph shows the total acidification impact versus the percent adoption for all four scenarios. The main elements that resulted in changes to the acidification impact were the construction activities for the windrow turner and clay pad, diesel generation and combustion for turning, and the production and transport of straw for composting amendment material. There is minimal difference between using off-site or on-site clay.

The change in acidification impacts from 2010 to 100 percent adoption (in kg SO_2e/kg shrunk live weight) are shown below:

- BMP 1.1a (windrow turner/on-site clay) 9.6% increase
- BMP 1.1b (windrow turner/off-site clay) 9.7% increase
- BMP 1.2a (existing loader/on-site clay) 8.6% increase
- BMP 1.2b (existing loader/off-site clay) 8.6% increase

The following graph shows the total eutrophication impact versus the percent adoption for all four scenarios. The main elements that resulted in changes to the eutrophication impact were the same as for acidification: construction activities for the windrow turner and clay pad, diesel generation and combustion for turning, and the production and transport of straw for composting amendment material. There is minimal difference between using off-site or on-site clay.

The change in eutrophication impacts from 2010 to 100 percent adoption (in kg PO₄e/kg shrunk live weight) are shown below:

- BMP 1.1a (windrow turner/on-site clay) 18.9% increase
- BMP 1.1b (windrow turner/off-site clay) 18.9% increase
- BMP 1.2a (existing loader/on-site clay) 20.4% increase
- BMP 1.2b (existing loader/off-site clay) 20.4% increase

The following graph shows the total non-renewable resources impact versus the percent adoption for all four scenarios. The main elements that resulted in changes to the non-renewable resources impact were the same as for acidification and eutrophication: construction activities for the windrow turner and clay pad, diesel generation and combustion for turning, and the production and transport of straw for composting amendment material. Windrow turners utilize much less diesel than front-end loaders, causing a significant difference in the impact on non-renewable resources. There is minimal difference between using off-site or on-site clay.

The change in total non-renewable resources impacts from 2010 to 100 percent adoption (in MJ-eq/kg shrunk live weight) are shown below:

- BMP 1.1a (windrow turner/on-site clay) 3.1% increase
- BMP 1.1b (windrow turner/off-site clay) 3.1% increase
- BMP 1.2a (existing loader/on-site clay) 12.0% increase
- BMP 1.2b (existing loader/off-site clay) 12.0% increase

2.4 CBA AND BMP 1 - COMPOSTING OF FEEDLOT MANURE (2010 BASELINE)

BMP 1 (2010 baseline) is based on the assumption that 15 percent of feedlots are composting using on-farm supplied front-end loaders to turn composting material. The first CBA **(CBA 1)** for this BMP is for the feedlot operation based on changes in market value inputs and outputs. The value of any changes in GHG emissions is not accounted for. The benefits to the feedlot operator are less fuel to haul manure off site and a higher value of the manure output when sold as compost at \$6/tonne, or \$40/head of finished beef. As noted above in Section 2.1, the value of compost at \$6/tonne reflects the value

as bulk fertilizer for field application. The total benefits are \$12.9 million, as shown in the upper portion of Table 2.2 below.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Fuel consumed to transport manure off-site for disposal	L	-1,045,037	\$0.75	-\$0.78
Total - Input Cost Savings				-\$0.78
<u> Benefits - Higher Value of Outputs</u>				
Manure sold for land application	kg	-3,762,900,274	\$0.00	\$0.00
Compost sold for land application	tonne	2,148,560	\$6.00	\$12.89
Total - Higher Value of Outputs				\$12.89
<u> Costs - Higher Input Usage</u>				
Fuel/energy required to operate composting equipment	L	11,880,334	\$0.75	\$8.89
Labour to operate equipment	hrs	474,445	\$16.22	\$7.70
Purchased amendment materials (wood waste/wood chips)	kg	77,800,839	\$0.13	\$10.29
Purchased amendment materials (straw)	kg	1,025,615,118	\$0.06	\$59.81
Total - Higher Annual Input Operating Costs				\$86.69
Purchase of composting equipment (Windrow turner)	turners	0	\$175,000	\$0.00
Purchase of clay for composting pad and compaction	m ³	3,374,460	\$28.00	\$94.48
Compaction of clay (source on site)	m ³	0	\$15.00	\$0.00
Transportation costs for clay to site (250 km assumed)	tonne	4,386,798	\$25.00	\$109.67
Total - Higher Capital Input Costs				\$204.15

 Table 2.2: Benefits and Costs of BMP 1 at the Feedlot in 2010 - Market Values

The costs of composting using a front-end loader include higher labour hour requirements (to operate the equipment), fuel usage for the front-end loader, and purchases of amendments (wood waste or chips and straw) to assist in the compost manufacturing process. These incremental costs of composting are \$86.7 million, or \$271/head shipped to the slaughter plant in a year.

There are also capital costs that need to be considered, such as purchase of clay which is required as an impermeable liner for the compost piles. The one-time cost for the 2010 baseline is \$204 million, or \$10 million per year with straight line amortization over the 20 years of useful life.

Before considering associated capital costs, the annual costs of this BMP in 2010 exceed the annual benefits by \$73 million, as shown in Table 2.3. The BCR (benefit cost ratio) is 0.16 reinforcing the view that this BMP is not a financially sound investment when considering only market values.

The NPV (net present value) of annual benefits over 20 years is also shown in Table 2.3 and is calculated to be \$211 million². The NPV of costs is \$1.54 billion, and includes the upfront capital costs. The BCR is 0.14:1 signifying the general conclusion that composting is not a paying proposition for a feedlot operator.

Total Annual Benefits (\$ million)	\$13.67
Total Annual Costs (\$ million)	\$86.69
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$73.02
Ratio of Annual Benefits to Annual Costs	0.16
NPV of benefits (\$ million)	\$210.55
NPV of costs (\$ million)	\$1,539.05
Ratio of NPV of Benefits to NPV of Costs	0.14

 Table 2.3: Benefit Cost Ratio at the Feedlot for BMP 1 in 2010 - Market Values

The second CBA (CBA 2) retains the feedlot operation focus and considers the impact on emissions. This BMP increases GHG emissions as illustrated in Table 2.4. While the BMP reduces methane from the stored manure, the use of equipment and required energy consumption increases, with a net increase in emissions of CO_{2e} of 79,170 tonnes. The value of this increase is estimated to be \$1.6 million, based on carbon equivalents trading at \$20/tonne.

The emissions associated with construction of the facility are 5,900 tonnes CO₂e as indicated in the lower portion of Table 2.4.

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Methane emissions from stored manure	kg CO2e	-9,973,412	\$0.02	-\$0.20
N ₂ O emissions from stored manure (direct)	kg CO2e	33,522,710	\$0.02	\$0.67
Energy generation and consumption activities	kg CO ₂ e	57,361,116	\$0.02	\$1.15
Feedlot activities	kg CO ₂ e	-1,740,899	\$0.02	-\$0.03
Totals - On-going		79,169,515		\$1.58
Construction activities	kg CO ₂ e	5,894,107	\$0.02	\$0.12
Total - One-time	kg CO ₂ e	5,894,107	\$0.02	\$0.12

 Table 2.4: Benefit of Emission Reduction at the Feedlot in 2010 - BMP 1

When valuing the higher emissions, the BCR for annual benefits in relation to annual costs falls to 0.15 as shown in Table 2.5.

2

Based on a 2 percent inflation rate and a 5 percent discount rate.

Total Annual Benefits (\$ million)	\$13.67
Total Annual Costs (\$ million)	\$88.27
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$74.60
Ratio of Annual Benefits to Annual Costs	0.15
NPV of benefits (\$ million)	\$211
NPV of costs (\$ million)	\$1,564
Ratio of NPV of Benefits to NPV of Costs	0.13

Table 2.5: Benefit Cost Ratio at the Feedlot for BMP 1 in 2010

2.5 CBA AND BMP 1.1A - COMPOSTING OF FEEDLOT MANURE WITH WINDROW TURNING AND USING EXISTING ON-SITE CLAY

BMP 1.1a captures change from the 2010 baseline with all feedlots composting manure using windrow turners and having clay on site that can be used as a compost pad. The industry wide benefits include the 12.2 million tonnes of compost sold for an annual value of \$73 million (as shown in Table 2.6), with another \$4.4 million in reduced fuel costs to haul less -manure from the feedlot.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Fuel consumed to transport manure off site for disposal	L	-5,921,879	\$0.75	-\$4.43
Total - Input Cost Savings				-\$4.43
Benefits - Higher Value of Outputs				
Manure sold for land application	kg	-21,323,101,554	\$0.00	\$0.00
Compost sold for land application	tonne	12,175,175	\$6.00	\$73.05
Total - Higher Value of Outputs				\$73.05
<u>Costs - Higher Input Usage</u>				
Fuel/energy required to operate composting equipment	L	5,468,530	\$0.75	\$4.09
Labour to operate equipment	hrs	-92,521	\$16.22	-\$1.50
Purchased amendment materials (wood waste/wood chips)	kg	440,871,424	\$0.13	\$58.32
Purchased amendment materials (straw)	kg	5,811,819,001	\$0.06	\$338.92
Total - Higher Annual Input Operating Costs				\$399.83
Purchase of composting equipment (Windrow turner)	turners	2,055	\$175,000	\$359.69
Purchase of clay for composting pad and compaction	m^3	-3,374,460	\$28.00	-\$94.48
Compaction of clay (source on site)	m ³	13,609,353	\$15.00	\$204.14
Transportation costs for clay to site (250 km assumed)	tonne	-4,386,798	\$25.00	-\$109.67
Total - Higher Capital Input Costs				\$359.67

Table 2.6: Benefits and Costs of BMP 1.1a at the Feedlot – Market Values

The annual costs are predominately the costs associated with amendments (wood waste and straw) to develop the compost material. These costs are \$400 million and as noted in Table 2.7, the annual costs exceed the annual benefits to the feedlot operation by \$322 million, or by \$150/head of finished beef cattle. The main reason for the poor economics is that the cost of the amendments exceeds the value of the compost. The BCR of these annual benefits and costs is well below 1:1, at 0.19:1.

Total Annual Benefits (\$ million)	\$77.48
Total Annual Costs (\$ million)	\$399.83
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$322.35
Ratio of Annual Benefits to Annual Costs	0.19
NPV of benefits (\$ million)	\$1,193.14
NPV of costs (\$ million)	\$6,516.57
Ratio of NPV of Benefits to NPV of Costs	0.18

Table 2.7:	Benefit C	Cost Ratio at th	ne Feedlot fo	r BMP 1.1a ir	n 2010 - Mark	et Values
------------	-----------	------------------	---------------	---------------	---------------	-----------

Once the capital costs are considered and the annual benefits and costs are considered over the 20-year life of the turning equipment, which is valued at \$175,000 per windrow turner, the NPV of the benefits are only 18 percent of the NPV of the costs. Without any other benefit stream, or a lower cost profile, feedlot operators have no financial incentive to compost manure.

Composting is not shown to reduce GHG emissions with annual volumes of CO_2e increasing by 151,680 tonnes, as shown below in Table 2.8. Valued at \$20/tonne, the annual negative net benefits (net costs) of this BMP increases to -\$325 million (refer to Table 2.9). This BMP has a cost of \$153/head of beef cattle shipped to slaughter plants.

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Methane emissions from stored manure	kg CO ₂ e	-56,516,000	\$0.02	-\$1.13
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	189,962,026	\$0.02	\$3.80
Energy generation and consumption activities	kg CO ₂ e	26,403,381	\$0.02	\$0.53
Feedlot activities	kg CO ₂ e	-8,172,135	\$0.02	-\$0.16
Totals - On-going		151,677,271		\$3.03
Construction activities	kg CO ₂ e	252,390,645	\$0.02	\$5.05
Total - One-time	kg CO ₂ e	252,390,645	\$0.02	\$5.05

Table 2.8: Benefit of Emission Reduction at the Feedlot - BMP 1.1a

Factoring in the costs associated, the BCR based on the NPV of costs and benefits remains at 0.18:1.

Total Annual Benefits (\$ million)	\$77.48
Total Annual Costs (\$ million)	\$402.87
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$325.38
Ratio of Annual Benefits to Annual Costs	0.19
NPV of benefits (\$ million)	\$1,193
NPV of costs (\$ million)	\$6,568
Ratio of NPV of Benefits to NPV of Costs	0.18

Table 2.9: Benefit Cost Ratio at the Feedlot for BMP 1.1a - Valuing Emissions

2.6 CBA AND BMP 1.1B - COMPOSTING OF FEEDLOT MANURE WITH WINDROW TURNING AND USING OFF-SITE CLAY

Table 2.10 shows the operating costs and benefits associated with BMP 1.1b, where off-site clay needs to be transported to the feedlot. This substantially increases the one-time costs to \$979 million.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Fuel consumed to transport manure off-site for disposal	L	-5,921,879	\$0.75	-\$4.43
Total - Input Cost Savings				-\$4.43
Benefits - Higher Value of Outputs				
Manure sold for land application	kg	-21,323,101,554	\$0.00	\$0.00
Compost sold for land application	tonne	12,175,175	\$6.00	\$73.05
Total - Higher Value of Outputs				\$73.05
Costs - Higher Input Usage				
Fuel/energy required to operate composting equipment	L	5,468,530	\$0.75	\$4.09
Labour to operate equipment	hrs	-92,521	\$16.22	-\$1.50
Purchase of amendment materials (wood waste/wood chips)	kg	440,871,424	\$0.13	\$58.32
Purchase of amendment materials (straw)	kg	5,811,819,001	\$0.06	\$338.92
Total - Higher Annual Input Operating Costs				\$399.83
Purchase of composting equipment (Windrow turner)	turners	2,055	\$175,000	\$359.69
Purchase of clay for composting pad and compaction	m ³	10,234,893	\$28.00	\$286.58
Compaction of clay (source on-site)	m ³	0	\$15.00	\$0.00
Transportation costs for clay to site (250 km assumed)	tonne	13,305,360	\$25.00	\$332.63
Total - Higher Capital Input Costs				\$978.90

Table 2.10: Benefits and Costs of BMP 1.1b at the Feedlot - Market Values

The associated BCR is shown in Table 2.11. Using NPV computations, the BCR is 0.17 based on costs well exceeding modeled benefits.

Total Annual Benefits (\$ million)	\$77.48
Total Annual Costs (\$ million)	\$399.83
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$322.35
Ratio of Annual Benefits to Annual Costs	0.19
NPV of benefits (\$ million)	\$1,193.14
NPV of costs (\$ million)	\$7,135.80
Ratio of NPV of Benefits to NPV of Costs	0.17

 Table 2.11: Benefit Cost Ratio at the Feedlot for BMP 1.1b in 2010 - Market Values

2.7 CBA AND BMP 1.2A - COMPOSTING OF FEEDLOT MANURE WITH EXISTING EQUIPMENT AND USING EXISTING ON-SITE CLAY

BMP 1.2a is based on the assumption that existing front-end loaders on the farm can be used to turn the windrows and there is sufficient clay on site to create the necessary base for the compost area. This results in lower capital costs (\$133 million in Table 2.12 compared to the capital costs with BMP 1.1 a of \$360 million – in Table 2.6).

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
<u> Benefits - Input Cost Savings</u>				
Fuel consumed to transport manure off-site for disposal	L	-5,921,879	\$0.75	-\$4.43
Total - Input Cost Savings				-\$4.43
<u> Benefits - Higher Value of Outputs</u>				
Manure sold for land application	kg	-21,323,101,554	\$0.00	\$0.00
Compost sold for land application	tonne	12,175,175	\$6.00	\$73.05
Total - Higher Value of Outputs				\$73.05
<u> Costs - Higher Input Usage</u>				
Fuel/energy required to operate composting equipment	L	67,321,893	\$0.75	\$50.39
Labour to operate equipment	hrs	2,688,520	\$16.22	\$43.61
Purchase of amendment materials (wood waste/wood chips)	kg	440,871,424	\$0.13	\$58.32
Purchase of amendment materials (straw)	kg	5,811,819,001	\$0.06	\$338.92
Total - Higher Annual Input Operating Costs				\$491.24
Purchase of composting equipment (Windrow turner)	turners	0	\$175,000	\$0.00
Purchase of clay for composting pad and compaction	m ³	-3,374,460	\$28.00	-\$94.48
Compaction of clay (source on-site)	m ³	22,495,500	\$15.00	\$337.43
Transportation costs for clay to site (250 km assumed)	tonne	-4,386,798	\$25.00	-\$109.67
Total - Higher Capital Input Costs				\$133.28

Table 2.12: Benefits and Costs of BMP 1.2a at the Feedlot – Market Values

With 100 percent adoption, the annual operating costs exceed annual benefits by \$413 million, or by a factor of at least 6. As reported in Table 2.13, the BCR is 0.16 when considering only annual costs and benefits, or comparing the NPV of benefits and costs.

Total Annual Benefits (\$ million)	\$77.48
Total Annual Costs (\$ million)	\$491.24
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$413.76
Ratio of Annual Benefits to Annual Costs	0.16
NPV of benefits (\$ million)	\$1,193.14
NPV of costs (\$ million)	\$7,697.70
Ratio of NPV of Benefits to NPV of Costs	0.16

 Table 2.13:
 Benefit Cost Ratio at the Feedlot for BMP 1.2a in 2010 - Market Values

2.8 CBA AND BMP 1.2B - COMPOSTING OF FEEDLOT MANURE WITH EXISTING EQUIPMENT AND USING OFF-SITE CLAY

In BMP 1.2b, when off-site clay is used, with existing equipment, the one-time costs increase to over \$1.1 billion for all feedlots. This is shown in Table 2.14. Annual operating costs are comparable to BMP 1.2a.

Items	Units	Volume Change	Unit Price	Total Impact
Provide Local Cost Cost and			(s/unit)	(\$ million)
Benerits - Input Cost Savings				
Fuel consumed to transport manure off-site for disposal	L	-5,921,879	\$0.75	-\$4.43
Total - Input Cost Savings				-\$4.43
<u> Benefits - Higher Value of Outputs</u>				
Manure sold for land application	kg	-21,323,101,554	\$0.00	\$0.00
Compost sold for land application	tonne	12,175,175	\$6.00	\$73.05
Total - Higher Value of Outputs				\$73.05
<u> Costs - Higher Input Usage</u>				
Fuel/energy required to operate composting equipment	L	67,321,893	\$0.75	\$50.39
Labour to operate equipment	hrs	2,688,520	\$16.22	\$43.61
Purchase of amendment materials (wood waste/wood chips)	kg	440,871,424	\$0.13	\$58.32
Purchase of amendment materials (straw)	kg	5,811,819,001	\$0.06	\$338.92
Total - Higher Annual Input Operating Costs				\$491.24
Purchase of composting equipment (Windrow turner)	turners	0	\$175,000	\$0.00
Purchase of clay for composting pad and compaction	m ³	19,121,040	\$28.00	\$535.39
Compaction of clay (source on-site)	m ³	0	\$15.00	\$0.00
Transportation costs for clay to site (250 km assumed)	tonne	24,857,352	\$25.00	\$621.43
Total - Higher Capital Input Costs				\$1,156.82

Table 2.14: Benefits and Costs of BMP 1.2b at the Feedlot - Market Values

The amount of clay used in BMP 1.2b is much greater than the amount used in BMP 1.1b due to the larger composting area required to turn the compost material with a front-end loader compared to a windrow turner, which is more efficient at turning the material in a smaller area.

The net result is that compared to BMP 1.2a, the BCR based on NPV computation is even lower at 0.14:1 (Table 2.15).

Total Annual Benefits (\$ million)	\$77.48
Total Annual Costs (\$ million)	\$491.24
Net Annual Benefits [Benefits - Costs] (\$ million)	<mark>-\$413.76</mark>
Ratio of Annual Benefits to Annual Costs	0.16
NPV of benefits (\$ million)	\$1,193.14
NPV of costs (\$ million)	\$8,721.25
Ratio of NPV of Benefits to NPV of Costs	0.14

 Table 2.15:
 Benefit Cost Ratio at the Feedlot for BMP 1.2b in 2010 - Market Values

The costs associated with these BMP variations have comparable results, with the associated BMP costs well exceeding the benefits by a factor of at least six. This BMP, as modeled should not be pursued for two reasons: (1) the annual operating costs exceed annual benefits, and (2) the BMP works against the objective of reducing GHG emissions into the environment. Please refer to Section 2.3 for the overall change in GHG emissions and the impact on total $CO_{2}e$ emissions per kg of beef for the other three scenarios.

3.0 CBA OF BMP 2 -INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING

The intent of the BMP related to increasing efficiency in cow/calf feeding within the beef production system in Alberta to improve the cow/calf economics based on lower feed expenses while preventing over-grazing and associated pasture degradation and protection of riparian areas and surface water bodies.

With respect to the reduction of the GHG emissions related to the cow/calf feeding practices, the key agricultural management practices included in this BMP are:

- Conversion of cropland to pasture for additional grazing
- Winter grazing management

Conversion of Cropland to Pasture

Converting annual cropland to pasture decreases net GHG emissions by sequestering more carbon. Perennial grasses sequester more carbon than annual crops because of their fibrous root system. Perennial grasses also store more soil carbon than perennial legumes (Tyrchniewicz Consulting, 2006).

Winter Grazing Management

The management of winter grazing on Canadian farms involves the management of pasture land along with the control of livestock access to the pasture land. Beneficial management practices allow for a sustainable increase in pasture forage production, higher stocking rates per unit of pasture land, improved livestock weight gain, controlled access of livestock to riparian areas and, eventually, greater financial returns to the farmer (Statistics Canada, 2005). While providing cattle with quality forage, grazing management also offers a significant potential to reduce GHG emissions by the sequestration of carbon from the atmosphere.

The main strategies of winter grazing management are presented below. These practices are currently applied to various extents by different producers in Alberta, while the research stage for the most beneficial management practices are still being developed (Tyrchniewicz Consulting, 2006):

• Forage mix for improved pasture: a diversity of native plant species, especially deep-rooted and productive forms, vigorous healthy plants with well-developed

root systems, adequate vegetative cover to protect soils from erosion and to conserve scarce moisture (Alberta Government, 2005)

- Fertilization of pasture
- Stocking rates
- Balancing livestock demands with the available forage supply; the rancher leaves adequate ungrazed residue to protect plants and soil
- Promoting even livestock distribution by using tools like fencing, salt placement and water development to spread the grazing "load" over the landscape

3.1 DESCRIPTION OF BMP 2 – INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING

The operating assumptions for BMP 2, increased efficiency in cow/calf feeding and grazing, include:

- Fewer kilograms of alfalfa/grass hay are required, resulting from total or partial replacement of the baseline winter diet for a period of either 30 or 90 days with stockpile and swath grazing, respectively
- All feed consumed by the cow/calf operation for winter feeding is purchased versus being -produced on the cow/calf operation
- The amount of labour required for winter feeding decreases due to the changes in management practices
- The number of cattle produced for slaughter does not change, despite animals being on modified feeding patterns, with the winter alfalfa/grass hay diet being replaced totally (swath grazing) or partially (stockpile grazing) by extended grazing on pasture
- Capital expenditures associated with this BMP are related to the grazing management strategies and consist of fencing for directional grazing and windbreakers for sheltering

In Phase 1 of the Beef LCA project, alfalfa/grass hay was the only feed produced for winter feed in the cow/calf sector. This crop, as defined in the baseline, had specific nutrient requirements and received a proportion of the manure from feedlot operations as soil amendment, and therefore had a certain fertilizer requirement based upon the nutritional needs of the crop and the nutrients available from the applied manure. Under BMP 2, both the crops produced for winter feed as well as the proportion of

manure used as soil amendment have changed, altering the balance of crop nutrient requirements and nutrients available from manure identified in the baseline.

In BMP 2, alfalfa is no longer included in winter feed production for the cow/calf sector, a change by itself that alters the amount of fertilizer which must be applied and therefore produced. Additionally, it is assumed that no manure from feedlots is applied to crops grown for swath or stockpile grazing. Instead it is assumed that the only manure applied to those crops is directly deposited by cattle while grazing, changing the characteristics of the manure through differing diets as well as the manner of application and incorporation.

Consequently, implementation of BMP 2 changes the fertilizer requirements of crops throughout the entire beef industry in that a larger proportion of feedlot manure is available for use on the remaining alfalfa/grass hay as well as feed crops produced for the feedlot sector, thereby reducing the amount of fertilizers that must be consumed for the production of those crops, while a completely different balance of nutrient requirement vs. manure/fertilizer application occurs in the cow/calf sector.

The two options considered in the implementation of BMP 2 are:

- BMP 2.1: Extended Grazing on Winter Pasture -Swath Grazing
- BMP 2.2: Extended Grazing on Winter Pasture Stockpile Grazing

BMP 2.1: Swath Grazing

Swath grazing is a management practice used to extend the grazing season through winter, while reducing feed and labour costs for cattle producers. Annual cereals are seeded in mid-May to early June and swathed from late August to mid-September when the crop reaches the soft to late dough stage and before killing frosts. The swaths are left in the field for the cattle to graze during the winter (Agri-Facts, October 2004).

The rations presented in the first phase of the modeling exercise (CRA, 2010) - were adjusted based on replacement of winter feed with extended grazing.

The structure of the swath grazing model is based on:

- Selection of crops (Agri-Facts, September 2008):
 - Cereal/Annual crops: breakdown of crops by region, respectively: Dry Prairie (DP), Parkland (P) and Northern Region (NR)
- Swath grazing management (Agri-Facts, October 2004; Agri-Facts, September 2008).

Selected crops:

- Cereal (annual)
 - Dry Prairie: oats and triticale
 - Parkland: oats and triticale
 - Northern Region: oats and triticale

BMP 2.2: Stockpile Grazing

Stockpiling pasture is a form of deferred grazing. The forage grown during the spring and summer is used when other pasture is in short supply or when cattle need fall or winter feed. By stockpiling pasture, harvesting, hauling and feeding costs associated with alfalfa/grass hay are eliminated.

The structure of the stockpile grazing model is based on:

- Selection of crops (Agri-Facts, October 2008):
 - Perennial: Dry Prairie, Parkland, Northern Regions
- Stockpile grazing management (Agri-Facts, October 2008)

Selected crops:

- Dry Prairie: grass, mixture of meadow brome, Russian wild rye and pubescent wheatgrass
- Parkland: grass, meadow brome
- Northern Region: grass, meadow brome

The direct impacts of BMP 2 implementation in the cow/calf sector include:

Outputs (same for both BMP 2.1 – Swath grazing and BMP 2.2 – Stockpile grazing):

- No change in annual volume of finished cattle supplied to slaughter plants
- Modified emissions from manure
- Modified soil N₂O emissions from cropping and land use
- Modified P₂O₅ runoff from cultivation activities
- Modified soil carbon change

Inputs (same for both BMP 2.1 – Swath grazing and BMP 2.2 – Stockpile grazing):

- Less alfalfa/grass hay for winter feed (removing days of baseline winter diet, replaced by the swath grazing and stockpile grazing periods)
- New grass and cereal crops for extended grazing through winter
- Modified amount of cereal/grass seed
- Modified amount of fertilizer needed (chemical and soil amendment)
- Modified amount of pesticide needed
- Energy Generation Activities
 - Change in gasoline, diesel, and electricity used based on extended grazing
- Forage Activities (new crops)
 - Modified fuel consumption for cultivating soil, applying fertilizer, planting crop, irrigating crop, applying chemical treatment
 - No transportation of harvested crop
 - Modified soil N₂O emissions from cropping and land use
 - $\quad Modified \ P_2O_5 \ runoff \ from \ cultivating$
 - Modified soil carbon change
- Pasture Activities
 - No garbage to dispose of on site
 - Decrease of fuel consumption to produce bedding, transport bedding and bedding livestock
 - Less plastics to be produced (if additional feed is required to the winter grazing bales of hay)

Figure 3.1 is provided to show the boundary associated with the cow/calf sector. It indicates that all pasture is provided by the operation, with hay purchased from other sources. The assumptions made were that existing pasture land will be managed more intensely to generate the necessary feed to have an extended grazing season, before outside hay is purchased for feeding through the remainder of the winter period.

In addition to the above direct impacts, there are indirect impacts based on linkages. This would include the lower emissions associated with less hay production purchased from third parties, as well as (possibly) higher emissions based on larger deliveries to the cow/calf operation (i.e., fertilizer, seeds, etc.).

3.2 <u>BMP 2 - MODELLING LCA AND IMPACT</u>

The LCA of BMP 2 follows the structure of the model used during the first phase of the project (CRA, 2010). Additional information is represented by:

- Data collection:
 - Type of crops (species) selected
 - Yield for each of the selected crops
 - Number of cattle allocated to each region (Dry Prairie, Parkland and Northern Region) and type of crops (annual, perennial)
 - Number of days on swath/stockpile grazing
 - Necessary logistics for the grazing management (fencing, windbreakers)
- Calculations:
 - the area cultivated to meet the needs of the swath/stockpile grazing
 - the logistics used for the management of extended grazing during the winter (fencing, sheltering etc).

Based on the implementation of BMP 2, new crops are added to the initial model, while the alfalfa-grass hay needs are adjusted. Calculations of changes in feed, cropping needs, cropping practices, and biological activity of the cattle followed by calculations of overall emissions are carried through by the basic structure of the initial model.

A crucial step in the current modeling exercise is to determine the area allocated to each of the selected crops for extended grazing. Currently, the extended grazing practice in Alberta is encompassed within a significant range of flexible 300+ day grazing systems on cow/calf operations. Winter grazing as practiced by different cow/calf operators is optimized, with a high degree of flexible management, to accommodate their personal beef business (ARECA, 2006). Data collection efforts did not reveal referenced sources indicating the area of land currently involved in swath/stockpile grazing in Alberta.

This significant data gap was addressed by the most conservative and basic assumption, 100 percent implementation of BMP 2, as described below:

- Swath grazing: 90 days of winter diet from the baseline model, from beginning of December to the end of February, and based entirely on alfalfa-grass hay, are replaced by swath grazing for all cattle in the model.
- Stockpile grazing: 90 days of winter diet from the baseline model, from beginning of December to the end of February, based entirely on alfalfa-grass hay, are reduced by stockpile grazing for all cattle for 30 days during the month of December.

Several observations presented below highlight the versatility of the model to accommodate further changes of the extended grazing practices and/or availability of new data:

- The 100 percent implementation of the BMP can be revised by adjusting the number of cattle on extended grazing.
- Periods on extended grazing can be revised. The current selection of the swath/stockpile grazing periods is based on review of available sources (ARECA, 2006) and a certain degree of generalization.
- Selection of the crops can be revised, in order to accommodate new data sources or revised extended grazing practices.
- Calculation strategy:
 - Summarize the crops for swath/stockpile grazing according to the current practice in Alberta, as described by ARD documents (Agri-Facts, October 2004; Agri-Facts, September 2008, ARECA, 2006). In order to support the functionality of the model, a certain degree of generalization in crop selection was assumed.
 - Estimate the yield for each selected crop. The yield of a crop is regarded as a function of:
 - Regional area: Dry Prairie, Parkland, Northern Regions
 - Crop characteristics
 - Determine the number of cattle on each crop. A first breakdown of cattle numbers by regions, respectively Dry Prairie, Parkland and Northern Region, was performed based on the information available from Statistics Canada (2001 census data). A further breakdown of cattle numbers in each geographic area by crop, was structured to allow customized inputs, based on availability of appropriate data.
 - Allocate the number of days on pasture (ARECA, 2006).
 - Based on the stocking rate of a grazing system (Pratt and Rasmussen, 2001), calculate the swath/stockpile grazing allocated areas. Calculation of the swath/stockpile grazing area takes into account the following factors: crop characteristics (including yield as dry matter), number of cows/bulls on the pasture, available forage coefficient, weight of cows/bulls, food coefficient intake, animal unit (AU) equivalents and days on pasture. Since the baseline winter diet is replaced by extended grazing for all the cattle on cow/calf operations in the baseline model, the total area allocated for swath/stockpile grazing represents the most conservative assumption.

Several more assumptions were made at this stage:

- Available forage coefficient: assigned as 80 percent. This coefficient was treated as a wastage coefficient with a 20 percent loss of available feed (due to use as bedding, wind losses, wildlife consumption, excessive snow cover, etc.) on a dry matter basis (ARECA, 2006).
- The body weight of the cattle was assigned to be consistent with the ration formulations used during the Phase 1. The rations were calculated based on a one animal unit (AU) animal, which converts to a body weight of 1,000 lbs (454 kg) which was assumed to be typical for cows. Bulls were assumed to be 1.2 AU or 1,200 lbs (544 kg).
- The food intake coefficient was assigned as 0.75.
- Compare the calculated number of swath/stockpile grazing areas to the available pasture land statistics (Statistics Canada, 2001) and adjust the model to implement the best swath/stockpile grazing strategy
- Allocate the cereal/grass crop activities (current LCA model) to the calculated crop areas
- Allocate the cow/calf operations (current LCA model) to the corresponding number of cattle
- Calculate emissions related to the implementation of the BMP

ARD was very helpful in providing data to model this BMP. All data collected for this BMP was compiled and evaluated to ensure that the most appropriate data was utilized to obtain the most accurate results for conditions in Alberta.

3.3 <u>BMP 2 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS</u>

The impacts on the four environmental impact categories (GHG, acidification, eutrophication, and non-renewable resources) were modelled for the entire Alberta beef production system to reflect the changes to the model with the implementation of BMP 2, extended grazing, respectively BMP 2.1 Swath grazing and BMP 2.2 Stockpile grazing. The graphs in this section show the total environmental impact by category for the entire production system in the baseline year (2001), and also show the change from the baseline based on 100 percent adoption of the BMP.

GHG Emissions

The sources of GHG emissions changes are generated by the replacement of cattle days on alfalfa/grass hay - with cattle days on swath/stockpile grazing. The following emission components for BMP 2.1 and BMP 2.2 are modified:

- Forage and cereal sub-activities, forage activities and pasture activities. The activities related to the alfalfa/grass hay from the baseline are replaced by activities related to the new crops for swath/stockpile grazing.
- Energy generation and usage activities (reduction in GHG emissions from producing crude, transporting crude, refining crude into diesel, transporting diesel, combusting diesel reduction in diesel to feed cattle).
- Soil carbon change from changes in land use.
- Carbon dioxide from managed soils.
- N₂O emissions from soil and cropping.

The change in GHG emissions from 2010 to 100 percent adoption (in kg CO_2e/kg shrunk live weight) are as follows:

- BMP 2.1 swath grazing 1.0% reduction
- BMP 2.2 stockpile grazing 4.2% increase

Swath grazing

All the graphs pertaining to BMP 2.1 Swath grazing are based on cattle being allocated to swath grazing.

Figure 3.2a: BMP 2.1 Swath grazing – GHG Emissions and Percent Adoption

Figure 3.2a shows the total GHG emissions versus the percent adoption of BMP 2.1 for swath grazing. Examination of Figure 3.2a shows a net environmental benefit in terms of the GHG emissions with the implementation of BMP 2.1.

The change in GHG emissions from the 100 percent adoption (in kg CO_{2e} /kg shrunk live weight) are shown in Table 3.1.1 and below.

Note that swath grazing construction-related activities are a one-time event, and therefore, these impacts would only been applied to the year of construction and not on an annual basis.

The main sources of GHG emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)

- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic)
- Soil carbon change from land use
- Direct CO₂ emissions from managed soils
- N₂O emissions from soil and cropping

The sources of GHG emissions changes are as follows:

- Increases: Forage and cereal sub-activities, Soil carbon change from land use, N_2O emissions from soil and cropping
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities, Direct CO₂ emissions from managed soils

Stockpile grazing

All the graphs pertaining to BMP 2.2 Stockpile Grazing are based on the cattle being allocated to extended grazing. In comparison to the swath grazing model, where the entire amount of alfalfa/grass hay used to feed the cattle during the baseline winter diet was replaced by extended grazing for 90 days, in the stockpile grazing model only the initial 30 days of the baseline winter diet are being replaced by extended grazing, while the remaining 60 days are the baseline winter diet.

Figure 3.2b: BMP 2.2 Stockpile Grazing – GHG Emissions and Percent Adoption

Figure 3.2b shows the total GHG emissions versus the percent adoption of BMP 2.2 for stockpile grazing. Examination of Figure 3.2b shows an increase in GHG emissions with the percent adoption of BMP 2.2.

Stockpile grazing construction-related activities are a one-time event, and therefore, these impacts would only been applied to the year of construction and not on an annual basis.

The change in GHG emissions from the 100 percent adoption (in kg CO_{2e} /kg shrunk live weight) are shown in Table 3.1.2 and discussed below.

The main sources of GHG emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)

- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic)
- Soil carbon change from land use
- Direct CO₂ emissions from managed soils
- N₂O emissions from soil and cropping

The sources of GHG emissions changes are as follows:

- Increases: Forage and cereal sub-activities, Soil carbon change from land use, Direct CO₂ emissions from managed soils, N₂O emissions from soil and cropping
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities

Acidification Emissions

The sources of acidification changes are generated by the replacement of cattle days on alfalfa/grass hay with cattle days on swath/stockpile grazing.

The change in acidification impacts from 2010 to 100 percent adoption (in kg SO_2e/kg shrunk live weight) are as follows:

- BMP 2.1 swath grazing 2.4% reduction
- BMP 2.2 stockpile grazing 7.6% increase

Swath grazing

Figure 3.3a: BMP 2.1 Swath Grazing – Acidification and Percent Adoption

Figure 3.3a shows the acidification impact versus percent adoption of BMP 2.1, swath grazing. Examination of Figure 3.3a shows a net environmental benefit in terms of the acidification impact with the implementation of BMP 2.1.

The main sources of acidification emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)
- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic)

All the sources of acidification emissions changes represent decreases compared to the 2001 baseline model.

Stockpile grazing

Figure 3.3b: BMP 2.2 Stockpile Grazing – Acidification and Percent Adoption

Figure 3.3b shows the acidification impact versus percent adoption of BMP 2.2, stockpile grazing. Examination of Figure 3.3b shows an increase in acidification emissions with the implementation of BMP 2.2.

The main sources of acidification emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)

• Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic

The sources of acidification emissions changes are as follows:

- Increases: Forage and cereal sub-activities
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities

Eutrophication Emissions

The sources of eutrophication changes are generated by the replacement of cattle days on alfalfa/grass hay with cattle days on swath/stockpile grazing.

The change in eutrophication impacts from 2010 to 100 percent adoption (in kg PO_4e/kg shrunk live weight) are as follows:

- BMP 2.1 swath grazing 1.8% increase
- BMP 2.2 stockpile grazing 9.2% increase

Swath grazing

Figure 3.4a: BMP 2.1 Swath Grazing – Eutrophication and Percent Adoption

Figure 3.4a shows the eutrophication impact versus percent adoption of BMP 2.1, swath grazing. The higher emissions are due to the cattle grazing on cereal crops, which are intensive in fertilizer consumption and, consequently, generate a more significant eutrophication effect. However, as observed from the graph, the increase of the eutrophication emissions as described by a linear trend does not represent a significant increase of emissions from the baseline model.

The main sources of eutrophication emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)

- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic
- Total phosphorus (P) emissions from run-off

The sources of eutrophication emissions changes are as follows:

- Increases: Forage and cereal sub-activities, Total P emissions from run-off
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities

Stockpile grazing

Figure 3.4b: BMP 2.2 Stockpile Grazing – Eutrophication and Percent Adoption

Examination of Figure 3.4b shows an increase in eutrophication impact with the implementation of BMP 2.2.

The main sources of eutrophication emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)
- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic
- Total P emissions from run-off

The sources of eutrophication emissions changes are as follows:

- Increases: Forage and cereal sub-activities, Total P emissions from run-off
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities

Non-Renewable Resources

The sources of non-renewable resources changes are generated by the replacement of cattle days on alfalfa/grass hay with cattle days on swath/stockpile grazing.

The change in total non-renewable resources impacts from 2010 to 100 percent adoption (in MJ-eq/kg shrunk live weight) are as follows:

- BMP 2.1 swath grazing 7.6% reduction
- BMP 2.2 stockpile grazing 0.3% reduction

Swath grazing

Figure 3.5a: BMP 2.1 Swath Grazing - Non-Renewable Resources and Percent Adoption

Figure 3.5a shows the non-renewable resources impact versus percent adoption of BMP 2.1, swath grazing. Examination of Figure 3.5a shows an environmental benefit in terms of the non-renewable resources impact. The changes to the energy generation activities are mainly related to the reduction in diesel used to feed cattle, due to the replacement of alfalfa/grass hay with extended grazing.

The main sources of non-renewable resources emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)
- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)
- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic

All the non-renewable resources emissions changes represent decreases compared to the 2001 baseline.

Stockpile grazing

Figure 3.5b: BMP 2.2 Stockpile Grazing - Non-Renewable Resources and Percent Adoption

Figure 3.5b shows the non-renewable resources impact versus percent adoption of BMP 2.2, stockpile grazing. Examination of Figure 3.5b shows an environmental benefit in terms of the non-renewable resources impact. The changes to the energy generation activities are mainly related to the reduction in diesel used to feed cattle, due to the replacement of alfalfa/grass hay with extended grazing.

The main sources of non-renewable resources emissions changes occur from the following components:

- Forage and cereal sub-activities (produce seed, process seed, produce and transport fertilizer, produce and transport pesticide/herbicide)
- Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel)

- Forage activities (cultivate soil, apply fertilizer, plant crop, irrigate crop, apply chemical and mechanical treatment, harvest crop and transport harvested crop)
- Feedlot and Pasture activities (producing bedding material, feed livestock, production of plastic

The sources of non-renewable resources emissions changes are as follows:

- Increases: Forage and cereal sub-activities
- Decreases: Energy generation activities, Forage activities, Feedlot and pasture activities

3.4 <u>CBA AND BMP 2.1 - SWATH GRAZING</u>

BMP 2.1 extends the grazing season for the cattle on cow/calf operations through the use of swath grazing. The baseline has 2,568,007 cows and bulls. Swath grazing of cereal crops extends the grazing season by 3 months, which significantly reduces the volume of alfalfa/grass hay that needs to be purchased (by the cow/calf sector).

The first CBA **(CBA 1)** for this BMP is for cow/calf operations based on changes in the market value of inputs used. These benefits and costs are provided in Tables 3.2 and 3.4 (The value of any changes in GHG emissions is accounted for in a following section). As shown in Table 3.2, the benefits through reduced input usage is \$479 million, or approximately \$187 per head. The major savings is reduced expenditures on alfalfa/grass hay, followed by lower fuel costs for feeding and transporting bedding.

Items	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
Benefits - Input Cost Savings				
Purchased alfalfa/grass hay	kg	-2,839,032,231	\$0.14	-\$389.43
Fuel consumed to collect manure - winter feeding	L	0	\$0.75	\$0.00
Production of bedding	kg	-100,131,666	\$0.03	-\$2.67
Fuel consumed to transport bedding	L	-71,053,883	\$0.75	-\$53.29
Fuel consumed to feed livestock	L	-44,640,145	\$0.75	-\$33.48
Labour (change)	hr	-12,840	\$16.62	-\$0.21
Total - Input Cost Savings				-\$479.09
Costs - Higher Input Usage		•		-
Purchase of seed for alfalfa/grass	kg	-882,113	\$1.21	-\$1.07
Purchase of seed for oats	kg	33,517,641	\$0.26	\$8.71
Purchase of seed for triticale	kg	25,088,879	\$1.23	\$30.97
Purchase of chemical fertilizer				
Urea, as N	kg	820,506	\$0.45	\$0.37
Ammonia, liquid	kg	642,847	\$0.88	\$0.57
Monoammonium phosphate, as P ₂ O ₅	kg	0	\$0.62	\$0.00
Monoammonium phosphate, as N	kg	0	\$0.62	\$0.00
Ammonium sulphate, as N	kg	2,870,815	\$0.44	\$1.25
Fuel consumed to transport fertilizer	L	60,529	\$0.75	\$0.05
Fuel consumed to transport manure	L	2,000,740	\$0.75	\$1.50
Purchase of pesticide/herbicide	kg	382,775	\$88.74	\$33.97
Fuel consumed to transport pesticide	L	689	\$0.75	\$0.00
Fuel consumed for forage activities				
Fuel consumed to cultivate soil	L	3,690,386	\$0.75	\$2.77
Fuel consumed to apply fertilizer	L	1,269,703	\$0.75	\$0.95
Fuel consumed to plant crop	L	1,875,956	\$0.75	\$1.41
Fuel consumed to irrigate crop	L	98,780	\$0.75	\$0.07
Fuel consumed to apply chemicals to crop	L	415,724	\$0.75	\$0.31
Fuel consumed to harvest crop	L	2,611,269	\$0.75	\$1.96
Purchase of water to irrigate crop	m ³	13,876,276	\$1.22	\$16.88
Cropping costs (annual)	ha	459,895	\$294	\$135.12
Total - Annual Operating Costs				\$235.8

Table 3.2: Benefits and Annual Costs of BMP 2.1 for Cow/Calf Operations - Market Value

The change in annual operating costs is \$235.8 million, consisting of mostly cropping costs such as the annual machinery costs associated with various field operations (e.g., applying fertilizer, swathing) and other cropping inputs such as pesticides, seed fertilizer, and water (and some fuel).

Comparing these annual costs to annual benefits generates an annual net benefit of \$243.3 million, and a benefit cost ratio associated with annual benefits and costs of 2.0:1, which indicates this (swath grazing) version of the extended grazing BMP is a paying proposition, as reported in Table 3.3.
Total Annual Benefits (\$ million)	\$479.09
Total Annual Costs (\$ million)	\$235.78
Net Annual Benefits [Benefits - Costs] (\$ million)	\$243.31
Ratio of Annual Benefits to Annual Costs	2.03
NPV of benefits (\$ million	\$7,377.34
NPV of costs (\$ million	\$3,801.81
Ratio of NPV of Benefits to NPV of Costs	1.94

 Table 3.3: Benefit Cost Ratio for BMP 2.1 - Market Values

This BMP has associated capital costs, as provided in Table 3.4. Capital costs are incurred for fencing materials, which are \$98 million for the sector, or \$38 per head. The NPV3 of all costs are \$3.8 billion over the 20-year period, with the assumption made that the fencing materials are replaced every 10 years. The NPV of the benefits to the cow/calf operations is \$7.4 billion indicating a BCR (ratio of NPV of benefits to NPV of costs) of 1.9:1 (see Table 3.3 above). This suggests that there is a built-in financial incentive for the cow/calf operators to invest in this BMP.

Items	Units	Volume Change	Unit Price	Total Impact
Capital Costs - Fencing elements	· · ·		(4) unit)	
Charger (energizer)	unit	25,680	\$799.00	\$20.52
High tensile wire - 14 gauge	m	41,328,066	\$0.06	\$2.58
Connectors - wire tensioners	unit	77,040	\$4.50	\$0.35
Grounding rod	unit	128,400	\$62.34	\$8.00
Insulators	unit	128,400	\$0.39	\$0.05
Posts - wood	unit	6,545,647	\$6.69	\$43.79
Posts fibreglass	unit	1,377,602	\$3.59	\$4.95
Voltage meter	unit	12,840	\$148.99	\$1.91
Barbed wire	m	97,414,308	\$0.16	\$15.34
Windbreakers	feet	75,895	\$5.00	\$0.38
Total - Fencing costs				\$97.87

Table 3.4: Capital Costs of BMP 2.1 for Cow/Calf Operations - Market Value

The second CBA (CBA 2) retains the cow/calf operation focus and considers the impact on annual emissions that are directly associated with activities on cow/calf operation. Cropping activities on the cow/calf operations to create the swath grazing increases CO_2e emissions by 212,132 tonnes as shown in Table 3.5. In some activities there is a reduction in CO_2e emissions, such as energy generation and consumption and soil carbon. This increase in emissions is valued at \$4.2 million per annum.

³

The per unit price associated with costs and benefits are assumed to increase by 2 percent per annum, and a discount rate of 5 percent is used for computing the NPVs.

Reduction in Cow/Calf Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
Methane emissions from stored manure	kg CO2e	0	\$0.02	\$0.00
Enteric fermentation emissions	kg CO ₂ e	0	\$0.02	\$0.00
N ₂ O emissions from stored manure (direct)	kg CO2e	0	\$0.02	\$0.00
N ₂ O emissions from stored manure (indirect)	kg CO2e	0	\$0.02	\$0.00
N ₂ O emissions from cropping and land use	kg N ₂ O	147,534,866	\$0.02	\$2.95
Total P emissions from run-off	kg P	628,103		\$0.00
Soil carbon change in soil from land use	kg CO2e	-38,986,494-	\$0.02	-\$0.78
Direct CO ₂ emissions from managed soils	kg CO2e	1,289,067	\$0.02	\$0.03
Forage and cereal sub-activities	kg CO2e	224,359,952	\$0.02	\$4.49
Energy generation and consumption activities	kg CO2e	-215,533,375-	\$0.02	-\$4.31
Forage activities	kg CO2e	54,784,881	\$0.02	\$1.10
Pasture activities	kg CO2e	38,683,401-	\$0.02	\$0.77
Totals	kg CO ₂ e	212,505,737	\$0.02	\$4.24

Table 3.5: Change in Emissions at Cow/Calf Operations - BMP 2.1

If cow/calf operations had to pay for these emissions at 20/tonne of CO₂e, the annual cost increases to 240 million and the BCR decreases slightly to 2.0:1 as shown in the top portion of Table 3.6.

Similarly, the BCR based on the NPV computations decreases slightly to 1.9:1 as shown in Table 3.6 (in relation to not considering the cost of higher GHG emissions).

Total Annual Benefits (\$ million)	\$479.09
Total Annual Costs (\$ million)	\$240.02
Net Annual Benefits [Benefits - Costs] (\$ million)	\$239.07
Ratio of Annual Benefits to Annual Costs	2.00
NPV of benefits (\$ million)	\$7,377.34
NPV of costs (\$ million)	\$3,867.14
Ratio of NPV of Benefits to NPV of Costs	1.91

Table 3.6: Benefit Cost Ratio at Cow/Calf Operations for BMP 2.1

The modeled changes in emissions that occur elsewhere, such as those associated with changes in purchased hay requirements are illustrated in Table 3.7. The CO₂e emissions decrease by 444,683 tonnes per annum for an additional annual benefit of \$8.9 million to society.

Reduction in other Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Forage and cereal sub-activities	kg CO ₂ e	-177,599,587	\$0.02	-\$3.55
Forage activities	kg CO ₂ e	-74,504,725	\$0.02	-\$1.49
$ m N_2O$ emissions from cropping and land use	kg CO ₂ e	-141,064,378	\$0.02	-\$2.82
Total P emissions from run-off	kg PO ₄ -eq	-443,252	-	\$0.00
Soil carbon change in soil from land use	kg CO ₂ e	7,840,721	\$0.02	\$0.16
Direct CO ₂ emissions from managed soils	kg CO ₂ e	-9,713,047	\$0.02	-\$0.19
Transportation	kg CO ₂ e	-49,641,836	\$0.02	-\$0.99
Total	kg CO ₂ e	-444,682,851	\$0.02	-\$8.89

 Table 3.7: Change in Emissions Beyond Cow/Calf Operations - BMP 2.1

This BMP has significant system wide benefits with a BCR of 1.94:1 (see Table 3.8) based on NPV computations, which suggests and IRR of approximately 10 percent. While this BMP increases emissions on the cow/calf operations, it has an overall system wide reduction of 218,177 tonnes of CO₂e. This BMP reduces emissions by 0.153 kg CO₂e for each kg shrunk live weight shipped to the slaughter plant, and by 1.67 kg of CO₂e per kg of shrunk live weight for the annual volume of cows and bull shipped to slaughter plants.

Table 3.8: System	ı Wide	Benefit	Cost	Ratio	for	BMP	2.1
-------------------	--------	---------	------	-------	-----	-----	-----

Total Annual Benefits (\$ million)	\$487.98
Total Annual Costs (\$ million)	\$240.02
Net Annual Benefits [Benefits - Costs] (\$ million)	\$247.96
Ratio of Annual Benefits to Annual Costs	2.03
NPV of benefits (\$ million)	\$7,514.29
NPV of costs (\$ million)	\$3,867.14
Ratio of NPV of Benefits to NPV of Costs	1.94

3.5 <u>CBA AND BMP 2.2 - STOCKPILE GRAZING</u>

BMP 2.2 for stockpile grazing is based on having extended grazing based on perennial forage crops. The first CBA **(CBA 1)** for this BMP is for cow/calf operations based on changes in the market value of inputs used. The annual benefits and costs are provided in Table 3.9.

The major benefit of stockpile grazing is the reduced alfalfa/grass hay purchases due to the extended 30-day grazing period with stockpile grazing. This benefit is \$49 per head and is \$125 million across all operations.

The annual operating costs associated with this BMP are estimated at \$176.4 million. The major costs are cropping related expenses such as annualized machinery related costs, fertilizer, pesticides, and water costs.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				(, , , , , , , , , , , , , , , , , , ,
Purchased alfalfa/grass hay	kg	-914,606,005	\$0.14	-\$125.46
Production of bedding	kg	-23,283,848	\$0.03	-\$0.70
Fuel consumed to transport bedding	L	-16,522,324	\$0.75	-\$12.37
Fuel consumed to feed livestock	L	-10,380,276	\$0.75	-\$7.77
Labour (change)	hr	-11,600	\$16.62	-\$0.19
Total - Input Cost Savings				-\$146.49
<u>Costs - Higher Input Usage</u>				
Purchase of seed for alfalfa/grass	kg	-284,176	\$1.21	-\$0.34
Purchase of seed for Grass DP	kg	15,370	\$8.64	\$0.13
Purchase of seed for Grass P	kg	288,521	\$5.97	\$1.72
Purchase of seed for Grass NR	kg	174,235	\$5.97	\$1.04
Purchase of chemical fertilizer				
Urea, as N, at regional storehouse	kg	19,166,611	\$0.45	\$8.71
Ammonia, liquid, at regional storehouse	kg	55,950,352	\$0.88	\$49.24
Monoammonium phosphate, as P_2O_5	kg	48,482,123	\$0.62	\$30.06
Monoammonium phosphate, as N	kg	11,372,350	\$0.62	\$7.05
Fuel consumed to transport fertilizer	L	858,087	\$0.75	\$0.64
Fuel consumed to transport manure	L	1,686,961	\$0.75	\$1.26
Purchase of pesticide/herbicide	kg	322,744	\$88.74	\$28.64
Fuel consumed to transport pesticide	L	581	\$0.75	\$0.00
Fuel consumed for forage activities				
Fuel consumed to cultivate soil	L	528,033	\$0.75	\$0.40
Fuel consumed to apply fertilizer	L	1,090,040	\$0.75	\$0.82
Fuel consumed to plant crop	L	268,418	\$0.75	\$0.20
Fuel consumed to irrigate crop	L	84,803	\$0.75	\$0.06
Fuel consumed to apply chemicals to crop	L	356,899	\$0.75	\$0.27
Purchase of water to irrigate crop	m ³	11,912,784	\$1.22-	\$14.49
Cropping costs	ha	394,820	\$81-	\$32.01
Total - Annual Operating Costs				\$176.4

Table 3.9: Benefits and Annual Costs of BMP 2.2 for Cow/Calf Operations - Market Value

These annual costs exceed the annual benefits, with a net benefit value of -\$30 million, or \$11.65/head. This generates a BCR of annual benefits and costs of 0.83:1, as illustrated in Table 3.10. This BCR of less than 1.0 underscores the point that associated incremental benefits of stockpile grazing are less than the incremental costs.

Total Annual Benefits (\$ million)	\$146.5
Total Annual Costs (\$ million)	\$176.4
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$29.91
Ratio of Annual Benefits to Annual Costs	0.83
NPV of benefits (\$ million)	\$2,256
NPV of costs (\$ million)	\$2,860
Ratio of NPV of Benefits to NPV of Costs	0.79

 Table 3.10:
 Benefit Cost Ratio for BMP 2.2 - Market Values

These annual benefits and costs are before considering the investments in the fencing required to benefit from stockpile grazing. These costs, which are incurred once every 10 years are shown in the lower portion of Table 3.11 and total to \$82.1 million, or \$32/head of mature cattle.

 Table 3.11: Capital Costs of BMP 2.2 for Cow/Calf Operations - Market Value

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Capital Costs - Fencing elements				
Charger (energizer)	unit	23,201	\$799.00	\$18.54
High tensile wire - 14 gauge	m	37,338,284	\$0.06	\$2.33
Connectors - wire tensioners	unit	69,603	\$4.50	\$0.31
Grounding rod	unit	116,005	\$62.34	\$7.23
Insulators	unit	116,005	\$0.39	\$0.05
Posts - wood	unit	5,217,094	\$6.69	\$34.90
Posts fibreglass	unit	1,244,609	\$3.59	\$4.47
Posts metal	unit	0	-	\$0.00
Voltage meter	unit	11,600	\$148.99	\$1.73
Barbed wire	m	77,560,378	\$0.16	\$12.21
Windbreakers	feet	68,557	\$5.00	\$0.34
Total - Fencing costs				\$82.12

The net present value of the annual benefit stream is \$2.3 billion, while the net present value of the annual costs and the capital costs (incurred in year 1 and year 11) are \$2.9 billion (see Table 3.10 above). The ratio of these (NPV) benefits to costs is less than one (0.96:1) which indicates that without any incremental benefits, this BMP is not an economical proposition.

The second CBA **(CBA 2)** retains the cow/calf operation focus and considers the BMP's impact on changes in emissions at the cow/calf operation. The change in GHG emissions with this BMP that are directly associated with activities on the cow/calf operation are illustrated in Table 3.12, with GHG emissions increasing by 980,162 tonnes

CO₂e. This modelled BMP does not reduce GHG emissions and the annual cost to society is \$19.8 million based on a CO₂e price of 20/tonne. The increase is due to the emission associated with cropping activities that support extended grazing.

Reduction in Cow/Calf Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
$\mathrm{N}_2\mathrm{O}$ emissions from cropping and land use	kg CO ₂ e	659,720,196	\$0.02	\$13.19
Total P emissions from run-off	kg P	641,963		\$0.00
Soil carbon change in soil from land use	kg CO2e	-5,478,698	\$0.02	-\$0.11
Direct CO ₂ emissions from managed soils	kg CO2e	30,111,960	\$0.02	\$0.60
Forage and cereal sub-activities	kg CO2e	328,876,142	\$0.02	\$6.58
Energy generation and consumption activities	kg CO2e	-50,118,475	\$0.02	-\$1.00
Forage activities	kg CO2e	17,197,876	\$0.02	\$0.34
Pasture activities	kg CO2e	-146,574	\$0.02	\$0.00
Totals	kg CO ₂ e	980,162,427	\$0.02	\$19.60

 Table 3.12: Change in Emissions at Cow/Calf Operations - BMP 2.2

Assuming that cow/calf operations had to pay for higher emissions, then the annual costs increase to \$196 million, and the BCR decreases slightly to 0.75:1 (compare Table 3.13 to Table 3.10). The NPV of the emissions costs adds another \$302 million to NPV of the costs, lowering the BCR of the NPV of benefits and costs to 0.7:1.

Total Annual Benefits (\$ million)	\$146.5
Total Annual Costs (\$ million)	\$196.0
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$49.5
Ratio of Annual Benefits to Annual Costs	0.75
NPV of benefits (\$ million)	\$2,256
NPV of costs (\$ million)	\$3,162
Ratio of NPV of Benefits to NPV of Costs	0.71

The modeled changes in emissions that occur elsewhere, such as those associated with changes in purchased hay requirements are illustrated in Table 3.14. The CO₂e emissions decreased by 109,277 tonnes per annum. This provides a \$2.2 million benefit to society each year, when CO₂e emissions are valued at \$20/tonne.

Reduction in Other Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Forage and cereal sub-activities	kg CO ₂ e	-31,933,884	\$0.02	-\$0.64
Feedlot and pasture activities	kg CO ₂ e	-2,401,616	\$0.02	-\$0.05
Forage activities	kg CO ₂ e	-24,002,006	\$0.02	-\$0.48
N2O emissions from cropping and land use	kg CO ₂ e	-50,573,122	\$0.02	-\$1.01
Total P emissions from run-off	kg PO ₄ -eq	-142,787	-	\$0.00
Soil Carbon Change in Soil From Land Use	kg CO ₂ e	2,525,921	\$0.02	\$0.05
Direct CO ₂ emissions from managed soils	kg CO ₂ e	-2,891,967	\$0.02	-\$0.06
Total	kg CO ₂ e	-109,276,674	\$0.02	-\$2.19

 Table 3.14: Change in Emissions Beyond Cow/Calf Operations - BMP 2.2

From an overall systems perspective, the annual benefits associated with this BMP are less than the costs, with a BCR that is 0.86:1 when the NPV of costs and benefits are considered (see Table 3.15). As well, this BMP has the consequence of increased CO_{2e} emissions by 882,725 tonnes, and results in an increase in emissions of 0.619 kg CO_{2e} per kg live shrunk weight.

GHG emissions increase with stockpile grazing as a result of the extensive use of perennial forages with low yields, as mentioned in Section 3.3.

Total Annual Benefits (\$ million)	\$148.7
Total Annual Costs (\$ million)	\$196.0
Net Annual Benefits [Benefits - Costs] (\$ million)	-\$47.3
Ratio of Annual Benefits to Annual Costs	0.76
NPV of benefits (\$ million)	\$2,289
NPV of costs (\$ million)	\$3,162
Ratio of NPV of Benefits to NPV of Costs	0.72

Table 3.15: System Wide Benefit Cost Ratio for BMP 2.2

4.0 <u>CBA OF BMP 3 - USE OF IONOPHORES IN ROUGHAGE DIETS</u>

BMP 3 is the "use of ionophores in cow and replacement heifer diets to improve hay based feed efficiency."

4.1 DESCRIPTION OF BMP 3 -USE OF IONOPHORES IN ROUGHAGE DIETS

The intent of this BMP is to improve feed efficiency through use of ionophores in beef cows and replacement heifers, and generate fewer GHG emissions. This BMP should result in fewer upstream emissions based on fewer acres and resources devoted to hay (alfalfa/grass hay) production.

From an economic perspective of the cow/calf operation, this BMP involves higher input costs through the purchase of ionophores, and lower feed costs through lower dry matter intake (DMI). The LCA model assumes that the cow calf operation purchases all hay (alfalfa) and supplies its own pasture requirements.

The operating assumptions include:

- Ionophores supplementation is based on Monensin sodium (Monensin) following CFIA Claim 4 increased rate of weight gain in pasture cattle (stocker, feeder cattle, and beef and replacement heifers)
- Supplementation is via a mineral carrier provided to the herd
- Pregnant cows and heifers are fed ionophores as part of a supplement package in their diet (1) for 60 days prior to birth (i.e., the last 60 days of the winter diet, from January to February) and (2) for the first 60 days of the calving diet period (from March to April)
- All bred heifers and cows are fed ionophores, implying 100 percent adoption
- The use of ionophores results in less hay consumption
- All pasture is owned by the cow/calf operation
- All hay (alfalfa/grass hay) and feed supplements are purchased by the cow/calf operations
- Methane produced through enteric fermentation may decrease through lower feed intake
- The impacts of this BMP are time invariant, implying that the impact will be the same in year 1 as in year 5

- There are no significant changes in labour requirements
- There are no capital expenditures associated with this BMP

Figure 4.1 is provided to show the boundary associated with the cow/calf sector (it indicates that all pasture is owned by the cow/calf operation, and supplements and hay are purchased by the cow/calf operation).

Figure 4.1: Boundary and Potential Resource Impacts in the Cow/Calf Sector

The direct impacts of BMP 3 in the cow/calf sector include:

- Outputs:
 - No change in the annual volume of feeder calves supplied by the cow/calf sector to the feedlot or backgrounding sector
 - No change in the annual volume of finished beef supplied to slaughter plants
 - Less methane produced by pregnant cows and heifers due to lower feed intake

- Inputs:
 - Purchase and use of ionophores
 - Less hay consumed by pregnant cows and heifers
 - Fewer hay producing acres required to support the cow/calf operation

In addition to these direct impacts, there are indirect impacts based on linkages. These can include lower GHG emissions associated with a lower land use requirement for hay production to support the cow and replacement heifer population.

4.2 <u>BMP 3 - MODELLING LCA AND IMPACT</u>

The LCA of BMP 3 follows the structure of the model from the first phase of the project (CRA, 2010). Additional information is represented by:

- Data collection:
 - Number of pregnant cows in the model
 - Reduction in DMI intake during late gestation and early lactation
 - Manure collection and handling
 - Dosage rates of ionophores
- Calculations:
 - Number of cattle days allocated to each stage of feed, as follows:
 - Cow days on normal winter diet, for all cows, for 30 days (December)
 - Cow days on normal winter diet, for open cows, for 60 days (January and February)
 - Cow days on reduced winter diet for pregnant cows, for 60 days (January and February)
 - Cow days on normal calving diet, for open cows, for 60 days (March and April)
 - Cow days on reduced calving diet, for pregnant cows, for 60 days (March and April)
 - Cow days on normal calving diet, for all cows, for 30 days (May)
 - Total supplement with and without ionophores being fed to the cows

Based on the implementation of BMP 3, the forage diet needs are adjusted. Calculations of changes in feed, cropping needs, cropping practices, and biological activity of the

cattle followed by calculations of overall emissions are carried through the basic structure of the initial model.

4.3 <u>BMP 3 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS</u>

The impacts on the four environmental impact categories were modelled for the entire Alberta beef production system, and have been discussed below. The graphs show the total impact of each category from the entire system from the baseline years, and also show the difference in these impacts from the baselines to the implementation of the BMP.

The sources of GHG emissions changes are generated by the replacement of cattle days for pregnant cows on the baseline winter diet (alfalfa/grass hay) with cattle days of pregnant cows on a reduced winter diet, due to supplementation of diet with ionophores. The following items have been modified for BMP 3:

- Number of animals supplemented with ionophores
- Total alfalfa/grass hay for winter feed
- Amount of fertilizer needed (chemical and soil amendment)
- Amount of alfalfa/grass hay seed needed
- Amount of pesticide/herbicide needed
- Gasoline, diesel, electricity used based on increased ionophores production and transport
- Fuel consumption for cultivating soil, applying fertilizer, planting crop, irrigating crop, apply chemical treatment, harvesting crop, transporting crop
- Plastics to be produced
- Enteric fermentation emissions
- N₂O emissions from manure
- Soil N₂O emissions from cropping and land use
- Soil carbon change
- P₂O₅ runoff from cropping

Modifications of these items are addressed in the following sections of the LCA activity map:

- Forage and cereal sub-activities, forage activities, feedlot and pasture activities. The activities related to the alfalfa/grass hay from the winter diet are adjusted to allow for reduced feed requirements due to supplementation with ionophores.
- Energy generation and usage activities (reduction in GHG emissions from producing crude, transporting crude, refining crude into diesel, transporting diesel, combusting diesel all for the reduction in diesel used to feed cattle and to collect manure).
- Enteric fermentation emissions.
- Methane emissions from manure.
- Soil carbon change from land use.
- Carbon dioxide from managed soils.
- N₂O emissions from manure, cropping and land use.
- P_2O_5 run-off.

The following graph shows the total GHG emissions versus the percent adoption for BMP 3.

Examination of Figure 4.2 shows the net environmental benefits in terms of GHG emissions based on adoption of BMP 3 at different percentages. The percent adoption adjusts the actual number of cattle on the diet supplemented with ionophores.

Table 4.1 illustrates the major components of the model where the changes in GHG emissions are occurring from the 2001 baseline to BMP 3.

The change in GHG emissions from 2010 to 100 percent adoption (in kg CO_2e/kg shrunk live weight) is a reduction of 1.4 percent.

The sources of GHG emissions changes occur from the following components for BMP 3:

- Forage and cereal sub-activities forage activities (reduction in GHG emissions from the production, transportation etc. of alfalfa/grass hay)
- Energy generation and usage activities (reduction in GHG emissions from reduction in diesel used to feed cattle and to collect manure)
- Enteric fermentation emissions (reductions in enteric fermentation emissions due to use of ionophores)
- Methane emissions from manure (reductions due to reduced amount of manure generated, based on food intake)
- Soil carbon change from land use (reductions in soil sequestration due to the reduced alfalfa/grass hay cropping)
- Carbon dioxide from managed soils (reductions in carbon dioxide emissions due to the reduction in alfalfa/grass hay cropping)
- N₂O emissions from manure (reduction due to less manure being generated by cows on a reduced diet)

Figure 4.3: BMP 3 - Acidification and Percent Adoption

Examination of Figure 4.3 shows the net environmental benefits in terms of acidification impact based on adoption of BMP 3 at different percentages. The percent adoption adjusts the actual number of cattle on the diet supplemented with ionophores.

The change in acidification impacts from 2010 to 100 percent adoption (in kg SO_2e/kg shrunk live weight) is a reduction of 0.7 percent.

Figure 4.4: BMP 3 - Eutrophication and Percent Adoption

Examination of Figure 4.4 shows the net environmental benefits in terms of eutrophication impact based on adoption of BMP 3 at different percentages. The percent adoption adjusts the actual number of cattle on the diet supplemented with ionophores.

The change in eutrophication impacts from 2010 to 100 percent adoption (in kg PO_4e/kg shrunk live weight) is a reduction of 1.1 percent.

Figure 4.5: BMP 3 – Non-Renewable Resources and Percent Adoption

Examination of Figure 4.5 shows the net environmental benefits in terms of non-renewable resources impact based on adoption of BMP 3 at different percentages. The percent adoption adjusts the actual number of cattle on the diet supplemented with ionophores.

The change in total non-renewable resources impacts from 2010 to 100 percent adoption (in MJ-eq/kg shrunk live weight) is a reduction of 0.3 percent.

4.4 <u>CBA AND BMP 3 – USE OF IONOPHORES IN ROUGHAGE DIETS</u>

The first CBA **(CBA 1)** for BMP 3 is for the cow/calf operation based on changes in market value inputs and outputs and does not place any value on the reduction in emissions. The cost to the cow/calf operations is the higher supplement costs, which include the ionophores. The supplements with ionophores increase by 30,569 tonnes for a cost of \$55 million, as noted in the lower half of Table 4.2.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Purchased alfalfa/grass hay	kg	-374,868,925	\$0.14	-\$51.36
Fuel consumed to feed livestock	L	-1,063,695	\$0.75	-\$0.80
Purchased supplements w/o ionophores	kg	83,196,320	\$1.25	-\$104.40
Total - Input Cost Savings				-\$156.56
Costs - Higher Input Usage				
Purchased supplements with ionophores	kg	30,569,415	\$1.80	\$55.02
Total - Higher Input Costs				-\$55.02

Table 4.2: Benefits and Costs of BMP 3 at the Cow/Calf Operation - Market Values

At the same time, the supplements (without ionophores in them) that are replaced by the supplements with ionophores decrease by 83,196 tonnes, which is a benefit to operators. The other economic benefits to cow/calf operators are lower usage and lower purchases of hay (\$51.4 million), and reduced fuel requirements for feeding activities for a total of \$156.6 million in cost savings. After comparing costs to benefits, this BMP has a net benefit of \$101.5 million for cow/calf operators. As shown in Table 4.3, the resulting benefit cost ratio is 2.85:1. This result suggests that cow/calf operations should invest in this BMP.

 Table 4.3: Benefit Cost Ratio at the Cow/Calf Operation for BMP 3 - Market Values

Total Benefits	\$156.56
Total Costs	\$55.02
Net Benefits [Benefits - Costs]	\$101.53
Ratio of Benefits to Costs	2.85

The second CBA (**CBA 2**) retains the cow/calf operation focus and considers the benefits of reducing the externalities (emissions) by cow/calf operations. The lower volume of hay consumed by cows due to the use of ionophores reduces the emissions load of the cow/calf sector. The largest reduction is in enteric fermentation emissions, which has a value of \$3.6 million per annum, based on pricing CO₂e at \$20/tonne. Total emissions reduction at the cow/calf operations due to this BMP is 253,006 tonnes CO₂e, which has an attributed value of \$5.1 million per annum, as noted in Table 4.4.

Reduction in Cow / Calf Emissions	Units	Volume Change	Unit Price	Total Impact	
			(\$/unit)	(\$ million)	
Methane emissions from stored manure	kg CO ₂ e	-3,852,501	\$0.02	-\$0.08	
Enteric fermentation emissions	kg CO ₂ e	-181,763,433	\$0.02	-\$3.64	
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	-50,961,637	\$0.02	-\$1.02	
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-11,280,571	\$0.02	-\$0.23	
Energy generation and consumption activities	kg CO ₂ e	-5,135,,776	\$0.02	-\$0.10	
Feedlot and pasture activities	kg CO ₂ e	-11,823	\$0.02	-\$0.0002	
Totals	kg CO ₂ e	-253,005,741	\$0.02	-\$5.06	

 Table 4.4: Benefit of Emission Reduction at the Cow/Calf Operation - BMP 3

This \$5 million benefit of reduced emissions, assuming it is captured by cow/calf operations, increases the total and net benefits for this BMP as shown in Table 4.5. The benefit cost ratio also increases to 2.9:1.

Tuble 101 Denemi Cool hand at the Conference operation for Diffe of thanket the

Total Benefits	\$161.62
Total Costs	\$55.02
Net Benefits [Benefits - Costs]	\$106.59
Ratio of Benefits to Costs	2.94

The third CBA for this BMP (**CBA 3**) considers any upstream or downstream changes in emissions, which are additional to those realized within the cow/calf sector. These are upstream benefits of less area required to produce the lower hay requirement. As shown in the first row of Table 4.6, the CO₂e reduction due to less N₂O was 16,616 tonnes, and all reduced emissions beyond the cow/calf sector was 39,605 tonnes, for an annual benefit of another \$0.79 million per annum associated with this BMP.

Reduction in Other Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
N ₂ O emissions from cropping and land use	kg CO ₂ e	-16,616,146	\$0.02	-\$0.33
Total P emissions from run-off	kg PO ₄ -eq	-58,523	-	\$0.00
Soil carbon change in soil from land use	kg CO ₂ e	1,035,297	\$0.02	\$0.02
Direct CO ₂ emissions from managed soils	kg CO ₂ e	-1,160,659	\$0.02	-\$0.02
Forage and cereal sub-activities	kg CO ₂ e	-13,009,461	\$0.02	\$0.26
Forage activities	kg CO ₂ e	-9,837,685	\$0.02	-\$0.20
Pasture activities	kg CO ₂ e	-16,766	\$0.02	-\$0.0003
Total	kg CO ₂ e	-39,605,420	\$0.02	-\$0.79

This BMP reduces GHG by 292,611 tonnes, or by 0.205 kg of CO_2e/kg of live shrunk weight for all beef cattle shipped to the slaughter plant. The cattle consuming these ionophores are cows and bulls, and the reduction in CO_2e/kg of live shrunk weight for these cows and bulls when they are shipped to the slaughter plant is 2.24 kg of CO_2e/kg of live shrunk weight (affected). From a systems perspective, this BMP has a positive net benefit of just over \$100 million, and a BCR of 2.95:1 (see Table 4.7). These modeled results suggest that this BMP should have a rather high adoption rate in the Alberta cow/calf sector, with primary benefits being a reduction in feeding costs to cow/calf operators.

Total Benefits	\$162.41
Total Costs	\$55.02
Net Benefits [Benefits - Costs]	\$107.39
Ratio of Benefits to Costs	2.95

Table 4.7:	System	Wide	Benefit	Cost	Ratio	for	BMP	3 -	Full	Ado	ption
------------	--------	------	---------	------	-------	-----	-----	-----	------	-----	-------

5.0 <u>CBA OF BMP 4 – REDUCED AGE TO SLAUGHTER</u>

BMP 4 is "introducing a feeding system that results in the finished beef animal reaching slaughter weight at a younger age with less feed intake".

5.1 DESCRIPTION OF BMP 4 - REDUCED AGE TO SLAUGHTER

Two approaches are used to model this BMP and its impact on GHG emissions. The first approach introduces Ractopamine Hydrochloride (RAC) into all of the feeders' diet for the last 28 days on feed to reach slaughter weight quicker. The second approach involves management practices to have beef cattle reach market weight (for slaughter) in fewer months, specifically 14 months versus 18 months.

Based on discussions with slaughterhouse personnel, Approach 1 (BMP 4.1) is currently implemented by 40 to 50 percent of the Albertan feedlots. Therefore, the beef system has been modelled for current conditions (assuming 45 percent usage of RAC to reduce days on feedlot), to create a 2010 baseline, compared to the 2001 baseline with no usage. The 2010 baseline for Approach 2 (BMP 4.2) is the same as 2001 as there is no evidence that the practice is currently implemented in Alberta.

BMP 4 generates costs and benefits for feedlot operators, as well as generating impacts through the beef supply chain. The boundaries of the feedlot operation and the purchase of most inputs for feeding beef cattle is illustrated in Figure 5.1, with feed requirements purchased from third parties, versus being home-grown.

The operating assumptions include:

- Fewer kilograms of feed are required per finished animal resulting from (a) fewer days of maintenance diet due to the addition of a growth promotant during the last 28 days on feed to increase weight gain and reach final weight quicker, and (b) fewer days of maintenance diet due to the introduction of the finishing diet sooner.
- All feed used in the feedlot is purchased versus being home-grown on the feedlot farm.
- The amount of labour required to feed beef cattle decreases due to the fewer days the cattle are in the feedlot.
- The number of cattle produced for slaughter does not change, despite animals being fewer days on feed. Note that this economic benefit has not been included in the analysis because one of the most important assumptions for the LCA is that the total

amount of beef produced remains consistent such that any changes to the LCA can be compared to the baseline appropriately (i.e., functional unit).

- Depreciation (deterioration) of feedlot plant and equipment is not altered with this BMP with depreciation more dependent on the number of years in operation, and is minimally affected by fewer animal days in a feedlot.
- There are no capital expenditures associated with this BMP.

The direct impacts in the feedlot sector include:

- Outputs (same for both BMP 4.1 and 4.2):
 - No change in the annual number of finished beef supplied to slaughter plants (slight decrease in annual volume for BMP 4.2, as discussed later in this section)
 - With BMP 4.1, cattle are shipped to the slaughter plant a few days earlier (approximately 5 days earlier)
 - With BMP 4.2, cattle are shipped to feedlot 3.1 to 4 months earlier
 - Potential change in the quality of beef supplied to the market based on a younger beef animal
 - Potential change in distribution of when finished beef marketings occur over the year
 - Less methane produced by cattle while in the feedlot
 - Less manure produced and requiring disposal
 - Fewer emissions from the lower volume of stored manure
- Inputs:
 - BMP 4.1:
 - Less barley, barley silage, and supplements purchased
 - Purchase of growth promotants
 - Less energy used to feed livestock, provide livestock bedding and manure removal
 - Fewer days in feedlot
 - Lower labour requirements to feed beef cattle
 - Lower interest costs associated with working capital requirements
 - BMP 4.2:
 - Less barley silage purchased
 - More feed barley purchased
 - More feed supplements purchased
 - Less energy used to feed livestock, provide livestock bedding and manure removal
 - Fewer days in feedlot
 - Lower labour requirements to feed beef cattle
 - Lower interest costs associated with working capital requirements

There are also indirect impacts, such as those that occur with changes in cropping requirements to support the feedlot feeding practices (an upstream practice), and the possible impacts associated with manure disposal (a downstream impact).

5.2 <u>BMP 4 – MODELLING LCA AND IMPACT</u>

This BMP consists of reducing the feed consumption and time on feedlots to reduce the overall age of cattle at slaughter.

ARD provided CRA with draft guidance documents pertaining to the reduction in age of cattle for slaughter (Draft Guidance Document for Reducing the Number of Days on Feed of Beef Cattle, June 2010, Version 7; Draft Guidance Document for the Quantification Protocol for Reducing Age at Harvest, June 2010, Version 7). The actual methods to reduce the number of days on feed in beef cattle or to reduce the age at harvest are not outlined within these documents.

Based on these guidance documents, there are two methods to reducing the age to slaughter of Alberta beef cattle:

- 1. Reduce number of days on feed in feedlot during the final stages of growth (BMP 4.1)
- 2. Reduce age at harvest by adjusting the diet to introduce feeder and finishing diets sooner (BMP 4.2)

Both methods to reduce the age to slaughter were modelled to calculate the impacts and economics of each separately. These approaches are described in detail below.

Reducing the Number of Days on Feed of Beef Cattle (BMP 4.1)

Based on Alberta Environment's Specified Gas Emitters Regulation for the Quantification Protocol for Reducing Days on Feed of Cattle (August 2008, Version 1.1), direct and indirect reductions in GHG emissions from reducing days on feed for cattle being finished on feedlots is possible, in terms of enteric fermentation emissions from cattle and emissions from manure handling, storage and application during the time spent in feedlots.

A simplified case study was provided at the end of this guidance document where feed rations did not differ between the project and the baseline, with the exception of the addition of RAC during the final 28 days of feeding of the animals in the project condition. Typically RAC is added to the final 28 days of feed for feedlot cattle to increase the final weight, not to reduce actual time to slaughter. Based on the data collection, the average dosage of RAC during the final stages of feeding is 200 mg/head/day for 28 days. The Draft Guidance Document provided a range of additional gain in final weight and an increase in Average Daily Gain (ADG). These values were similar to what was found in other literature, and therefore they were used to calculate the reduction in days to reach the baseline final weight with the addition of RAC for 2 days. So, instead of increasing the final weight, the time to slaughter was reduced due to the increase in ADG with RAC usage.

Reducing Age at Harvest (BMP 4.2)

Based on the report from Basarab et al., 2008, GHG emissions and costs can be reduced by reducing the age to slaughter, which also reduces the feed requirements for each animal. Basarab et al., 2008 discussed the ability to reduce the age to slaughter from 18 months to 14 months, and that the age to slaughter can be reduced by 1 to 4 months within all of the Alberta operations for feeder cattle. This report has assumed that carcass weights and quality of meat with the reduction in the age to slaughter will be equivalent to current practices.

ADG is consistent throughout the 0 to 3 months, 3 to 6 months, and during the last stage in the feedlot. The project increases the ADG during the 6 to 7 months feedlot stage and starts the last stage in the feedlot diet much sooner than in the baseline. The overall differences in the diet include an increase in grain by 60 percent, a slight increase in silage by 5.5 percent, complete removal of hay from the diet, and a large reduction in pasture intake by 83 percent.

The Reducing Age at Harvest draft guidance document (provided to CRA by ARD) provides general diet classes and range of diets that are typical of diets fed to cattle in Alberta. These diet classes and timing on each diet class also provides diet classes and timing for ages at harvest of 12 and 21 months in addition to the 14 and 18 months. The guidance document mentions that 55 percent of all calves in Alberta are sent for backgrounding, and these are the types of calves that can provide benefits with regards to reducing emissions because the backgrounding stages of the diet are eliminated. Therefore, 55 percent of the beef production industry in Alberta will realistically benefit from implementing a reduction in the age to slaughter. The model is set up in such a way that all calves in Alberta undergo a backgrounding stage, based on the typical diets provided by a qualified ruminant nutritionist. This has only been applied to the calf-fed cattle which represent about 45 percent of the annual beef production in Alberta, and the age to slaughter will be reduced from 18 months to 14 months.

takes into account the effects of implementing this BMP on the 55 percent of calves in Alberta that are actually backgrounded.

5.2.1 <u>CHANGES TO THE PHASE 1 BASELINE LCA MODEL</u>

CBA compares the costs of a change (i.e., the BMP) to the benefits associated with the change for the relevant decision makers. Accordingly, the change in outputs and inputs used by the feedlot sector are of major concern, along with the values of these inputs and outputs.

As discussed above, these two methods of reducing the age to slaughter of feeder cattle have been implemented into the model separately to calculate the impacts and costs:

- 1. Provide RAC as a feed additive to allow the cattle to gain more weight during the last stage of feeding (BMP 4.1)
- 2. Remove backgrounding stages of feeding regimes for calf-fed cattle to introduce feeder diet at a younger age (BMP 4.2)

Reducing the Number of Days on Feed of Beef Cattle (BMP 4.1)

The Phase 1 LCA model was updated to 2010 conditions to include the percentage of feedlots supplying RAC to the feeder cattle prior to slaughter (45 percent as outlined above).

The Draft Guidance Document for Reducing the Number of Days on Feed of Beef Cattle outlines that feeding RAC during the last 28 to 42 days on feedlot will increase the final weight by 1.2 to 2.1 percent. Assuming a feeding dosage of 200 mg/head/day as general practice, an average of 1.65 percent greater weight was assumed, with an increase of 20 percent ADG.

Using the diets prepared by the ruminant nutritionist for Phase 1, and the increase of 20 percent ADG during the last 28 days in the feedlot, a reduction in days on feedlot was calculated assuming that the slaughter weight stays constant as the baseline and no increase in final weight is achieved. The following is a summary of the reduced days on feedlot for each cattle category:

- Yearling-fed steers: 4.9 days
- Yearling-fed heifers: 5.0 days

- Calf-fed steers: 5.4 days
- Calf-fed heifers: 5.1 days

The reduced days in feedlot also reduces the days on feed. The diets were reduced, which adjusts all linked activities in the model accordingly (cereal and forage activities, enteric fermentation emissions, methane emissions from manure, N_2O emissions from manure, etc.).

The reduction in the amount of feed also reduces the amount of garbage (plastics) used for the feed.

The amount of manure generated was reduced accordingly, as the manure production in the model is based on daily rates. Enteric fermentation emissions and bedding requirements (production and transportation) were adjusted in the same manner, as the diet remains the same during the last 4 or 5 days on the feedlot.

The diesel requirements to feed cattle and collect manure have been adjusted based on the reduction in feed and manure generated. Labour is also reduced due to less feed and manure handling. The weight of the bedding that was reduced was less than 4 percent of the feed reduced. Consequently, the fuel saved from supplying bedding to the cattle can be considered negligible and was not calculated.

The emissions from the production of RAC have not been included, as emission factors for this process are not available. This remains a data gap. The transportation of RAC has been included in the model.

There are varying references regarding the effect of RAC on beef quality and quantity. Vogel et al. (2009) studied the effects of steers on RAC for 28 to 38 days. A decrease in Canada Prime/AAA beef was realized, and an increase of AA/A quality beef was concluded. Quinn et al. (2008) studied the effects of heifers on RAC for 28 days and slight changes in quality grades were realized. These reductions were based on US quality grades, but were generically translated to Canadian quality grades so that these changes could be captured in the model. A slight increase in Canadian AAA and a slight decrease in Canadian AA/A was shown in this study.

A phone conversation with a professional in the slaughterhouse industry indicated that RAC is in use for approximately 40 to 50 percent of all beef in Canada. Forty five percent implementation has been assumed for 2010, and it was expressed by the slaughterhouse industry professional that an increase in RAC usage in Alberta will be

detrimental to the beef production system in Alberta. A significant reduction in beef quality is anticipated if the usage increases. Therefore, if 50 percent or more of the Alberta beef production system is modelled as using RAC, a change in beef quality as outlined above may be realized.

The average price per weight of beef has been calculated for the years 2008 to 2010 for AAA quality beef and AA/A quality beef. The price change in the quality grades based on 50 percent of RAC usage or more have been captured in the model. This assumes that the decrease in revenue for the slaughterhouse is directly proportional to the decrease in the revenue for the feedlots.

Reducing Age at Harvest (BMP 4.2)

It is not known whether the reduction in the age at harvest by reducing time in backgrounding feedlot is actually being practiced in Alberta, and therefore, the 2010 baseline is exactly the same as the 2001 baseline (Phase 1).

To implement this practice into the model, many of the same changes have been made to this model as for BMP 4.1.

The Draft Guidance Document for Reducing Age at Harvest outlines the options for reducing time in the backgrounding feedlot and introducing a higher concentrates diet sooner. This was applied to the calf-fed cattle in the model only. A step-up diet was introduced into the model that used all the diets from the 2001 baseline but altered the amount on each diet to reflect the total time for the step up diet in the Guidance Document. The final diet from the 2001 baseline was introduced much sooner and was applied for a longer period of time with the implementation of this BMP. The same characteristics of the baseline diets were applied to this model. The age of calf-fed steers was reduced from 18 months to 14.9 months, and the age of calf-fed heifers was reduced from 18 months.

Based on these diet changes, the amount of feed required, plastics for feed used, diesel used to collect manure and to feed cattle, manure generated, enteric fermentation emissions, methane and N_2O emissions from manure were all adjusted to reflect the changes in the diets.

There is very minimal literature available that discusses the effects of this type of diet change on the final quality of the beef. Based on a discussion with a slaughterhouse industry professional, complete adoption of this BMP in Alberta would be highly negative. The slaughterhouses would have to process all beef within a few months, and there is insignificant capacity and human-power available to do so. Access to beef year round is important to the clients of Alberta beef. The slaughterhouse industry professional also commented that there is a chance of reduced marbling but this may be offset by an increase in tenderness. However, a smaller finished animal is most likely in a feeding regime such as this. Consequently, it is also anticipated by industry professionals that there will be a reduction in both quality grade and yield grade of the beef, but there is no available peer-reviewed scientific literature at this time to confirm and quantify the changes.

A reduction in carcass weight of 20 kg was assumed with a slight decrease of AAA grade beef to AA/A grade of ±5 percent in the model to reflect impact on the beef market. The average price of AAA and AA/A beef over 2008 to 2010 using weekly price averages was used to calculate the reduction in revenue to the slaughterhouse, which was assumed to be directly proportional to the reduction in revenue for the feedlots (based on limited data availability). Also, a price difference for beef sold in September/November to May/July was included in the analysis based on the 2005 to 2010 steer and heifer prices on Canfax. There is a slight increase in the price of beef in May/July as compared to September/November.

5.3 <u>BMP 4 – RESULTS OF GHG EMISSIONS AND OTHER IMPACTS</u>

The impacts on the four environmental impact categories (GHG, acidification, eutrophication, and non-renewable resources) were modelled for the entire Alberta beef production system to reflect the changes to the model with the implementation of the BMP. The graphs in this section show the total impact of each category from the entire system for the baseline years, and also show the difference in these impacts from the baselines to the implementation of the BMP based on percent adoption of the BMP. The y-axis scales have been kept the same for both BMP 4.1 and 4.2, for comparison purposes.

The following graphs show the total GHG emissions versus the percent adoption for BMP 4.1 and BMP 4.2.

Figure 5.2a: BMP 4.1 - GHG Emissions and Percent Adoption

Figure 5.2b: BMP 4.2 - GHG Emissions and Percent Adoption

Table 5.1 illustrates the major components of the model where the changes in GHG emissions are occurring from the 2001 baseline, to the 2010 baseline (for BMP 4.1 only), to BMP 4.1 and 4.2.

The change in GHG emissions from 2010 to 100 percent adoption (in kg CO_2e/kg shrunk live weight) are shown in Table 5.1 and below:

- BMP 4.1 0.3% reduction
- BMP 4.2 2.8% reduction

The sources of GHG emissions changes occur from the following components for BMP 4.1:

- Forage and cereal sub-activities, cereal activities, forage activities (reduction in GHG emissions from the production, transportation, etc. of barley and barley silage)
- Energy generation and usage activities (reduction in GHG emissions from producing crude, transporting crude, refining crude into diesel, transporting diesel, combusting diesel all for the reduction in diesel used to feed cattle and to collect manure)

- Enteric fermentation emissions (reduction in enteric fermentation emissions due to reduced days on the feedlot)
- Methane emissions from manure (reduction due to reduced days on the feedlot)
- Soil carbon change in soil from land use (reduction in soil sequestration due to the reduced barley and barley silage)
- Carbon dioxide from managed soils (reduction in carbon dioxide emissions due to the reduction in barley and barley silage)
- N₂O emissions from manure (reduction due to reduced days on the feedlot)

The components that contributed to more than 95 percent of the reductions in GHG emissions for BMP 4.1 were all emissions associated with the forage and cereal sub-activities and cereal activities (barley production), the production and combustion of diesel, and the reduction in enteric fermentation emissions and N_2O emissions from manure.

The sources of GHG emissions changes occur from the following components for BMP 4.2:

- Forage and cereal sub-activities and cereal activities (increase in emissions due to the production of more barley)
- Forage activities (reduction in GHG emissions from the reduction in barley silage)
- Energy generation and usage activities (same as for BMP 4.1)
- Feedlot and pasture activities (reduction in GHG emissions from the reduction in bedding production, mineral and vitamins, and plastic production and disposal)
- Transportation of all cattle (slight increase only due to the fact that the total weight of slaughtered cattle has been slightly reduced to account for the reduced age at slaughter)
- Enteric fermentation emissions (same as for BMP 4.1)
- Methane emissions from manure (same as for BMP 4.1)
- Soil carbon change in soil from land use (same as for BMP 4.1)
- Carbon dioxide from managed soils (increase in GHG emissions due to the increase in barley production)
- N₂O emissions from manure (reduction due to reduced days on the feedlot)

The components that contributed to more than 95 percent of the reductions in GHG emissions for BMP 4.2 were all emissions associated with the forage and cereal

sub-activities and cereal activities (barley production), the production and combustion of diesel, and the reduction in enteric fermentation emissions and N_2O emissions from manure.

The following graphs (Figures 5.3a and 5.3b) show the total acidification impact versus the percent adoption for BMP 4.1 and 4.2.

The main elements that resulted in changes to the acidification impact for BMP 4.1 were the reductions from production, transportation, etc. of barley and barley silage, and the reduction in production and combustion of diesel to feed cattle and to collect manure on the feedlot.

Figure 5.3b: BMP 4.2 - Acidification and Percent Adoption

The main elements that resulted in changes to the acidification impact for BMP 4.2 were the reductions from the production and combustion of diesel to feed cattle and to collect manure on the feedlot and for the production and transportation of less barley silage, and the increases from the production and transportation of barley.

The change in acidification impacts from 2010 to 100 percent adoption (in kg SO_2e/kg shrunk live weight) are shown below:

- BMP 4.1 0.5% reduction
- BMP 4.2 1.7% reduction

The following graphs (Figures 5.4a and 5.4b) show the total eutrophication impact versus the percent adoption for BMP 4.1 and 4.2.

Figure 5.4a: BMP 4.1 – Eutrophication and Percent Adoption

The main elements that resulted in changes to the eutrophication impact for BMP 4.1 were the reductions from production, transportation, etc. of barley and barley silage, the reduction in production and combustion of diesel to feed cattle and to collect manure on the feedlot, and the reduction in total phosphorous emissions from run-off.

Figure 5.4b: BMP 4.2 – Eutrophication and Percent Adoption

The main elements that resulted in changes to the eutrophication impact for BMP 4.2 were the reductions from production, transportation, etc. of barley silage, the reduction in production and combustion of diesel to feed cattle and to collect manure on the feedlot, and the reduction in total phosphorous emissions from run-off. There was a slight increase in eutrophication impacts due to the increased amount of barley required for BMP 4.2.

The change in eutrophication impacts from 2010 to 100 percent adoption (in kg PO_4e/kg shrunk live weight) are shown below:

- BMP 4.1 0.8% reduction
- BMP 4.2 5.6% reduction

The following graphs (Figures 5.5a and 5.5b) show the total non-renewable resources impact versus the percent adoption for BMP 4.1 and 4.2.

Figure 5.5a: BMP 4.1 - Non-Renewable Resources and Percent Adoption

The main elements that resulted in changes to the non-renewable resources impact for BMP 4.1 were the reductions from production, transportation, etc. of barley and barley silage, and the reduction in production and combustion of diesel to feed cattle and to collect manure on the feedlot.

Figure 5.5b: BMP 4.2 – Non-Renewable Resources and Percent Adoption

The main elements that resulted in changes to the non-renewable resources impact for BMP 4.2 were the reductions from production, transportation, etc. of barley silage and the reduction in production and combustion of diesel to feed cattle and to collect manure on the feedlot. There was a slight increase in non-renewable resource impacts due to the increased amount of barley required for BMP 4.2, however, the energy generation activities were the primary component to this impact.

The change in total non-renewable resources impacts from 2010 to 100 percent adoption (in MJ-eq/kg shrunk live weight) are shown below:

- BMP 4.1 0.5% reduction
- BMP 4.2 7.7% reduction

5.4 CBA AND BMP 4.1 -USE OF GROWTH PROMOTANT FOR LAST 28 DAYS

With BMP 4.1 there were no animals on RAC in the 2001 baseline, with 45 percent of beef cattle assumed on the growth promotant program in 2010. This amounts to 959,612 cattle in 2010 and 583,376 tonnes of shrunk live weight affected by this BMP. For each beef animal using the RAC growth promotant over the last 28 days, the animal is on feed for approximately 5 fewer days. Full adoption of this BMP affects all 2,132,470 beef cattle and 1,296,392 tonnes of shrunk live weight (excluding cows and bull shipped to slaughter).

The first CBA **(CBA 1)** focuses on the feedlot operation and uses market values and does not place any value on the externalities (i.e., the reduction in emissions). Compared to 2001, the 45 percent adoption rate in 2010 generated the impacts summarized in Table 5.2.

BMP 4.1 reduces the costs of selected inputs by a total \$11.0 million, as shown in the first section of Table 5.2. The cost savings are a reduction in overall feed and feed supplements consumed. For example, each finishing animal consumes about 58 fewer kilograms of barley. These are the benefits of using growth promotants for the last 28 days, which is \$11.46/head of affected⁴ beef cattle shipped to the slaughter plant.

The incremental costs of BMP 4.1 in 2010 are twofold. First, there are higher input costs associated with growth promotants of around \$7,700, as shown in the middle portion of Table 5.2. The other cost area is the loss in meat value, with fewer kilograms being graded as AAA or better due to the usage of RAC. This loss is estimated to be \$0.88 million. The lower value of the beef cattle shipped to the slaughter plant is based on the modelled reduction in the volume of meat that will be graded as AAA or better.

^{\$11} million divided by 959,612 head of cattle.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Purchased barley	kg	-56,001,427	\$0.16	-\$9.04
Purchased barley silage	kg	-15,839,047	\$0.04	-\$0.63
Purchase of min., trc min., cobalt, protein suppl.,				
antibiotic	kg	-944,052	\$0.48	-\$0.45
Purchase of vitamins	kg	-1,401	\$1.37	\$0.00
Purchased bedding	kg	-2,409,539	\$0.06	-\$0.14
Fuel consumed to feed livestock	L	-918,748	\$0.75	-\$0.69
Fuel consumed to collect manure	L	-9,059	\$0.75	-\$0.01
Labour (change)	hrs	-1,724	\$16.22	-\$0.03
Working capital interest	\$	0	-	-
Total - Input Cost Savings				-\$10.98
Costs - Higher Input Usage				
Purchase of RAC	kg	6,332	\$1.22	\$0.0077
Total - Higher Input Costs				\$0.0077
Costs - Change in Value of Output				
Manure sold for land application	kg	-68,180,107	\$0.00	\$0.00
Meat downgraded from Canada AAA to AA/A	kg	-1,834,564	\$0.48	-\$0.88
Total - Loss in Meat Value				-\$0.88

All incremental benefits of \$11 million are compared to the incremental costs in Table 5.3, with the costs being the higher input costs combined with the reduction in meat value of \$0.88 million. This indicates that the net benefits are \$10.1 million and the benefit cost ratio is 12.4:1⁵, which implies an IRR (internal rate of return) to the feedlot operator of about 60 percent⁶.

 Table 5.3: Benefit Cost Ratio at the Feedlot for BMP 4.1 in 2010 - Market Values

Total Benefits (\$ million)	\$10.98
Total Costs (\$ million)	\$0.88
Net Benefits [Benefits - Costs] (\$ million)	\$10.10
Ratio of Benefits to Costs	12.43

For modeling purposes, the operating assumption is made that with this BMP, the entire beef sector will migrate to 100 percent use of this practice (calf-fed and yearling-fed cattle). As stated in Section 5.2.1, it has been suggested to CRA that additional implementation of this BMP (let alone full implementation) can have significant effects on the beef market, such as on the distribution of quality and processor desire for certain beef characteristics. The associated modeled benefits and costs when all 2,132,470 cattle

⁵ 12.4:1 signifies a benefit to cost ratio of 12.4 to 1.0.

Based on the formula BCR = IRR/cost of capital, with cost of capital assumed to be 5 percent.

are using RAC for 28 days prior to slaughter are illustrated in Table 5.4, which shows the changes in inputs and outputs from the 2010 values. The cost savings per head are \$11.50/head⁷ shipped to the slaughterhouse.

Items	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Purchased barley	kg	-68,446,188	\$0.16	-\$11.05
Purchased barley silage	kg	-19,358,835	\$0.04	-\$0.77
Purchase of min., trc min., cobalt, protein suppl., antibiotic	kg	-1,281,636	\$0.48	-\$0.61
Purchase of vitamins	kg	-1,713	\$1.37	\$0.00
Purchased bedding	kg	-2,944,992	\$0.06	-\$0.17
Fuel consumed to feed livestock	L	-1,122,915	\$0.75	-\$0.84
Fuel consumed to collect manure	L	-11,073	\$0.75	-\$0.01
Labour (change)	hrs	-2,107	\$16.22	-\$0.03
Working capital interest	\$	0	-	\$0.00
Total - Input Cost Savings				-\$13.49
<u>Costs - Higher Input Usage</u>				
Purchase of RAC	kg	7,740	\$1.22	\$0.01
Total - Higher Input Costs				\$0.01
Costs - Change in Value of Output				
Manure sold for land application	kg	-83,331,242	\$0.00	\$0.00
Meat downgraded from Canada AAA to AA/A	kg	-2,242,245	\$0.48	-\$1.07
Total - Loss in Meat Value				-\$1.07

 Table 5.4: Benefits and Costs of BMP 4.1 at the Feedlot with Full Adoption – Market Values

With full adoption of this BMP the benefit to cost ratio is 12.5:1 indicating a high rate of return to the feedlot operator for using this management practice. This suggests that there is sufficient incentive for the feedlot operator/owner to adopt this BMP on the cattle that are currently not on the growth promotant.

Table 5.5:	Benefit Cost Rati	o for BMP 4.1 at the Fee	edlot with Full Ado	otion – Market Values

Total Benefits (\$ million)	\$13.49
Total Costs (\$ million)	\$1.08
Net Benefits [Benefits - Costs] (\$ million)	\$12.41
Ratio of Benefits to Costs	12.48

The second CBA (**CBA 2**) retains the feedlot focus and considers the externalities (emissions) associated with feedlot operations. This includes a reduction in methane from less stored manure as well as from reductions in emissions from enteric fermentation (due to fewer days on feed and based on less barley and barley silage used

7

Based on dividing \$13.49 million by (2,132,470 minus 959,612 head).

because of fewer days on feed). Expressed in CO_2e and valued at 0.02/kg (or 20/tonne), the total reduction is valued at 0.62 million, as shown in Table 5.6. The largest reduction is in the enteric fermentation category.

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ Million)
Methane emissions from stored manure	kg CO2e	-789,333	\$0.02	-\$0.02
Enteric fermentation emissions	kg CO ₂ e	-14,572,647	\$0.02	-\$0.29
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	-2,542,624	\$0.02	-\$0.05
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-2,383,710	\$0.02	-\$0.05
Energy generation and consumption activities	kg CO2e	-8,959,359	\$0.02	-\$0.18
O&M activities	kg CO ₂ e	0	\$0.02	\$0.00
Feedlot activities	kg CO ₂ e	-1,520,130	\$0.02	-\$0.03
Totals	kg CO ₂ e	-30,767,803	\$0.02	-\$0.62

 Table 5.6: Benefit of Emission Reduction at the Feedlot with BMP 4.1 - 2010

Assuming that society paid the feedlot operator 20/1000 for a reduction in CO₂e emissions, the benefits realized by the feedlot sector in 2010 would have increased by 0.62 million to 11.60 million, with a resulting benefit to cost ratio increasing slightly to 13.1:1, from the value shown in Table 5.3.

Table 5.7 summarizes the benefits of the reduction in feedlot emissions from the 2010 baseline, based on full adoption of this BMP and retaining a 20/tonne valuation of a tonne of CO₂e. Net benefits increase by 30.75 million to 313.2 million and the benefit cost ratio becomes 13.2:1 (when moving from 2010 values to full adoption).

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ Million)
Methane emissions from stored manure	kg CO ₂ e	-964,740	\$0.02	-\$0.02
Enteric fermentation emissions	kg CO ₂ e	-17,811,013	\$0.02	-\$0.36
N ₂ O emissions from stored manure (direct)	kg CO2e	-3,107,652	\$0.02	-\$0.06
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-2,913,424	\$0.02	-\$0.06
Energy generation and consumption activities	kg CO ₂ e	-10,950,327	\$0.02	-\$0.22
O&M activities	kg CO ₂ e	0	\$0.02	\$0.00
Feedlot activities	kg CO ₂ e	-1,857,936	\$0.02	-\$0.04
Totals	kg CO ₂ e	-37,605,092	\$0.02	-\$0.75

Table 5.7: Benefit of Emission Reduction at the Feedlot with BMP 4.1 -Full Adoption

The third CBA **(CBA 3)** goes a step further than CBA 2 and considers any upstream changes in emissions. This include the lower emissions associated with less cropland needed to support the beef sector (based on fewer days on feed for maintenance requirements), such as the change in soil N_2O emissions from cropping and land use, the change in P_2O_5 runoff from cultivating; and soil carbon impacts. These are shown in

Table 5.8 for the 2010 baseline relative to 2001, with a total volume of CO_2e reduction at 18,035 tonnes⁸, which has a total value of value of \$0.36 million based on a \$20/tonne valuation.

Reduction in Other Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
N ₂ O emissions from cropping and land use	kg CO2e	-4,866,012	\$0.02	-\$0.10
Total P emissions from run-off	kg PO4-eq	-29,737	-	\$0.00
Soil carbon change in soil from land use	kg CO ₂ e	2,066,704	\$0.02	\$0.04
Direct CO2 emissions from managed soils	kg CO ₂ e	-1,517,171	\$0.02	-\$0.03
Forage and cereal sub-activities	kg CO ₂ e	-8,887,880	\$0.02	-\$0.18
Cereal activities	kg CO ₂ e	-4,220,821	\$0.02	-\$0.08
Forage activities	kg CO ₂ e	-236,164	\$0.02	\$0.00
Feedlot activities	kg CO ₂ e	-373,863	\$0.02	-\$0.01
Total	kg CO ₂ e	-18,035,207	\$0.02	-\$0.36

Table 5.8: Benefits of System Wide Emission Reduction with BMP 4.1 – 2010

These incremental GHG reduction benefits increase the overall system benefits to 12.0 million, when the CO₂e reduction is valued at 20/tonne. The results in a 13.5:1 benefit cost ratio for 2010 as reported in Table 5.9.

 Table 5.9:
 System Wide Benefit Cost Ratio for BMP 4.1 in 2010

Total Benefits (\$ million)	\$11.96
Total Costs (\$ million)	\$0.88
Net Benefits [Benefits - Costs] (\$ million)	\$11.08
Ratio of Benefits to Costs	13.53

In 2010, the total reduction in GHG (expressed as CO_2e reduction) is the sum of the totals in Tables 5.6 and 5.8, for a 48,800 tonne reduction from 2001 baseline values, which can be valued at \$0.98 million per annum.

With full adoption of BMP 4.1, the system wide reduction in GHG emissions from the 2010 baseline are reported in Table 5.10, at 22,054 tonnes. When valued at \$20/tonne, the value of this reduction is \$0.44 million per annum, which is just over \$0.20 per head of affected beef cattle shipped to a slaughter plant.

⁸

Which excludes a valuation of less P run-off.

Reduction in Other Emissions	Units	Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ Million)
N ₂ O emissions from cropping and land use	kg CO ₂ e	-5,950,849	\$0.02	-\$0.12
Total P emissions from run-off	kg PO4-eq	-36,345	-	\$0.00
Soil carbon change in soil from land use	kg CO2e	2,525,971	\$0.02	\$0.05
Direct CO ₂ emissions from managed soils	kg CO2e	-1,856,147	\$0.02	-\$0.04
Forage and cereal sub-activities	kg CO2e	-10,868,832	\$0.02	-\$0.22
Cereal activities	kg CO2e	-5,158,781	\$0.02	-\$0.10
Forage activities	kg CO2e	-288,645	\$0.02	-\$0.01
Feedlot activities	kg CO ₂ e	-456,943	\$0.02	-\$0.01
Total	kg CO ₂ e	-22,054,226	\$0.02	-\$0.44

 Table 5.10: Benefits of System Wide Emission Reduction with BMP 4.1 - Full Adoption

The resulting system wide net benefit approaches \$13.6 million, with a 13.6:1 benefit to cost ratio, as noted below in Table 5.11.

 Table 5.11: System Wide Benefit Cost Ratio for BMP 4.1 - Full Adoption

Total Benefits (\$ million)	\$14.68
Total Costs (\$ million)	\$1.08
Net Benefits [Benefits - Costs] (\$ million)	\$13.60
Ratio of Benefits to Costs	13.59

With full adoption of BMP 4.1, the GHG reduction from 2010 values is the sum of the 22,054 tonnes of CO_2e in Table 5.10 and the 37,605 tonnes in Table 5.7. This annual volume CO_2e reduction of 59,659 tonnes has an attributed value of \$1.2 million.

The impact of having this BMP in place, when viewed from a 2001 baseline is an annual 108,460 tonne CO₂e reduction. This is a 0.076 kg CO₂e reduction per kg of live shrunk weight, from 2001 to full implementation.

The effects on the beef market with the implementation of this BMP beyond the level at which it is currently in use is unknown, with some costs that may not be accounted for. Further research is recommended before the usage of RAC with Alberta beef is promoted beyond current levels.

5.5 <u>CBA AND BMP 4.2 – FEWER DAYS ON FEED</u>

The second approach (BMP 4.2) involves management practices to have cattle reach slaughter weight in fewer months, such as 14 months versus 18 months. The BMP

involves shortening the backgrounding stage of calf-fed heifers and steers and introducing them to the feedlot growth diets sooner.

With BMP 4.2, there were no animals on this program in the 2001 baseline, and also with none on this program in 2010. As a result, the 2010 baseline for BMP 4.2 is the same as 2001. For modeling purposes, BMP 4.2 assumes that all calf-fed steers and heifers are on this diet, and involves 959,612 cattle in 2010 that are shipped to slaughterhouses accounting for 564,184 tonnes of live shrunk weight. The effect of this BMP is to have calf-fed steers on feed (shipped to market) 3.1 months (95 days) earlier and calf-fed heifers shipped to market 3.8 months (117 days) earlier compared to not introducing this BMP. As stated in Section 5.2.1, it has been suggested to CRA that implementation of this BMP (let alone full implementation) can have significant effects on the beef market.

The CBA **(CBA 1) for the feedlot operation using market values** shows that costs are reduced in the area of barley silage, feed supplements, bedding, fuel, and labour. The total cost savings is \$101.4 million (or \$47/head [calf-fed and yearling-fed] or \$106/affected head [calf-fed only]). The largest cost saving is lower purchases of barley silage as shown in Table 5.12.

Items	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
Benefits - Input Cost Savings			(4)	(+)
Purchased barley silage	kg	-1,835,646,766	\$0.04	-\$73.43
Purchase of min., trc min., cobalt, protein suppl., antibiotic	kg	-13,398,398	\$0.48	-\$6.37
Purchase of vitamins	kg	-18,035	\$1.37	-\$0.02
Purchased bedding	kg	-50,701,602	\$0.06	-\$2.96
Fuel consumed to feed livestock	L	-22,944,030	\$0.75	-\$17.17
Fuel consumed to collect manure	L	-184,111	\$0.75	-\$0.14
Labour (change)	hrs	-80,357	\$16.22	-\$1.30
Working capital interest		0	-	-
Total - Input Cost Savings				-101.39
Costs - Higher Input Usage				
Purchased barley	kg	41,564,501	\$0.16	\$6.71
Total - Higher Input Costs				\$6.71
Costs - Change in Value of Output				
Manure sold for land application	kg	-750,809,979	\$0.00	\$0.00
Value change all shipments in May/June	kg	564,184,229	\$0.004	\$2.31
Reduction in carcass weight in Sept/Nov	kg	19,192,230	\$1.91	-\$36.67
Meat downgraded from Canada AAA to AA/A	kg	-8,801,274	\$0.48	-4.20
Total - Loss in Meat Value				-\$38.57

Table 5.12: Benefits and Costs of BMP 4.2 with Full Adoption - Market Values

Costs associated with BMP 4.2 include the higher volumes of barley consumed per animal, at approximately 43 kg higher, for a cost increase of \$6.7 million. The other cost is the reduction in meat value shipped to the slaughterhouse. This includes the lower carcass weights (collective lower weight of 19.2 million kg)⁹ and the lower quality of meat grade (assumed to be passed on back to the feedlot). These costs are somewhat offset by the larger volume of cattle shipped to slaughter in the May/July period, which commands a slight price premium over the fall (September/November) marketing period when these cattle would have been shipped, had it not been for the BMP. Overall the loss in meat value is \$38.6 million to the feedlot, or \$18/head (calf-fed and yearling-fed) or \$40/affected head (calf-fed only).

The incremental costs of \$45.3 million compared to the incremental benefits of \$101.4 million, provide a net benefit stream of \$56.12 million to the feedlot sector. This assumes no loss in revenues in manure sold from the feedlot operation – based on the user taking the manure away without any net debit or credit to the feedlot.

The resulting benefit cost ratio is 2.2:1, suggesting that feedlot operators are financially ahead by employing this BMP in their operations (see Table 5.13). The internal rate of return (IRR) can be imputed to be just over 11 percent. This benefit is based on the above accounting for all of the costs in the beef market associated with this BMP.

Total Benefits (\$ million)	\$101.39
Total Costs (\$ million)	\$45.28
Net Benefits [Benefits - Costs] (\$ million)	\$56.12
Ratio of Benefits to Costs	2.24

 Table 5.13: Benefit Cost Ratio for BMP 4.2 at the Feedlot with Full Adoption – Market Values

The second CBA **(CBA 2)** retains the feedlot focus and considers the externalities [emissions] associated with feedlot operations. The amount of GHG emissions reductions and their valuation are shown in Table 5.14. GHG emissions are reduced by 795,933 tonnes $CO_{2}e$, with the largest reduction coming from fewer emissions due to enteric fermentation.

⁹

The slaughterhouse will incur some loss as well, which is the profit margin due to the lower volume of 19 million fewer kilograms of carcass weight not merchandized.

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ Million)
Methane emissions from stored manure	kg CO2e	-13,019,992	\$0.02	-\$0.26
Enteric fermentation emissions	kg CO ₂ e	-501,786,346	\$0.02	-\$10.04
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	-25,614,357	\$0.02	-\$0.51
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-24,013,460	\$0.02	-\$0.48
Energy generation and consumption activities	kg CO ₂ e	-223,336,472	\$0.02	-\$4.47
O&M activities	kg CO2e	0	\$0.02	\$0.00
Feedlot activities	kg CO2e	-465,645	\$0.02	-\$0.01
Totals	kg CO2e	-788,236,273	\$0.02	-\$15.76

Table 5.14: Benefit of Emission Reduction at the Feedlot with BMP 4.2 -Full Adoption

Assuming that society paid the feedlot operator 20/1000 for a reduction in CO₂e, the benefits realized by the feedlot sector would have increased by \$15.8 million. This increases the total benefits to \$117.2 million to the feedlot sector with this BMP, and the net benefits to \$71.9 million. Table 5.15 indicates the attractive benefit cost ratio of 2.6:1 at the feedlot operator level.

Table 5.15: Benefit Cost Ratio for BMP 4.2 at the Feedlot with Full Adoption- Including Valuation of Reduced GHG at the Feedlot

Total Benefits (\$ million)	\$117.16
Total Costs (\$ million)	\$45.28
Net Benefits [Benefits - Costs] (\$ million)	\$71.88
Ratio of Benefits to Costs	2.59

The third CBA **(CBA 3)** goes a step further than CBA 2 and considers any upstream changes in emissions. This include the lower emissions associated with less cropland needed to support the beef sector (based on fewer days that cattle are on feed), such as the change in soil N₂O emissions from cropping and land use, the change in P₂O₅ runoff from cultivating; and soil carbon impacts. These are shown in Table 5.16, with a total volume of CO₂e reduction at 65,431 tonnes, which has a total value of value of \$1.3 million based on a \$20/tonne valuation.

Reduction in Other Emissions	Units	Volume Change	Unit Price	Total Impact
			(#unit)	(\$ MIIIIOII)
N ₂ O emissions from cropping and land use	kg CO2e	-49,751,405	\$0.02	-\$1.00
Total P emissions from run-off	kg PO ₄ -eq	-220,677	-	\$0.00
Soil carbon change in soil from land use	kg CO2e	13,786,976	\$0.02	\$0.28
Direct CO ₂ emissions from managed soils	kg CO2e	1,712,760	\$0.02	\$0.03
Forage and cereal sub-activities	kg CO2e	-239,447	\$0.02	\$0.00
Cereal activities	kg CO2e	3,132,711	\$0.02	\$0.06
Forage activities	kg CO2e	-27,369,931	\$0.02	-\$0.55
Feedlot activities	kg CO ₂ e	-6,702,746	\$0.02	-\$0.13
Total	kg CO ₂ e	-65,431,081	\$0.02	-\$1.31

 Table 5.16:
 Benefits of System Wide Emission Reduction with BMP 4.2 - Full Adoption

These incremental GHG reduction benefits generated upstream from the feedlot and at the feedlots result in a total GHG reduction volume of 853,667 million tonnes CO₂e, which can have an annual value of \$17.1 million to society. This is a GHG emissions reduction of 0.41 kg CO₂e /kg of live shrunk weight for the entire beef system, or 1.51 kg CO₂e /kg of live shrunk weight for the calf-fed animals assumed to be on this program.

Adding together the feedlot sector benefits, with those accruing to society, the net benefits are \$73.2 million per annum as shown in Table 5.17, with \$56.1 million accruing to feedlot operators through the marketplace (see also Table 5.13).

Table 5.17: System Wide Benefit Cost Ratio for BMP 4.2 - Full Adoption

Total Benefits (\$ million)	\$118.47
Total Costs (\$ million)	\$45.28
Net Benefits [Benefits - Costs] (\$ million)	\$73.19
Ratio of Benefits to Costs	2.62

The effects on the market with the implementation of this BMP, as suggested to CRA, may incur other costs that have not been considered. For example, issues such as sufficient chilling and storage capacity at the slaughterhouse may require additional capital costs for this BMP if there is a significant change in slaughter age and the associated distribution of when (the months) that fed cattle are shipped to the slaughterhouse. There may also be effects on marketing Alberta beef with the implementation of this BMP. Further research is recommended before the early introduction of high concentrates diet and reduction of age to slaughter with Alberta beef is promoted.

6.0 CBA OF BMP 5 – USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS

BMP 5 is the "use of breeding animals that possess superior residual feed intake (RFI) genetics".

6.1 DESCRIPTION OF BMP 5 - USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS

The intent of this BMP is to select beef breeding bulls through RFI testing and placing this genetic potential into the cow/calf sector such that feed consumption and feed requirements will be reduced in both the cow/calf and feedlot sectors. By extension, with lower feed intake, GHG emissions should be lower through enteric fermentation as well as through the cropping activities that support feed production.

The operating assumptions include:

- Superior genetics, once identified, are dispersed into the Alberta beef herd through individual bulls used on a cow/calf operation, in which all breeding bulls are assumed to be purchased from seedstock breeders. Using the 2001 Canadian census data, there were approximately 19 calves born per bull that year. This assumption will be used throughout this BMP.
- There is no use of artificial insemination (AI) to disperse the genetics more rapidly through the beef herd, as this is not the most prevalent breeding method used today in Alberta.
- A percentage of males and females born on the cow/calf operation, which are offspring of the low RFI sire, are retained as breeding bulls and replacement heifers for use in the herd and/or sale to other cow/calf operations.
- All pasture is part of the cow/calf operation, with hay purchased from third parties.
- All feed used on the feedlot is purchased by the feedlot.
- Traceability programs are in place allowing for easy identification of feeder calves with low RFI genetics.
- Feeder calves sold to feedlots, which possess the low RFI gene, may receive a price premium based on the proven superior feed conversion. This premium is assumed to be a function (e.g., 50 percent) of the saved feed costs (currently there is no premium in Alberta for low RFI calves)
- Days to market are not affected, with the major impact being reduced DMI.

- Feed (pasture, hay, supplements) consumption by the cow/calf sector decreases.
- Feed (barley, barley silage, supplements) consumption in the feedlot sector decreases.
- Methane produced from enteric fermentation and manure generation decreases, and nitrous oxide (both direct and indirect) emissions from manure decrease.
- The Alberta wide impacts of this BMP are time dependent, based on how quickly the superior RFI genetics are dispersed into the beef herd. As indicated in the Interim Report, current practices with regards to RFI testing in Alberta are understood to the extent that this BMP could be modelled for at least each individual calf crop. The actual gradual uptake in the RFI gene across Alberta would need to be modeled based on an advanced statistical analysis; such studies have been completed in the literature. This trait has been proven in the literature to be moderately heritable and is anticipated to have an exponential increase in RFI uptake for Alberta.
- Potential breeding bulls are tested post weaning around 8 months of age. It has been assumed that after testing (3 months in length), they will participate in the breeding period for that same year, producing progeny the following year. Impact is shown as soon as the bulls are tested as their DMI is lower than anticipated. The first realizable impact would occur in the following year when feeder calves with low RFI genetics are placed in feedlots or kept as replacement heifers or bulls. Testing has been conducted in Alberta since 2000. The starting year for the low RFI testing draft protocol in Alberta uses 2002 as the baseline year. Therefore, the model has included tested animals and offspring since 2002. The 2010 baseline year has been modelled to provide additional comparison with 2001 for future years.
- There are no significant changes in labour requirements (reduction in feed from 2002 to 2010 less than 1 percent).
- There are no capital expenditures associated with this BMP, besides the cost for RFI testing.

With this BMP there are direct impacts in both the cow/calf sector and in the feedlot sector. The direct impacts in the cow/calf sector include:

- Outputs:
 - No change in the annual volume of feeder calves supplied by the cow/calf sector to the feedlot or backgrounding sector
 - A change in the quality of feeder calves supplied to the feedlot or backgrounding sector (improved DMI with feeder calves having the low RFI genetics)
 - Higher prices received for feeder calves with low RFI genes

- Lower DMI of affected feeder calves, cows and bulls with low RFI genes
- Less methane produced by cows and bulls with low RFI genes through enteric fermentation and manure, and less nitrous oxide emissions from manure
- Inputs:
 - Lower alfalfa/grass hay purchased due to lower DMI requirements of animals with low RFI genes
 - Lower pasture requirements
 - Potentially higher prices paid by cow/calf operations for bulls with low RFI genes

The direct impacts in the feedlot sector include:

- Outputs:
 - No change in the annual volume of finished cattle supplied to slaughter plants
 - Less methane produced by feeder cattle possessing the superior RFI genes and emissions from manure generated
 - Less manure produced and nitrous oxide and methane emissions due to lower feed intake
- Inputs:
 - Potentially higher price paid for feeder cattle possessing the superior RFI genes
 - Less feed required by feeder cattle possessing the superior RFI genes

In addition to these direct impacts, there are indirect impacts based on linkages. These can include lower emissions associated with lower cropping and land use requirements for alfalfa/grass hay, barley and barley silage production.

Cost benefit analyses will be conducted with a primary focus on both the cow/calf and the feedlot sector.

Based on a discussion with an RFI testing professional in Alberta, it was noted that the amount of RFI testing conducted may be decreasing with time, rather than increasing as the economics have not been beneficial and interest has decreased. However, with financial incentives and with the approval of the draft Alberta protocol for this BMP, interest may begin to rise again and RFI testing may increase in the future.

6.2 <u>BMP 5 - MODELLING LCA AND IMPACT</u>

This BMP consists of testing potential breeding bulls for RFI with the intent to introduce bulls with low RFI into the breeding program to propagate these genes throughout the Alberta beef production system.

Australia is the most advanced country in the selection of breeding animals based on superior residual feed intake genetics and most of the available literature on this topic stems from work conducted in Australia. Research has also been conducted in Alberta over the last 10 years , but limited literature has been produced from this work.

The Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification protocol (proposed quantification protocol for the Alberta Offset System), as provided to CRA by ARD, acknowledges that there is a reduction in emissions from calves, cows and bulls with the selection of breeding animals based on low RFI. Carbon credits are available for animals with low RFI Estimated Breeding Values (EBVs), but only for their first generation progeny. Testing is currently being conducted at seven testing facilities in Alberta, mostly on post-weaning calves 8 to 13 months of age. According to the protocol, percent reduction in DMI is applied to cattle with low RFI values for cattle groupings of similar weight and ration for the year of interest.

The Draft Alberta Environment protocol entitled Selection for Residual Feed Intake in Beef Cattle Quantification Protocol (September 2009, draft Version 2.0) was also provided to CRA by ARD. According to this draft protocol, EBVs are to be set to zero for all animals born in the year of interest or earlier in order to track the EBVs over several years. Animals are tested at or after 240 days old. There is a 21-day pre-conditioning period where the animals are given time to adapt to the facility and the diet, followed by a 70 day test period. Using the range of 8 to 13 months of age for testing animals in Alberta, it has been assumed that the testing phase will be completed after the backgrounding stage for calf-fed cattle (7 to 10 months of age) and after the backgrounding feedlot stage for yearling-fed cattle (7 to 11 months of age).

6.2.1 <u>CHANGES TO THE PHASE 1 BASELINE LCA MODEL</u>

As directed by ARD, the seven existing genetics testing facilities in Alberta will be used for this BMP implementation. No new construction is anticipated to occur. The capacity of the commercial facilities (four commercial facilities in total; three facilities are research-based) has been used as the maximum capacity for commercial RFI testing in Alberta, as per the Science Discussion Paper by Paul Arthur (Arthur, N.D.). The number of cattle tested from 2000 to 2008 was also outlined in the Science Discussion Paper, so a yearly average with a slight increase in total cattle tested per year was assumed for these years. Estimates for the total number of cattle tested in 2009 and 2010 were calculated based on the 2000 to 2008 data. For 2011 and on, it was assumed that the maximum capacity of the commercial testing facilities is being utilized for RFI testing.

As approximately 80 to 90 percent of the genetic improvement in a herd comes through the sires, it is expected that only potential breeding bulls will be tested in Alberta to maximize the impact on the beef herd. The progeny of low RFI bulls may have superior genetics for feed efficiency based on heritability. This will result in a feed savings for calves in the feedlot and for replacement heifers and bulls (Agri-Facts, July 2006).

It is noted here that the benefit of this BMP is limited by the capacity of the testing facilities, and therefore, superior genetics uptake from breeding animals with low RFI could in fact have a larger impact in Alberta if somehow RFI testing is maximized to contribute the most impact to the beef breeding system.

As RFI testing has been conducted in Alberta since 2000, the LCA model has been configured in such a way that any year between 2000 and 2030 could be modelled to account for the life span of low RFI cattle.

The total number of bulls tested for each year has been inserted into the model. From there, the number of bulls tested with low RFI genes is calculated. The total number of bulls in the beef system with low RFI genes is the sum of the bulls tested with low RFI genes for the previous 4 years, assuming a bull culling rate of 4 years. This allows for a reduction in DMI for all bulls in the system for that year with low RFI genes to be accounted for. An RFI EBV is then assigned to the low RFI bulls, and a percent reduction in DMI is calculated. Reduction in DMI is assumed for all 4 years the bulls are in the beef system. The maximum RFI EBV has been used in the model to maximize the impact of this BMP on the beef system.

Calves born from these low RFI bulls for all 4 years are estimated based on the 19 calves per bull in the Phase 1 2001 baseline model. A heritability factor that has been assigned to the model is then used to calculate the number of these calves that are born with the low RFI genes. The heritability of the low RFI genetics ranges from 16 to 39 percent in the literature for the cattle breeds that have been tested to date (Notter, David R., ND; Arthur et al., 2008). The maximum heritability factor was assumed for the model as the impact of this BMP using a heritability factor of 39 percent is minimal. This is attributed to the confined testing capacity in Alberta. The calves deemed to carry the low RFI gene are then assigned an RFI value equal to the average or the mean of the parents. As the RFI is not known for the dam, zero was assumed. Percent reduction in DMI is then calculated for these calves.

Using the replacement percentages from the 2001 baseline for heifers and bulls, a percentage of the calves with low RFI genes are assumed to be replacement heifers and bulls. These replacement cattle remain in the model for 4 breeding years; however, the progeny of these cattle are not assumed to carry the low RFI genes as they have not been tested and do not have a certified EBV, as per Alberta's draft protocol.

Cattle are then categorized as calf-fed steers or heifers, or yearling-fed steers or heifers based on 2001 ratios between these categories. The reduction in DMI is carried throughout the entire life of these calves to the end of the feedlot. Actual intake on pasture is difficult to quantify and therefore, any benefits associated with the reduction in pasture intake from low RFI cows and calves has not been captured in the model.

Due to the fact that the dams are never tested in the model and are not provided with certified EBVs, and the fact that the protocol states that only the first progeny of low RFI breeding bulls qualify for emissions reductions, the uptake of this gene is difficult to track over time. A genetics modelling software package may be able to provide information on the uptake of this gene.

Total feed requirements for the entire beef system were adjusted in the model to reflect the reduction in DMI for bulls, cows, backgrounders, and feeders. The feedlot diets were used for the testing period for both the calf-fed and yearling-fed calves, and the diets that will be offset from the time spent testing have been adjusted appropriately.

The reduced DMI for cattle in the cow/calf sector and the feedlot sector affects all cereal and forage activities, enteric fermentation emissions, methane emissions from manure, N_2O emissions from manure, etc. The reduction in the amount of feed also reduces the amount of garbage (plastics) used for the feed; however, as the amount of feed to be reduced is less than 1 percent of the total feed, a reduction in plastics was considered negligible and was not calculated.

The amount of manure generated was reduced according to the percent reduction in DMI for each category of cattle. Enteric fermentation emissions and methane and nitrous oxide emissions from manure were updated to reflect the change in DMI.

The diesel requirements to feed cattle and collect manure have been adjusted based on the reduction in feed required and manure generated. The change in labour was assumed to be negligible due to such a small reduction in DMI and was not included in the analysis.

Transportation was included for weaned steers from the calf-fed and yearling-fed systems to and from the RFI testing facilities, assuming 200 km one-way.

Review of literature shows that it is possible to select low RFI animals to be used for breeding animals with no effect on the final weight or quality of the meat at slaughter and this will be used as the assumption for modeling; however, future scientific research is required to validate this assumption.

The impacts of BMP 5 implementation have been analyzed for the 2010 baseline and for the 2029-2030 calf crop for comparison. Although testing was initiated in Alberta in 2000, any testing conducted before 2002 is not included in the protocol guidelines, and therefore, it was assumed that this BMP was not implemented in the 2001 baseline.

6.3 <u>BMP 5 - RESULTS OF GHG EMISSIONS AND OTHER IMPACTS</u>

The impacts on the four environmental impact categories (GHG, acidification, eutrophication, and non-renewable resources) were modelled for the entire Alberta beef production system to reflect the changes to the model with the implementation of the BMP. The graphs in this section show the total impact of each category from the entire system for each year from 2001 to 2029, and show the trending difference in these impacts over this time based on the assumptions outlined in Section 6.2.1 above. The year 2029 was assumed as the last analytical year so the results of this BMP can be compared to the results of the other four BMPs with a 20-year life.

The following graph shows the total GHG emissions per year.

Figure 6.1: BMP 5 - GHG Emissions from 2001 to 2029

Table 6.1 illustrates the major components of the model where the changes in GHG emissions are occurring over time from 2001 to 2010 to 2029.

The change in GHG emissions from 2001 to 2010 to 2029 (in kg CO_2e/kg shrunk live weight) are shown in Table 6.1 and below:

- From 2001 to 2010 0.002% reduction
 - 8% (2001) to 12% (2010) of maximum testing facilities used
- From 2010 to 2029 0.02% reduction
 - 12% (2010) to 100% (2029) of maximum testing facilities used. 100% assumed to be used in 2011 and all years thereafter

The main sources that contributed approximately 98 percent of the GHG emissions reductions occur from the following components:

• Energy generation and usage activities (produce crude, transport crude, refine crude into diesel, transport diesel, combust diesel – all from the fuel savings of feeding cattle and collecting manure)

- Feedlot and pasture activities (reduction in emissions from disposal of manure off-site from feedlots due to the decrease in manure production, and the reduction in processing grains [mix feed], mineral production and transportation, transport millrun carrier, transport vitamin all aspects of reducing DMI)
- Enteric fermentation emissions (more than 70 percent of the emissions reductions, due to reduced DMI)
- Methane emissions from manure (due to reduced manure production)
- Nitrous oxide emissions from manure and cropping activities (70 percent reduction in nitrous oxide emissions is from manure, and 30 percent from cropping activities)

There was a slight increase in emissions due to the additional transportation of the calf-fed and yearling-fed calves to the testing facilities, but these emissions were minor in comparison to the emissions reductions. There was also a slight decrease in soil sequestration due to the reduction of feed required.

The following graph shows the total acidification impact for each year. The main elements that resulted in reductions to the acidification impact were all the forage and cereal activities, diesel generation and combustion for reduced feeding and manure collection, disposal of manure off site from feedlots, and all activities associated with minerals, millrun carrier, and vitamins. There was a slight increase in acidification impact due to the additional transportation for testing; however, this is a very minor increase.

Figure 6.2: BMP 5 – Acidification from 2001 to 2029

The change in acidification impacts from 2001 to 2010 to 2029 (in kg SO_2e/kg shrunk live weight) are shown below:

- From 2001 to 2010 0.003% reduction
- From 2010 to 2029 0.03% reduction

The following graph shows the total eutrophication impact for each year. The main elements that resulted in reductions to the eutrophication impact were diesel generation and combustion for reduced feeding and manure collection, disposal of manure off site from feedlots, all activities associated with minerals, millrun carrier, and vitamins, and the reduction in phosphorous emissions from run-off. There was a slight increase in eutrophication impact due to the additional transportation for testing; however this is a very minor increase.

Figure 6.3: BMP 5 – Eutrophication from 2001 to 2029

The change in eutrophication impacts from 2001 to 2010 to 2029 (in kg PO_4e/kg shrunk live weight) are shown below:

- From 2001 to 2010 0.001% reduction
- From 2010 to 2029 0.006% reduction

The following graph shows the total non-renewable resources impact for each year. The main elements that resulted in reductions to the non-renewable resources impact were diesel generation and combustion for reduced feeding and manure collection, disposal of manure off site from feedlots, all activities associated with minerals, millrun carrier, and vitamins. There was a slight increase in non-renewable resources impact due to the additional transportation for testing; however this is a very minor increase.

Figure 6.4: BMP 5 - Non-Renewable Resources from 2001 to 2029

The change in total non-renewable resources impacts from 2001 to 2010 to 2029 (in MJ-eq/kg shrunk live weight) are shown below:

- From 2001 to 2010 0.001% reduction
- From 2010 to 2029 0.006% reduction

6.4 CBA AND BMP 5 – USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS IN 2029 – 2030

With this BMP the number of calves exhibiting low FRI traits increases each year based on the increasing sire (bull) population that can pass on the low RFI trait. In year 2029, 1,498 bulls are assumed tested for the low RFI trait (maximum capacity of existing testing facilities), with 187 testing positively for the RFI trait. Based on the build-up of positively tested bulls from prior years (for 4 years total), there are a total of 749 bulls in the breeding population for the year 2029 with low RFI characteristics. This is estimated to generate a population of 5,550 calves exhibiting this trait, which is 39 percent of all calves born from the low RFI bulls, and 0.26 percent of all calves born that year. The CBA analysis is conducted for year 2029 at the cow/calf sector and the impacts in the feedlot are captured based on a 2030 time frame. The overall benefits and costs increase each year by a scalar factor based on the number of bulls with the RFI trait in the breeding herd.

Benefits and Costs in the Cow Calf Sector

The benefits at the cow/calf operation of this BMP are the reduced costs of alfalfa/grass hay and feed supplements as shown in the top portion of Table 6.2, plus the lower amount of fuel needed to feed the cattle (**CBA 1**). These benefits add up to \$207,000, and are just under \$38/calf with the low RFI trait. These benefits are incremental to the number of bulls and associated offspring that exhibited the RFI trait in 2010.

An assumed secondary benefit is the marginally higher value of the low RFI calf sold to feedlot operations. Currently no premium is being paid for low RFI calves sold to the feedlot in Alberta. This value capture has been modeled based on the cow/calf operation obtaining almost 50 percent of the estimated savings in feed costs in the feedlot, which is rounded to \$12/head low RFI calf sold. This assumption requires the cow/calf operator to have each low RFI calf readily identifiable.

Items		Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
Benefits - Input Cost Savings				
Purchased hay	kg	-529,808	\$0.14	-\$0.07
Purchase of min., trc min., cobalt, protein suppl., antibiotic	kg	-275,735	\$0.48	-\$0.13
Purchase of vitamins	kg	-8.2	\$1.37	\$0.00001
Fuel used to feed livestock	L	-4,685	\$0.75	\$0.004
Total - Input Cost Savings				-\$0.207
Benefits - Higher Value of Outputs				
Higher value of low RFI calves sold	head	5,550	\$12.00	\$0.07
Total - Higher Value of Outputs				\$0.067
Costs - Higher Input Usage and Prices				
Purchase of RFI testing	tests	1,316	\$91.00	\$0.12
Purchased bull premium	head	164	\$0.00	\$0.00
Fuel consumed to transport livestock for testing	L	2,103	\$0.75	\$0.00
Total - Higher Operating Costs				\$0.12

Table 6.2: Benefits and Costs of BMP 5 at the Cow/Calf Operation in 2029 - Market Values

The costs to the cow/calf operator include the RFI testing costs and the extra fuel required to transport bulls to testing stations for testing. Since there are no reported

premiums being paid for low RFI bulls in Alberta at this time, and since it is assumed that the young potential breeding bulls sent for testing originate from within the owner's beef herd, no incremental cost has been used for purchasing potentially lower RFI bulls. Similarly no value is provided for potential sales of bulls testing with low RFI. The annual costs are \$120,000 across the 187 bulls.

This BMP has a net annual benefit of \$150,000 as indicated in Table 6.3, with the BCR of 2.3:1, indicating that annual benefits in 2029 are two times larger than the costs.

 Table 6.3: Benefit Cost Ratio at the Cow/Calf Operation in 2029 - Market Values

Total Annual Benefits (\$ million)	\$0.27
Total Annual Costs (\$ million)	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.15
Ratio of Annual Benefits to Annual Costs	2.26

The second CBA **(CBA 2)** retains the cow/calf focus and considers the impact on emissions. The reduction in GHG emissions due to this BMP is illustrated in Table 6.4. This BMP reduces GHG emissions in the cow/calf sector by 627 tonnes CO_2e , which provides an annual benefit of \$13,000, based on valuing the reduction at \$20/tonne of CO_2e .

Table 6.4:	Benefit	of Emissions	Reductions	at the	Cow/Calf	Operation	in 2029 -	BMP 5
14010 0.4.	Deneine	of Linissions	Reductions	at the	Competiti	operation	111 202)	

Reduction in Cow/Calf GHG Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
Methane emissions from stored manure	kg CO ₂ e	-8,249	\$0.02	-\$0.0002
Enteric fermentation emissions	kg CO ₂ e	-389,200	\$0.02	-\$0.008
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	-108,316	\$0.02	-\$0.002
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-23,976	\$0.02	-\$0.0005
Energy generation and consumption activities	kg CO ₂ e	-94,155	\$0.02	-\$0.002
Feedlot and pasture activities	kg CO ₂ e	-3,389	\$0.02	-\$0.0001
Total - On-going	kg CO ₂ e	-627,285	\$0.02	-\$0.013

Assuming that the cow/calf sector receives a \$20/tonne value for this reduction, the annual benefits increase to \$0.29 million, and the BCR increases to 2.4:1 (as shown in Table 6.5) compared to the value shown in Table 6.3.

Table 6.5: Benefit Cost Ratio at the Cow/Calf Operations for BMP 5 in 2029

Total Annual Benefits (\$ million)	\$0.29
Total Annual Costs (\$ million)	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.17
Ratio of Annual Benefits to Annual Costs	2.36

Benefits and Costs in the Feedlot Sector

This BMP also provides direct benefits to the feedlot through improved feed conversion efficiency. Table 6.6 summarizes the direct costs and benefits that accrue to feedlot operators that purchase these low RFI calves for feeding (an assumption has been made for a premium for these calves). The low RFI calves generate a \$26/head costs savings, with the aggregate value of \$150,000. The largest savings to the feedlot is the modeled savings in feed.

The cost to the feedlot is the estimated higher price paid for low RFI (identifiable) animals. At an extra \$12/head, this is an extra \$60,000 per annum.

Items		Volume Change	Unit Price	Total Impact
			(\$/unit)	(\$ million)
<u> Benefits - Input Cost Savings</u>				
Purchase of barley	kg	-283,991	\$0.16	-\$0.05
Purchase of barley silage	kg	-2,081,774	\$0.04	-\$0.08
Purchase of min., trc min., cobalt, protein suppl., antibiotic	kg	-21,311.4	\$0.48	-\$0.01
Purchase of vitamins	kg	-27.5	\$1.37	\$0.00004
Fuel consumed to feed livestock (change)	L	-8,575.2	\$0.75	-\$0.006
Fuel consumed to collect manure (change)	L	-96.8	\$0.75	\$0.0001
Total - Input Cost Savings				-\$0.15
Costs - Higher Input Costs				
Purchase of low RFI calves premium	head	4,952	\$12.00	\$0.06
Total - Higher Operating Costs				\$0.06

Table 6.6: Benefits and Costs of BMP 5 at the Feedlot in 2029 – Market Values

The net benefits are \$90,000 as shown in Table 6.7, with a benefit cost ratio of 2.5:1, indicating that the feedlot is a beneficiary of low RFI calves.

Table 6.7:	Benefit	Cost Ratio	at the	Feedlot in	2030 -	Market	Values
------------	---------	-------------------	--------	------------	--------	--------	--------

Total Annual Benefits (\$ million)	\$0.15
Total Annual Costs (\$ million)	\$0.06
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.09
Ratio of Annual Benefits to Annual Costs	2.45

The impact of this BMP on emissions generated at the feedlot is highlighted in Table 6.8, with the reduced emissions related to lower feed intake by the low RFI animals. The amount of GHG emissions is reduced by 2,484 tonnes of CO_2e , which increases benefits by \$100,000 per annum (when valued at \$20/tonne) at the feedlot.

Reduction in Feedlot Emissions	Units	Volume Change	Unit Price (\$/unit)	Total Impact (\$ million)
Methane emissions from stored manure	kg CO ₂ e	-111,677	\$0.02	\$0.002
Enteric fermentation emissions	kg CO ₂ e	-2,297,311	\$0.02	-\$0.05
N ₂ O emissions from stored manure (direct)	kg CO ₂ e	-20,614	\$0.02	\$0.0004
N ₂ O emissions from stored manure (indirect)	kg CO ₂ e	-19,325	\$0.02	\$0.0004
Energy generation and consumption activities	kg CO ₂ e	-34,827	\$0.02	\$0.001
Feedlot activities	kg CO ₂ e	-11,731	\$0.02	\$0.0002
Yearling-fed system activities (transportation)	kg CO ₂ e	6,954	\$0.02	-\$0.05
Calf-fed system activities (transportation)	kg CO ₂ e	4,410	\$0.02	\$0.0001
Total - One-time	kg CO ₂ e	-2,484,121	\$0.02	-\$0.10

Table 6.8: Benefit of Emissions Reductions at the Feedlot in 2030 - Market Values

If feedlot operators were compensated for reduced GHG emissions as illustrated in Table 6.8, then the net benefits increase to \$190,000 and the BCR increases to 4.13. This suggests that feedlot operators would have reasonable incentive to source low RFI calves.

 Table 6.9: Benefit Cost Ratio at the Feedlot for BMP 5 in 2030

Total Annual Benefits (\$ million)	\$0.25
Total Annual Costs (\$ million)	\$0.06
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.19
Ratio of Annual Benefits to Annual Costs	4.13

Benefits and Costs in the Beef Supply Chain

With both cow/calf operations and the feedlot sector benefiting from low RFI animals, the benefits can be combined for the two sectors, when adjusting for a cow/calf sector benefit that is a feedlot cost (such as the higher price paid for low RFI calves). The supply chain marketplace benefits are valued at \$0.35 million, while the costs are \$0.12 million, resulting in a BCR of 2.9:1 (see Table 6.10). This BCR suggests that the marketplace incentives should be strong enough to support an increase in use of low RFI cattle. Some institutional design may be required, such as promoting the low RFI attributes and ensuring unique identification of low RFI calves throughout the animal's life.

Total Annual Benefits (\$ million)	\$0.35
Total Annual Costs (\$ million)	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.23
Ratio of Annual Benefits to Annual Costs	2.91

Table 6.10: Benefit Cost Ratio for the Beef Supply Chain for BMP 5 in 2029-2030

The reduction in emissions associated with this BMP that are in cropping activities that are not in the feedlot or cow/calf sector is shown in Table 6.11. These reductions are 728 tonnes CO₂e emissions.

Reduction in Other Emissions	Units	Volume Change	Unit Price	Total Impact
N-O omissions from gropping and land use	ka COm	73 630	\$0.02	\$0.001
Tatal D anissions from tropping and faid use	$\log CO_2 e$	-75,050	φ 0.0 2	ψ0.001
Total P emissions from run-off	kg PO4e	-228	-	-
Soil carbon change in soil from land use	kg CO ₂ e	12,948	\$0.02	\$0.0003
Direct CO ₂ emissions from managed soils	kg CO ₂ e	-9,634	\$0.02	\$0.0002
Forage and cereal sub-activities	kg CO ₂ e	-62,407	\$0.02	\$0.001
Cereal activities	kg CO ₂ e	-18,126	\$0.02	\$0.0004
Forage activities	kg CO ₂ e	-15,903	\$0.02	\$0.0003
Feedlot activities	kg CO ₂ e	-561,316	\$0.02	-\$0.01
Total	kg CO ₂ e	-728,068	\$0.02	\$0.015

Table 6.11: Other Emissions Reductions in 2029 with BMP 5

System wide benefits in 2029-30 are \$0.48 million, with net benefits being \$0.36 million, and an attractive BCR of 3.96. These system wide benefits are the addition of the beef supply chain market place benefits along with the attributed value of reduced emissions (as noted in Table 6.4, Table 6.8, and Table 6.11).

Table 6.12:	System	Wide	Benefits	and	Costs fo	r BMP	5 in	2029-2030

Total Annual Benefits (\$ million)	\$0.48
Total Annual Costs (\$ million)	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.36
Ratio of Annual Benefits to Annual Costs	3.96

This suggests that this BMP provides a financial benefit to the beef supply chain, while reducing overall emissions by 3,839 tonnes of CO_{2e} , which is a 0.003 kg CO_{2e} reduction per kg of live shrunk weight in a year (across all cattle) and by 1.29 kg CO_{2e} per kg live shrunk weight for the low RFI animals shipped for slaughter in 2030.

6.5 CBA AND BMP 5 - USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS - INCREASES IN BENEFITS OVER TIME

The discussion in the prior section was based on having this BMP in effect for a number of years, resulting in a build-up of bulls with the trait and consequently the number of calves born with the low RFI trait. With testing for low RFI bulls each year, the total number of bulls with the low RFI genes increase, which allows for an increase in the number of low RFI calves born each year. The above analysis was based on 5,550 calves being born with this characteristic each year. This BMP was partially in place in 2010. The benefits are somewhat less in the first year, due to the smaller sire population dispersing the desired trait to a smaller number of calves.

The following is a comparison of the BCR in 2010 when bull population with demonstrated low RFI trait was 85 (compared to 749 in 2029) and consequently the number of low RFI calves is much smaller at 598 calves.

The BCR at the cow/calf operation is slightly lower at 1.86:1 in 2010, versus 2.26:1 in 2029. This is based on higher costs per low RFI calf cost attributable to RFI testing.

Table 6.13: Benefit Cost Ratio at the Cow/Calf Operation in 2010 and 2029 - Market Values

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.03	\$0.27
Total Annual Costs (\$ million)	\$0.02	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.01	\$0.15
Ratio of Annual Benefits to Annual Costs	1.86	2.26

After considering the reduction in GHG emissions at the cow/calf operation, the same relationship holds in Table 6.14 as in the above table, when only market values were considered.

Table 6.14:	Benefit Cost R	atio at the Cow	/Calf Operation	n for BMP 5 ir	2010 and 2029
14010 0111	Deneine Coor I	and at the conj	can operation		

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.03	\$0.29
Total Annual Costs (\$ million)	\$0.02	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.02	\$0.17
Ratio of Annual Benefits to Annual Costs	1.95	2.36

At the feedlot, the BCR is somewhat higher in 2011 versus in 2030, however the per unit costs and benefits are rather comparable. When the reduced GHG emissions are valued, the BCR is somewhat higher in 2030 versus 2011 as shown in Table 6.16.

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.02	\$0.15
Total Annual Costs (\$ million)	\$0.01	\$0.06
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.01	\$0.09
Ratio of Annual Benefits to Annual Costs	2.64	2.45

 Table 6.15:
 Benefit Cost Ratio at the Feedlot in 2011 and 2030 – Market Values

Table 6.16: Benefit Cost Ratio at the Feedlot for BMP 5 in 2011 and 2030

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.02	\$0.25
Total Annual Costs (\$ million)	\$0.01	\$0.06
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.02	\$0.19
Ratio of Annual Benefits to Annual Costs	3.48	4.13

When the marketplace benefits and costs are considered for the beef supply chain, the BCR is slightly larger in 2029-30 versus in the 2010-2011 period. The BCR of 2.57:1 in 2010 indicates that RFI testing should be implemented by the beef supply chain, notwithstanding the on-farm environmental benefits.

Table 6.17: Benefit Cost Ratio for the Beef Supply Chain (Cow/Calf and Feedlot)for BMP 5 in 2010-2011 and 2029-2030

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.04	\$0.35
Total Annual Costs (\$ million)	\$0.02	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.03	\$0.23
Ratio of Annual Benefits to Annual Costs	2.57	2.91

Overall, the system wide BCR is 3:1 in 2010 indicating a potential positive return to adopting this BMP; however, based on discussions with professionals in this field, this practice is currently not practiced due to economics. This could relate to the need for cow/calf operators to be able to identify all superior RFI calves to be able to capture some of the benefits. It can be noted that with a BCR of 3:1, the internal rate of return (IRR) with a 5 percent social discount rate is approximately 15 percent. At the same time, the GHG emissions reductions are 0.0003 kg CO₂e per kg live shrunk weight in a year (across all cattle) and 1.42 kg CO₂e per kg of live shrunk weight for the low RFI animals shipped for slaughter in 2011.

Item	2010-11	2029-30
Total Annual Benefits (\$ million)	\$0.05	\$0.48
Total Annual Costs (\$ million)	\$0.02	\$0.12
Net Annual Benefits [Benefits - Costs] (\$ million)	\$0.04	\$0.36
Ratio of Annual Benefits to Annual Costs	3.11	3.96

Table 6.18: System Wide Benefits and Costs for BMP 5 in 2010-2011 and 2029-2030

As with most genetic improvements, the effect is expected to plateau over time, meaning that the gene uptake in the beef system will begin to remain constant once a certain amount of time is reached.

7.0 RANKING OF BMPs

The various BMPs modeled had differing economic consequences for operators in the beef supply chain, and they had differing modeled impacts on GHG reductions as summarized by the tonnes of CO₂e. Table 7.1 provides a summary of the impact of these modeled BMPs on the change in GHG emissions (shown as Δ CO₂e) and the corresponding change in kg CO₂e per kg live shrunk weight. The last two columns summarize the net annual market place benefits realized by operators in the beef supply chain, and the benefit cost ratio (BCR) based on using the NPV of incremental marketplace costs and benefits (without placing a value on the reduced GHG emissions).

BMP	Description	∆ CO ₂ e	Δ CO ₂ e per kg all beef	∆ CO₂e per kg affected beef	Net Annual Benefits	Market NPV BCR
		tonnes	kg	kg	\$ million	ratio
BMP 1.1a	Composting - Windrow on-site clay	962,702	0.675	0.743	(\$322.35)	0.18
BMP 1.1b	Composting - Windrow off-site clay	974,634	0.683	0.752	(\$322.35)	0.17
BMP 1.2a	Composting - Loader on-site clay	1,022,630	0.717	0.789	(\$413.76)	0.16
BMP 1.2b	Composting - Loader off-site clay	1,042,414	0.731	0.804	(\$413.76)	0.14
BMP 2.1	Swath grazing	-218,177	-0.153	-1.673	\$243.31	1.94
BMP 2.2	Stockpile grazing	882,725	0.619	0.007	(\$29.91)	0.79
BMP 3	Ionophores in roughage diets	-292,611	-0.205	-2.244	\$101.53	2.85
BMP 4.1	Growth promotant - last 28 days	-59,659	-0.042	-0.046	\$12.41	12.48
BMP 4.2	Fewer days on feed	-853,667	-0.406	-1.513	\$56.12	2.24
BMP 5	Selection for superior RFI	-3,839	-0.003	-1.285	\$0.23	2.91

Table 7.1: Summary of BMP Impact on GHG Emissions and Beef Supply Chain Operators

There are some BMPs that have a larger impact on the environment. A ranking of each BMP by their contribution to reducing emissions as measured¹⁰ by the ΔCO_2e is provided in Table 7.2. The BMP with the largest ΔCO_2e impact is BMP 4.2 where cattle are shipped to the slaughter plant by up to 4 fewer months due to being placed on a finishing ration much earlier in their life cycle. The $\Delta CO_2e/kg$ live shrunk weight (all beef) is 0.406 kg CO₂e/kg live shrunk weight, which is a 3 percent reduction in GHG emissions. This BMP also has an attractive BCR for the feedlot operator at 2.24:1.

The next most attractive BMP for GHG reduction is ionophores in roughage diets (cattle on cow/calf operation), with a reduction in GHG emissions of 0.205 kg CO2e/kg live shrunk weight (all beef), which is a 1.4 percent reduction in GHG emissions.

¹⁰ The reduction is based on full adoption of the BMP and is relative to the 2010 baseline, where appropriate. It should be remembered that with some BMPs, such as BMP 5 (selecting for superior RFI), the entire beef herd is not affected by this BMP.

Table 7.2 provides the rankings of BMPs based on change in emissions for all shrunk live weight, as well as the effect of each BMP based on the change in emissions per kg affected live shrunk weight (third column in the table). This allows for a better understanding of the effect of each BMP as it relates to the affected beef in the BMP as some BMPs do not affect the entire beef herd. For example, while BMP 3 (ionophores for cattle on cow/calf operation) had the largest impact per kg of cattle directly related to slaughter (of cows and bulls), BMP 4.1 (fewer days on feed) has a larger impact across all beef slaughtered in the province.

The analysis indicates that the first five BMPs listed in Table 7.2 should be adopted if the industry wants to decrease GHG emissions.

BMP	Description	∆ CO ₂ e	Δ CO ₂ e per kg all beef	Δ CO ₂ e per kg affected beef	Net Annual Benefits	Market NPV BCR
		tonnes	kg	kg	\$ million	ratio
BMP 4.2	Fewer days on feed	-853,667	-0.406	-1.513	\$56.12	2.24
BMP 3	Ionophores in roughage diets	-292,611	-0.205	-2.244	\$101.53	2.85
BMP 2.1	Swath grazing	-218,177	-0.153	-1.673	\$243.31	1.94
BMP 4.1	Growth promotant - last 28 days	-59,659	-0.042	-0.046	\$12.41	12.48
BMP 5	Selection for superior RFI	-3,839	-0.003	-1.285	\$0.23	2.91
BMP 2.2	Stockpile grazing	882,725	0.619	0.007	(\$29.91)	0.79
BMP 1.1a	Composting - Windrow on-site clay	962,702	0.675	0.743	(\$322.35)	0.18
BMP 1.1b	Composting - Windrow off-site clay	974,634	0.683	0.752	(\$322.35)	0.17
BMP 1.2a	Composting - Loader on-site clay	1,022,630	0.717	0.789	(\$413.76)	0.16
BMP 1.2b	Composting - Loader off-site clay	1,042,414	0.731	0.804	(\$413.76)	0.14

Table 7.2: Ranking of BMPs Based on GHG Reduction

Table 7.2 indicates that stockpile grazing with perennial crops and composting should not be considered, as they do not reduce GHG emissions.

From an economic perspective, the BMP with the largest pay-off to the beef supply chain is using RAC for the last 28 days in the feedlot (see Table 7.3). The BCR is close to 12.5:1, suggesting that this BMP would be beneficial as an industry standard on all cattle, provided that further studies show positive results for beef quality (see Section 5.2.1).

BMP	Description	∆CO ₂ e	Δ CO₂e per kg all beef	∆ CO ₂ e per kg affected beef	Net Annual Benefits	Market NPV BCR
		tonnes	kg	kg	\$ million	ratio
BMP 4.1	Growth promotant - last 28 days	-59,659	-0.042	-0.046	\$12.41	12.48
BMP 5	Selection for superior RFI	-3,839	-0.003	-1.285	\$0.23	2.91
BMP 3	Ionophores in roughage diets	-292,611	-0.205	-2.244	\$101.53	2.85
BMP 4.2	Fewer days on feed	-853,667	-0.406	-1.513	\$56.12	2.24
BMP 2.1	Swath grazing	-218,177	-0.153	-1.673	\$243.31	1.94
BMP 2.2	Stockpile grazing	882,725	0.619	0.007	(\$29.91)	0.79
BMP 1.1a	Composting - Windrow on-site clay	962,702	0.675	0.743	(\$322.35)	0.18
BMP 1.1b	Composting - Windrow off-site clay	974,634	0.683	0.752	(\$322.35)	0.17
BMP 1.2a	Composting - Loader on-site clay	1,022,630	0.717	0.789	(\$413.76)	0.16
BMP 1.2b	Composting - Loader off-site clay	1,042,414	0.731	0.804	(\$413.76)	0.14

Table 7.3: Ranking of BMPs Based on Economics

Genetic improvement also has an attractive BCR at 2.9:1, which implies an IRR of over 12 percent. The net benefits and $\Delta CO_{2}e$ are low in comparison to other BMPs – this is only due to the low assumed adoption rate based on the ability to test for and identify bulls with superior RFI genes. The change in emissions per kg affected live shrunk weight is the fourth highest of all BMPs, making this BMP very effective at reducing GHG emissions per beef affected. Use of artificial insemination, or bull sharing, will greatly increase the benefits to the sector and to the overall GHG emissions reduction.

The above suggests that the following BMPs be further considered for implementation in the Alberta beef sector (based on [1] reducing CO_2e emissions, and [2] an attractive BCR in the sector):

- BMP 4.1 Growth promotant (RAC) last 28 days
- BMP 5 Selection for superior RFI
- BMP 3 Ionophores in roughage diets
- BMP 4.2 Fewer days on feed
- BMP 2.1 Swath grazing

8.0 <u>LIMITATIONS OF THE STUDY</u>

The objective of Phase 2 was to assess the environmental and economic impacts of beef production with the implementation of beneficial management practices. The LCA completed by CRA in Phase 1 was used and updated to model the effects of these BMPs.

Performing any LCA is an intensive process. The complexity of the beef system in Alberta and its interaction with adjacent livestock systems and practices made the task of performing the Phase 1 LCA bore with it many challenges.

It is acknowledged that availability of reliable data can greatly impact the accuracy of the final results. Therefore, emphasis was placed on gathering information from updated, reliable, and expert sources.

Some of the limitations of the Phase 1 LCA model which are either limitations for the Phase 2 project as well, or that can have an impact on the final results are:

- Delineation of the boundaries of the system is dependent on user definition. While efforts were made to include the entire life cycle of all the logistic and processes involved in the life cycle of beef cattle, some of the processes were omitted due to the lack of both primary and secondary data.
- Estimation of environmental emissions generated by the diverse and interlinked processes within the system is a key point of success for building a comprehensive inventory. However, the databases currently available do not reach a consensus in methodological terms and accuracy when reporting emissions. Every effort was made to use the most reliable environmental emissions for the processes involved in the analysis.
- Where primary and secondary data gaps were encountered, educated assumptions were made to capture relevant processes in the calculations.
- The complexity and diversity of different methods for modelling the transfer processes in the manure management and cropping practices can have an effect on the final outcomes. In addition to the recognized IPCC 2006 and Environment Canada 2008 Tier 2 standard methodologies, new methodologies developed specifically for conditions in Canada, and specifically Alberta, can lead to different results in emissions from manure management and cropping practices.
- While industrial processes are relatively well defined and characterized in terms of environmental emissions, agricultural practices tend to be more variable. The data used to quantify environmental emissions from agricultural practices in different geographic settings may introduce a source of uncertainty in the results. However,

every effort was made to adjust the agricultural practices and associated emissions to conditions specific for the area of the current study.

- The LCIA methodology and equivalence factors used to quantify some environmental impacts are generic. To date, representative factors for Alberta have not been developed.
- The LCIA results were based on the IPCC 2007 GWP (100 years) quantification methodology and IMPACT 2002+.

The results presented in this report are subject to these and other inherent limitations as they relate to data inputs and the ability of the various models and techniques utilized to accurately reflect actual conditions. It is also recognized that the Phase 1 LCA baseline model was a first approximation of the life cycle of the Alberta beef sector. For Phase 2, only activities associated with each of the BMPs have been revised from 2001 conditions to reflect current conditions (2010). Additional refinement and analysis of input parameters for the entire model will yield more robust results.
9.0 <u>REFERENCES</u>

Agri-Facts (October 2008). Agronomic management of stockpiled pastures. Available at:

http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex12422/\$file /420_56-4.pdf?OpenElement.

- Agri-Facts. (September 2008). Agronomic Management of Swath Grazed Pastures. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex12419/\$file /420_56-3.pdf?OpenElement.
- Agri-Facts. (July 2006). Alberta Agriculture, Food and Rural Development. Residual Feed Intake (Net Feed Efficiency) in Beef Cattle. Agdex 420/11-1.
- Agri-Facts. (October 2004). Swath grazing in western Canada: an introduction. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/ 420_56-2.pdf?OpenElement.
- Alberta Agriculture and Rural Development. (January 2005). Manure Composting Manual. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex8875.
- Alberta Agriculture and Rural Development. (June 2010). Draft Guidance Document for Reducing the Number of Days on Feed of Beef Cattle. Version 7.
- Alberta Agriculture and Rural Development. (June 2010). Draft Guidance Document for the Quantification Protocol for Reducing Age at Harvest. Version 7.
- Alberta Agriculture and Rural Development. (October 2009). Facilities and Environment: Composting Animal Manures. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/beef11831.
- Alberta Environment. (September 2009). Selection for Residual Feed Intake in Beef Cattle Quantification Protocol. Draft Version 2.0.
- Alberta Environment. (August 2008). Specified Gas Emitters Regulation for the Quantification Protocol for Reducing Days on Feed of Cattle. Version 1.1.
- Alberta Government. (2005). Range and Pasture Management: Alberta Rangelands, Sustainable Resource Development. Available at: http://www3.gov.ab.ca/srd/land/pdf/Range_Health_Field_Workbook.pdf.
- ARECA, 2006. Year round grazing 365 days. Livestock and Forage Group of Agricultural Research and Extension Council of Alberta. Available at: http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf.

- Arthur, J.P.F., Herd, R.M. (2008). Residual feed intake in beef cattle. R. Bras. Zootec., V.37, supplemento especial, 269-279.
- Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.
- Basarab, J.A., Baron, D. and Darling, T. (2008). Carbon Credit Potential of Reducing Age at Slaughter in Beef Cattle. What is the size of the prize? 14 pages (Report).
- Conestoga-Rovers & Associates. Evaluating Environmental and Economic Impact for Beef Production in Alberta Using Life Cycle Analysis. Prepared for ARD. April 2010.
- Dreyer, L.C., Hauschild, M.Z., and Schierbeck, J. A Framework for Social Life Cycle Impact Assessment. Int. J. Life Cycle Assessment (2006) 11:88-97
- Notter, David R. (ND). Defining Biological Efficiency of Beef Production. Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, 24061.
- Pratt, M., and Rasmussen, A., 2001. Determining your stocking rate, Range Management Fact Sheet. Available at: http://extension.usu.edu/files/publications/publication/NR_RM_04.pdf.
- Quinn, M.J. et al. The effects of ractopamine-hydrogen chloride (Optaflexx) on performance, carcass characteristics, and meat quality on finishing feedlot heifers. Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600. J. Anim. Sci. 2008. 86:902-908.
- Saskatchewan Ministry of Agriculture. (December 2008) Composting Solid Manure. Available at:

http://www.agriculture.gov.sk.ca/adx/aspx/adxGetMedia.aspx?DocID=2880,2 879,346,185,81,1,Documents&MediaID=6458&Filename=Composting%2BSolid% 2BManure%2B-%2BPrinter%2BFriendly.pdf.

Statistics Canada. (Rothwell) (2005). Grazing management in Canada. No. 1. Available at:

http://dsp-psd.pwgsc.gc.ca/Collection/Statcan/21-021-M/21-021-MIE2005001. pdf.

Treasury Board Secretariat, Benefit Cost Analysis Guide, DRAFT July 1998.

Tyrchniewicz Consulting (2006). The Science of Greenhouse Gas Emissions and Grazing Management Strategies: an Investigative/Awareness Report. Available at: http://www.jpcs.on.ca/biodiversity/ghg/pdf/discussion_paper.pdf. Vermeer. CT1010TX Compost Turner. Available at: http://www2.vermeer.com/vermeer/LA/en/N/equipment/compost_turners/ ct1010tx.

Vogel, G.J. et al. Effect of Ractopamine Hydrochloride on Growth Performance and Carcass Traits in Calf-Fed and Yearling Holstein Steers Fed to Slaughter. The Professional Animal Scientist. 2009. Available at: http://pas.fass.org/content/25/1/26.full.pdf+html.

10.0 DISCLAIMER

The information and opinions rendered in this report are exclusively for use by Alberta Agricultural and Rural Development. CRA and JRG will not distribute or publish this report without Alberta Agricultural and Rural Development's consent except as required by law or court order. The information and opinions expressed in this report are given in response to a limited assignment and should only be evaluated and implemented in connection with that assignment. CRA accepts responsibility for the competent performance of its duties in executing the assignment and preparing this report in accordance with the normal standards of the profession, but disclaims any responsibility for consequential damages.

All of which is respectfully submitted,

CONESTOGA-ROVERS & ASSOCIATES

Itudda

Tej Gidda, Ph.D., P. Eng.

TABLE 2.1

PERCENT CHANGE IN GHG EMISSIONS WITH BMP 1 ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

				BMF	BMP 1.1a		BMP 1.1b		BMP 1.2a	
	Baseline (2001)	Baselin	ıe (2010)	Windrow turn	er, on-site clay	Windrow turn	er, off-site clay	Existing equipm	ent, on-site clay	Existing equ
	(kg CO2e/	(kg CO2e/	% change from	(kg CO2e/	% change from	(kg CO2e/	% change from	(kg CO2e/	% change from	(kg CO2e,
	kg live weight)	kg live weight)	2001 baseline	kg live weight)	2010 baseline	kg live weight)	2010 baseline	kg live weight)	2010 baseline	kg live weig
Construction Activities	0.000	0.004	100%	0.181	4282%	0.189	4485%	0.014	232%	0.028
Excavate clay (increase)	0.000	0.002		-0.002		0.006		-0.002		0.012
Transport clay (increase)	0.000	0.002		0.000		0.000		0.002		0.012
Construct composting nad (increase)	0.000	0.002		0.006		0.006		0.012		0.000
Manufacture equinment (increase)	0.000	0.002		0.171		0.171		0.012		0.012
Transport equipment (increase)	0.000	0.000		0.001		0.171		0.000		0.000
mansport equipment (increase)	0.000	0.004	-	0.177	_	0.184	_	0.010	-	0.024
Forage and Cereal Sub-activities	0.845	0.845	0%	0.845	0%	0.845	0%	0.845	0%	0.845
Energy Generation Activities	2 695	2 735	1 5%	2 754	0.7%	2 754	0.7%	2 963	8 3%	2 963
Increased emissions components	2.000	2.750	1.570	2.754	0.7 /0	2.734	0.7 /0	2.705	0.070	2.703
Produce crude (increase)		0.006		0.003		0.003		0.036		0.036
Transport crude (increase)		0.002		0.001		0.001		0.012		0.012
Refine crude into diesel (increase)		0.004		0.002		0.002		0.022		0.022
Transport diesel (increase)		0.004		0.002		0.002		0.021		0.021
Combust diesel (increase)		0.024		0.011		0.011		0.137		0.137
		0.040	-	0.019	_	0.019	_	0.228	_	0.228
O&M Activities	0.000	0.000	0%	0.000	0%	0.000	0%	0.000	0%	0.000
Cereal Activities	0.237	0.237	0%	0.237	0%	0.237	0%	0.237	0%	0.237
Forage Activities	0.200	0.200	0%	0.200	0%	0.200	0%	0.200	0%	0.200
Feedlot and Pasture Activities	0.314	0.381	21.6%	0.767	101.2%	0.767	101.2%	0.767	101.2%	0.767
Dispose of manure (transport off site)		-0.002		-0.011		-0.011		-0.011		-0.011
Transport wood waste		0.00004		0.0002		0.0002		0.0002		0.0002
Produce straw for amendment		0.069		0.391		0.391		0.391		0.391
Transport straw		0.001		0.005		0.005		0.005		0.005
,		0.068	-	0.386	-	0.386	-	0.386	-	0.386
Transport (Cow Activities)	0.017	0.017	0%	0.017	0%	0.017	0%	0.017	0%	0.017
Transport (Bull Activities)	0.002	0.002	0%	0.002	0%	0.002	0%	0.002	0%	0.002
Transport (Yearling-fed System Activities)	0.076	0.076	0%	0.076	0%	0.076	0%	0.076	0%	0.076
	0.016	0.046	0.00	0.044	00/	0.046	0.0/	0.044	0.00	0.046
Transport (Cair-Fed System Activities)	0.046	0.046	0%	0.046	0%	0.046	0%	0.046	0%	0.046
Cattle Enteric Fermentation Emissions	7.423	7.423	0%	7.423	0%	7.423	0%	7.423	0%	7.423
Cattle Methane Emissions from Manure	0.206	0.199	-3.4%	0.159	-20.0%	0.159	-20.0%	0.159	-20.0%	0.159
(decrease due to composting)		-0.007		-0.040		-0.040		-0.040		-0.040
Soil Carbon Change in Soil From Land Use	-0.165	-0.165	0%	-0.165	0%	-0.165	0%	-0.165	0%	-0.165
Direct CO2 Emissions From Managed Soils	0.132	0.132	0%	0.132	0%	0.132	0%	0.132	0%	0.132
N2O from Beef Activity (manure), Soil, Crop (increase due to composting)	2.677	2.701 0.023	0.9%	2.834 0.133	4.9%	2.834 0.133	4.9%	2.834 0.133	4.9%	2.834 0.133
Total	14 705	14 824	0 00/.	15 500	4 50%	15 517	1 60/.	15 551	4 80%	15 565
Total (excluding construction activities)	14.705	14.830	0.8%	15.328	3.4%	15.328	3.4%	15.537	4.8%	15.537
										/

ipm	ent, off-site clay
/	% change from
ht)	2010 baseline
	578%
	_
	-

8.3%

101.1%	
0%	
0%	
0%	

0%	
0%	
0%	
0%	
0%	
-19.9%	
0%	
0%	

4.9%

4.9% 4.8%

TABLE 3.1.1

PERCENT CHANGE IN GHG EMISSIONS WITH BMP2.1 SWATH GRAZING ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

	Baseline (2001)	100% A	doption
	(kg CO2e/ kg live weight)	(kg CO2e/ kg live weight)	% change from 2001 baseline
Construction	0.00	0.00	0%
Forage and Cereal Sub-activities	0.845	0.877	3.88%
Change in emissions		0.033	
Energy Generation Activities	2.695	2.544	-5.60%
Change in emissions		-0.151	
O&M Activities	0.00	0.00	0%
Cereal Activities	0.237	0.237	0%
Forage Activities	0.200	0.187	-6.90%
Change in emissions		-0.014	
Feedlot and Pasture Activities	0.314	0.306	-2.45%
Change in emissions		-0.008	
Transport (Cow Activities)	0.017	0.017	0%
Transport (Bull Activities)	0.002	0.002	0%
Transport (Yearling-Fed System Activities)	0.076	0.076	0%
Transport (Calf-Fed System Activities)	0.046	0.046	0%
Swath Grazing Management	0.000	0.010	0%
		0.010	
Cattle Enteric Fermentation Emissions	7.423	7.423	0%
Change in emissions			
Cattle Methane Emissions from Manure	0.206	0.206	0%
Change in emissions			
Soil Carbon Change in Soil From Land Use	-0.165	-0.187	13.20%
Change in emissions		-0.022	
Direct CO2 Emissions From Managed Soils	0.132	0.127	-4.46%
Change in emissions		-0.006	
N2O from Beef Activity (manure), Soil, Crop	2.677	2.682	0.17%
Change in emissions		0.005	
Total	14.705	14.552	-1.04%

TABLE 3.1.2

PERCENT CHANGE IN GHG EMISSIONS WITH BMP 2.2 STOCKPILE GRAZING ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

	Baseline (2001) 100% Adopt		doption
	(kg CO2e/ kg live weight)	(kg CO2e/ kg live weight)	% change from 2001 baseline
Construction	0.00	0.00	0%
Forage and Cereal Sub-activities	0.845	1.053	24.64%
Change in emissions		0.208	
Energy Generation Activities	2.695	2.660	-1.30%
Change in emissions		-0.035	
O&M Activities	0.00	0.00	0%
Cereal Activities	0.237	0.237	0%
Forage Activities	0.200	0.196	-2.38%
Change in emissions		-0.005	
Feedlot and Pasture Activities	0.314	0.312	-0.57%
Change in emissions		-0.002	
Transport (Cow Activities)	0.017	0.017	0%
Transport (Bull Activities)	0.002	0.002	0%
Transport (Yearling-Fed System Activities)	0.076	0.076	0%
Transport (Calf-Fed System Activities)	0.046	0.046	0%
Stockpile grazing management	0.000	0.008	0%
		0.008	
Cattle Enteric Fermentation Emissions Change in emissions	7.423	7.423	0%
Cattle Methane Emissions from Manure Change in emissions	0.206	0.206	0%
Soil Carbon Change in Soil From Land Use	-0.165	-0.168	1.25%
Change in emissions		-0.002	
Direct CO2 Emissions From Managed Soils	0.132	0.152	14.40%
Change in emissions		0.019	
N2O from Beef Activity (manure), Soil, Crop	2.677	3.104	15.95%
Change in emissions		0.427	
Total	14.705	15.324	4.21 %

TABLE 4.1

PERCENT CHANGE IN GHG EMISSIONS WITH BMP 3 ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

	Baseline (2001) BMP 3		IP 3
	(kg CO2e/	(kg CO2e/	% change from
	kg live weight)	kg live weight)	2001 baseline
Construction	0.00	0.000	0%
Forage and Cereal Sub-activities	0.845	0.835	-1.08%
Change in emissions		-0.009	
Energy Generation Activities	2.695	2.692	-0.13%
Change in emissions		-0.004	
O&M Activities	0.00	0.000	0%
Cereal Activities	0.237	0.237	0%
Forage Activities	0.200	0.193	-3.44%
Change in emissions		-0.007	
Feedlot and Pasture Activities	0.314	0.314	-0.01%
Change in emissions		0.000	
Transport (Cow Activities)	0.017	0.017	0%
Transport (Bull Activities)	0.002	0.002	0%
Transport (Yearling-Fed System Activities)	0.076	0.076	0%
Transport (Calf-Fed System Activities)	0.046	0.046	0%
Cattle Enteric Fermentation Emissions	7.423	7.296	-1.72%
Change in emissions		-0.127	
Cattle Methane Emissions from Manure	0.206	0.203	-1.31%
Change in emissions		-0.003	
Soil Carbon Change in Soil From Land Use	-0.165	-0.165	-0.44%
Change in emissions		0.001	
Direct CO2 Emissions From Managed Soils	0.132	0.132	-0.61%
Change in emissions		-0.001	
N2O from Beef Activity (manure), Soil, Crop	2.677	2.622	-2.06%
Change in emissions		-0.055	
Total	14.705	14.500	-1.39%

TABLE 5.1

PERCENT CHANGE IN GHG EMISSIONS WITH BMP 4 ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

				BMI	P 4.1		
	Baseline (2001)	Baselin	ie (2010)	Fewer Days	s in Feedlot	Baseline (2001/2010)	
	(kg CO2e/	(kg CO2e/	% change from	(kg CO2e/	% change from	(kg CO2e/	(kg C
	kg live weight)	kg live weight)	2001 baseline	kg live weight)	2010 baseline	kg live weight)	kg live
Construction Activities	0.000	0.000	0%	0.000	0%	0.000	0.0
Forage and Cereal Sub-activities	0.845	0.838	-0.7%	0.831	-0.9%	0.845	0.8
Change in emissions		-0.006		-0.008			0.0
Energy Generation Activities	2.695	2.689	-0.2%	2.681	-0.3%	2.695	2.5
Change in emissions		-0.006		-0.008			-0.
O&M Activities	0.000	0.000	0%	0.000	0%	0.000	0.0
Cereal Activities	0.237	0.234	-1.2%	0.230	-1.5%	0.237	0.2
Change in emissions		-0.003		-0.004			0.0
Forage Activities	0.200	0.200	-0.1%	0.200	-0.1%	0.200	0.3
Change in emissions		0.000		0.000			-0.
Feedlot and Pasture Activities	0.314	0.312	-0.4%	0.311	-0.5%	0.314	0.3
Change in emissions		-0.001		-0.002			-0.
Transport (Cow Activities)	0.017	0.017	0%	0.017	0%	0.017	0.0
Change in emissions							0.0
Transport (Bull Activities)	0.002	0.002	0%	0.002	0%	0.002	0.0
Change in emissions							0.00
Transport (Yearling-Fed System Activities)	0.076	0.076	0%	0.076	0%	0.076	0.0
Change in emissions							0.0
Transport (Calf-Fed System Activities)	0.046	0.046	0%	0.046	0%	0.046	0.0
Change in emissions							0.0
Cattle Enteric Fermentation Emissions	7.423	7.413	-0.1%	7.401	-0.2%	7.423	7.1
Change in emissions		-0.010		-0.012			-0
Cattle Methane Emissions from Manure	0.206	0.205	-0.3%	0.204	-0.3%	0.206	0.1
Change in emissions		-0.001		-0.001			-0.
Soil Carbon Change in Soil From Land Use	-0.165	-0.164	-0.9%	-0.162	-1.1%	-0.165	-0.
Change in emissions		0.001		0.002			0.0
Direct CO2 Emissions From Managed Soils	0.132	0.131	-0.8%	0.130	-1.0%	0.132	0.3
Change in emissions		-0.001		-0.001			0.0
N2O from Beef Activity (manure), Soil, Crop	2.677	2.671	-0.3%	2.662	-0.3%	2.677	2.(
Change in emissions		-0.007		-0.008			-0.0
Total	14.705	14.671	-0.2%	14.629	-0.3%	14.705	14.

B	SMP 4.2	
Reduced	Age at Harvest	
kg CO2e/	% change from	
live weight)	2001/2010 baseline	
0.000	0%	
0.856	1.3%	٦
0.011		
2.573	-4.5%	٦
-0.122		_
0.000	0%	
0.242	2.3%	٦
0.005		
0.184	8 20/	_
0.104	-0.3%	_
-0.017		
0.212	0.20/	7
0.313	-0.5%	
-0.001		
0.010	1.49/	_
0.018	1.4%	
0.0002		
	4.40/	_
0.002	1.4%	
0.00003		
	1 10/	-
0.077	1.4%	
0.001		
	4.40/	-
0.047	1.4%	
0.001		
		-
7.168	-3.4%	
-0.255		
		-
0.199	-3.1%	
-0.006		
		_
-0.158	-4.6%	
0.008		
0.135	2.3%	
0.003		
		_
2.643	-1.3%	
-0.034		
14.299	-2.8%	

TABLE 6.1

PERCENT CHANGE IN GHG EMISSIONS WITH BMP 5 ALBERTA BEEF LCA - PHASE 2 Alberta Agriculture and Rural Development

	Baseline (2001)) Baseline (2010)		BMP 5 (2029)		
	(kg CO2e/ kg live weight)	(kg CO2e/ kg live weight)	% change from 2001 baseline	(kg CO2e/ kg live weight)	% change from 2010 baseline	
Construction Activities	0.0000	0.0000	0%	0.0000	0%	
Forage and Cereal Sub-activities Change in emissions	0.8445	0.8445 -5.24E-06	-0.0006%	0.8445 -4.37E-05	-0.005%	
Energy Generation Activities Change in emissions	2.6953	2.6952 -1.08E-05	-0.0004%	2.6951 -9.04E-05	-0.003%	
O&M Activities	0.0000	0.0000	0%	0.0000	0%	
Cereal Activities Change in emissions	0.2369	0.2369 -1.53E-06	-0.0006%	0.2369 -1.27E-05	-0.005%	
Forage Activities Change in emissions	0.2004	0.2004 -1.32E-06	-0.0007%	0.2004 -1.11E-05	-0.006%	
Feedlot and Pasture Activities Change in emissions	0.3136	0.3135 -4.53E-05	-0.014%	0.3131 -4.04E-04	-0.129%	
Transport (Cow Activities)	0.0174	0.0174	0%	0.0174	0%	
Transport (Bull Activities)	0.0022	0.0022	0%	0.0022	0%	
Transport (Yearling-Fed System Activities) Change in emissions	0.0755	0.0755 6.75E-07	0.0009%	0.0755 4.87E-06	0.006%	
Transport (Calf-Fed System Activities) Change in emissions	0.0462	0.0462 4.28E-07	0.0009%	0.0462 3.09E-06	0.007%	
Cattle Enteric Fermentation Emissions Change in emissions	7.4234	7.4231 -2.26E-04	-0.0030%	7.4213 -1.88E-03	-0.025%	
Cattle Methane Emissions from Manure Change in emissions	0.2055	0.2055 -1.01E-05	-0.0049%	0.2054 - <i>8.41E-05</i>	-0.041%	
Soil Carbon Change in Soil From Land Use Change in emissions	-0.1654	-0.1654 1.09E-06	-0.0007%	-0.1654 9.07E-06	-0.005%	
Direct CO2 Emissions From Managed Soils Change in emissions	0.1325	0.1325 -8.10E-07	-0.0006%	0.1324 -6.75E-06	-0.005%	
N2O from Beef Activity (manure), Soil, Crop Change in emissions	2.6774	2.6774 -2.05E-05	-0.0008%	2.6772 -1.72E-04	-0.006%	
Total	14.7052	14.7049	-0.0022%	14.7022	-0.018%	

APPENDIX A

PRINCIPLES GUIDING CBA ANALYSIS

There is no standard approach to CBA, however there are a few **principles** that have guided prior CBA analyses by JRG and should be followed to the degree possible ^{1 2 3}:

- 1. The focus of CBA is on the *impact of achieving an objective*, which requires that the *objective needs to be clearly articulated*. In the case of any of the BMPs being considered the objectives of government and the objectives of industry need to be documented. An objective for government is a reduction in GHGs, while the objectives for industry are more likely focused on profitability and positioning of Alberta beef in a global marketplace.
- 2. CBA typically looks at *comparing a few options (a BMP) that can be used to achieve the stated objectives.* With each BMP being considered, the assessment is relative to the current situation. For example, in the case of composting manure, achieving the target level of this BMP is evaluated in relation to the current volumes of composting and other existing solid manure handling practices.
- 3. A determination is required as to which *stakeholders will be considered by the CBA*, also known as *standing* referring to whose benefits and costs counts. In this case of BMP with the Alberta beef supply chain, the benefits and costs to each segment of the beef supply chain within Alberta will be considered, as well as the benefits and costs to al Albertans after considering the externalities of emissions. In some CBA, the benefits and costs to other jurisdictions can be considered.
- 4. An *adequate description of the current situation and current operating environment* is required. This includes an adequate description of the current situation, it strengths and weaknesses, and other aspects of the current operating environment.
- 5. The *operating environment associated with each option (BMP)* needs to be clearly described. In particular, the operating environment may change to facilitate the requested regulatory change. This includes a description of all of the elements and operating environment associated with the change. For example, with the BMP of reduced age to slaughter, a description is required for how this reduced age is to be achieved in the cow/calf, backgrounding, and finishing segments of the beef supply chain.

¹ For interested readers, a classic in the areas of cost benefit analysis is Gittinger, J. Price. Economic Analysis of Agricultural Projects. Economic Development Institute, The World Bank, 1984. The book is written for analysis of development projects; however, a number of the concepts and illustrations apply to most analyses.

² See also David Pearce, Giles Atkinson, and Susana Mourato. Cost-Benefit Analysis and the Environment, Recent Developments. OECD, 2006.

³ There can be other principles that should be considered in large-scale investment projects, such as building a new highway or deciding to proceed with a nuclear energy program.

- 6. The analysis should be based on *incremental change* associated with the BMP from the existing situation, which becomes the baseline for analysis. This allows for the analysis to focus on the impact associated with the change created by the BMP target.
- 7. There is typically a *range of costs and benefits that need to be considered* which result from the changes (BMP). The dimensions of this range to consider can include all of the supply chain participants (e.g., grain production through to feedlots). In some cases such as with more efficient utilization of feed grains, while from a LCA point of view there is an impact on the feed grain production sector through a lower environment impact, the CBA does not consider the feed grain sector based on the assumption that a lower volume of feed grain requirements does not affect the market price of feed grains. Such feed grain pricing is influenced predominately by the global supply and demand balance for feed grains. As well, *secondary benefits and costs may be important*. An example can be that the level of economic activity in a region may be higher or lower. As well, if upstream GHG are less due to a BMP, this benefit should be accounted for in the analysis.
- 8. The *benefits associated with each option should be compared to the costs of each option* to allow for an assessment of whether a BMP such as the use of ionophores in cow diets is preferred to the current situation. While the overall benefits, after accounting for externalities, may exceed costs from a cow/calf operator's perspective to adopt a BMP, the measured benefits must exceed the measured costs that are internal to their operation.
- 9. **Costs and benefits to various stakeholder groups should remain identifiable** to allow for an indication of advantages and disadvantages to various groups and stakeholders associated with a BMP, which ties into the issue of who has standing. For example, if a BMP is directed at the feedlot, the benefit cost ratio should be developed for this segment of the supply chain – this mimics the internalization of benefits and costs for a feedlot decision maker. The benefit cost relationship for society can change when the societal benefit of less GHG emission is part of the measurable benefit. However, if the BMP were described to have feedlots obtain credits for GHG reduction attributable to their own operations, these credits would be part of the benefit valuation. This pricing feature would be designed to have the costs and benefits of an operation be internalized within the operation.

If a BMP involves more than one segment of the beef supply chain (e.g., cow/calf and feedlots) then a separate computation is made for the benefits and costs that are attributable to (incurred by) these distinct segments.

As a result, while a BMP that improves feed utilization efficiency (and the LCA would indicate less GHG impact through feed grain production), a CBA would typically not apply to this part (feed grain production) of the supply chain. The exception being if

there was a measurable impact of a BMP in the beef production segment that had a material impact on costs or returns in the feed grain production sector. However, the CBA in the beef sector should account for any reduction in GHG in feed grain production attributable to a BMP in the beef production sector as identified through LCA.

- 10. Benefits and costs should be measured in the *same units of measurement*, typically using a monetary value. This allows for a direct comparison between all benefits with all associated costs. To the degree possible, a *monetary value should be assigned to all non-monetary benefits and costs*. For example, with a BMP reducing GHG emissions, this reduction should be assigned a monetary value, where appropriate (such as when computing the overall or societal net benefit or B/C ratio).
- 11. Not all benefits and costs are tangible and measurable. There are some *costs and benefits that are intangible and difficult, if not impossible to quantify.* For example, the reduction in nitrous oxide may not have a defensible monetary value. In cases where the cost or benefit cannot be quantified, the benefit or cost should be identified and described. Attempts should be made to quantify the intangible costs and benefits that are considered important due to the change.
- 12. The time value of money should be considered when benefits and costs occur in separate time periods. This implies that *benefits and costs must be accounted for in each time period* (typically a year), with appropriate discounting of future costs and benefits to assess the *present value of costs and benefits*. This is referred to as the *net present value (NPV)*⁴. This is particularly important in investment projects, where costs are typically incurred at the beginning with benefits accruing in the future. This may apply to a BMP such as composting with a large initial capital expenditure.
- 13. Future prices and costs are *valued in current (real) dollars*, meaning that future benefits and costs expressed in nominal dollars are adjusted to current dollars for anticipated inflation. As well, if a change in relative prices is expected, these should be considered.
- 14. In situations when the incidence of costs and benefits is invariant with respect to time (benefits and costs are the same in each year before or after inflation adjustment), then the *analysis can be collapsed into a single year analysis*. This is due to the fact that the NPV will be a scalar of the net benefits in any year. This may be the case for most of the BMPs being considered (if not all), where annual benefits and costs are the same in each time period. An exception could be when an upfront capital investment is made, that needs to be amortized over its useful life, such as an enclosed composting facility.

⁴ The NPV is the sum of annual values of present value of benefits and costs, or the sum of the discounted value of net benefit in each year. In any year the discounted value is the annual net benefit divided by the applicable discount factor (see Appendix B for an example).

- 15. In some cases, *sensitivity analysis* can be conducted to see how the outcome is affected by changes in assumptions on certain key parameters. Most importantly, these assumptions must be realistic and supported by industry. An example could be the value placed on reduced levels of GHG emissions.
- 16. *Avoid double counting* of benefits or costs. An example of double counting can be attributing benefits realized in the cow/calf sector to feedlot operations.
- 17. When *uncertainty* exists concerning an outcome, this can be accounted for by placing probabilities on potential outcomes and then computing the *expected value* of the associated costs and benefits⁵ (i.e., *the expected net present value* [ENPV]).
- 18. Provide the appropriate *measurement of benefits and costs to assist decision-making*. These measures can include net benefits for a time invariant analysis, the NPV of benefits, a B/C ratio, or the internal rate of return (IRR), which shows the rate of return on the investment. Computation of costs and benefits should highlight distributional issues and indicate what stakeholder group wins and who loses, as well as indicate aggregate benefits and costs. Once the benefits and costs are measured based on considering the above principles, a decision can be made with respect to any of the BMPs. Decision making on a BMP can be based on the absolute size of the net benefits, or on the ratio of benefits to costs for any BMP.
- 19. A related issue for consideration is *whether waiting provides better information on costs and benefits* (to make a decision on supporting or investing in a BMP). If waiting does not provide additional information, then the decision should not be deferred. However, if a net benefit is close to zero, waiting may provide more insight on whether costs or benefits change with a proposed option⁶. This is related to the irreversibility of a decision, implying a policy or regulatory change is rather difficult to change. If a decision cannot be easily reversed, then it is advisable to ensure that the benefits exceed costs for a number of potential future operating environments.

⁵ This is computed by attaching probabilities to a range of plausible outcomes and then determining the expected value.

⁶ This comment is an extension of "real options" analysis. More information can be found in Carter, C. D. Berwald & A. Loyns. The Economics of Genetically Modified Wheat. Canada Donner Foundation (2005) and Luehrman, Timothy. Strategy as a Portfolio of Real Options. Harvard Business Review Sept. - Oct. 1998 (Reprint 98506).

APPENDIX B

NET PRESENT VALUE

A dollar expended or received in the future does not have the same value as a dollar expended or received today. The difference is due to the time value of money which is represented by a discount rate ("d"), or an interest rate, which is typically equal to a return that could be earned in financial markets with comparable risk profiles, or can be equal to expected costs of borrowing funds or the weighted average cost of capital (opportunity cost of capital). The resulting present value (PV) of future cash inflows and outflows, or the net cash inflow ("Return") for any future time period ("t") can be represented by:

 $PV = Return t / (1 + d)^t$

The **net present value (NPV)** is the sum of these discounted returns over the life of a project of n+1 years, where year 0 is the year of the capital expenditure, and can be represented by:

NPV = $n_{t=0}$ Return $t/(1+d)^t$

The NPV compares the value of today's invested dollar with the future flow of funds resulting from that investment. The NPV is sensitive to the discount rate used, with higher discount rates lowering the NPV and the attractiveness of an investment.

The following table illustrates the PV and NPV through an investment of \$3 million that returns \$350,000 per annum to an operation before considering annual operating costs of \$20,000. With a 10 year project life, the net benefit before considering the time value of money is \$301,000 (see last row in column four. After applying the discount factor of $1/(1 + d)^{t}$ the PV of costs and benefits are provided in columns 6 and 7 to compute the PV of net benefits in each year. The sum of the annual PV of **net benefits** is the NPV, which in this example **is negative** (-\$784,673). The ratio of benefits to costs (B/C) is 75% indicating that the NPV of benefits is only equal to 75% of the NPV of costs. On this basis, the project should not be initiated as costs are not covered¹.

¹ With a discount rate of 1.75%, the NPV of net benefits is >0, and the B/C = 101%

Naar	Casta	D and C (a	Nat David	Discount	DV - C	PV of	PV of Net
Year	Costs	Benefits	Net Benefit	Factor	PV of Costs	Benefits	Benefits
0	\$3,000,000	\$1,000	-\$2,999,000	1.00	\$3,000,000	\$1,000	-\$2,999,000
1	\$20,000	\$350,000	\$330,000	1.08	\$18,519	\$324,074	\$305,556
2	\$20,000	\$350,000	\$330,000	1.17	\$17,147	\$300,069	\$282,922
3	\$20,000	\$350,000	\$330,000	1.26	\$15,877	\$277,841	\$261,965
4	\$20,000	\$350,000	\$330,000	1.36	\$14,701	\$257,260	\$242,560
5	\$20,000	\$350,000	\$330,000	1.47	\$13,612	\$238,204	\$224,592
6	\$20,000	\$350,000	\$330,000	1.59	\$12,603	\$220,559	\$207,956
7	\$20,000	\$350,000	\$330,000	1.71	\$11,670	\$204,222	\$192,552
8	\$20,000	\$350,000	\$330,000	1.85	\$10,805	\$189,094	\$178,289
9	\$20,000	\$350,000	\$330,000	2.00	\$10,005	\$175,087	\$165,082
10	\$20,000	\$350,000	\$330,000	2.16	\$9,264	\$162,118	\$152,854
Totals	\$3,200,000	\$3,501,000	\$301,000		\$3,134,202	\$2,349,528	-\$784,673
NPV of I	Net Benefits						-\$784,673
B/C ratio							75%

APPENDIX C

OTHER ECONOMIC MEASURES USED WITH A LCA

In some cases when it is difficult to assign a monetary value to some benefits, such as to a reduction in overall GHG emissions, decision making by government on projects can also be aided by computing the cost effectiveness of a BMP and comparing cost effectiveness to another BMP, or option. **Cost-effectiveness analysis (CEA)** measures the cost incurred to achieve a given reduction in a pre-defined single objective (such as a reduction in GHG emissions). Cost effectiveness is measured as the cost incurred to achieve a reduction in and indicator of effectiveness (E), such as a reduction in GHG emissions. As with a CBA, a CEA requires the input of LCA. The cost effectiveness ratio **(CER)** is simply effectiveness (E) divided by the costs incurred to achieve E. For example, a BMP could achieve a 20 kg reduction in CO₂e emissions at a cost of a dollar, while an alternative may only achieve a 15 kg reduction for the same expenditure. The more cost-effective (a higher CER) would be chosen – achieving a desired outcome at lowest cost¹.

BMPs can also be compared on this CER dimension; however it does not help make the decision as to whether a BMP is worth doing. This is because the numerator and denominator are in different units of measurement, and the CER does not provide any guidance as to whether it is worth doing (unless there was a mandate for reduction in which case the CER could indicate which BMP to pursue). Determining whether a BMP should be pursued requires a CBA as it compares the benefits of a BMP to the associated costs. Moving from a CEA, with costs captured, to a CBA requires a valuation of benefits incurred.

Life Cycle Costing (LCC) is an approach that calculates costs throughout the supply chain generated by the life cycle of a product. Life cycle costs refer to all costs associated with the system as applied to the defined life cycle. LCC is required to conduct a CEA or compute a CER, and requires the completion of a LCA. LCC computes system costs, but on its own does not help in decision-making.

¹ The inverse of this ratio is \$/unit of reduction.

APPENDIX D

ECONOMIC CONCEPTS AND CBA APPLIED TO LCA: A LITERATURE REVIEW

The Canadian Institute for Environmental Law and Policy in a brief indicate that a LCA should not be used as a decision making tool due to its weakness of not taking into account economic (or social) impacts. Rather a LCA should be used as a decision-supporting tool (CIELAP, 2009). This is a common view through the LCA and Life Cycle Management literature¹, and underscores the need to using methodologies that account for economic impacts associated with product life cycles and proposed BMPs. For example, Jeswani et al. (2010) argue that LCAs need to be deepening (more guidance on system boundaries) and broadening (integration of LCA with social and economic dimensions of sustainable development).

Norris (2001) in an article titled "Integrating Economic Analysis into LCA" compares LCA with LCC. Norris notes that a typical LCA methodology does not account for economic consequences, however he argues that LCA must take into account economic consequences of alternative products (or product designs) to support decision making. An LCC with its objective of looking at the cost effectiveness of alternative investments (business decisions) of an economic decision maker such as a manufacturing firm. Norris correctly notes that a LCC is only interested in the direct costs and benefits from a decision makers perspective, while a LCA takes a cradle to grave view of all material flows and can involve multiple decision makers. To fully integrate economics in a LCA requires more than just treating economic costs as another flow.

While LCC has weaknesses as noted above, Norris indicates that factors central to LCC, which are absent from an LCA, include:

- Cash flows related to investments in products/process changes
- Costs and revenue streams which are not proportional to, or even dependent at all upon, physical flows which are modeled in LCAs
- The timing of cash flows (costs and benefits) and the present value of these flows
- The risks of costs, and their alteration or avoidance as a function of the product/process design options

Hunkler and Rebitzer (2005) suggest that a LCC can be synergistic with a LCA when they utilize common data and models.

Given the private decision maker perspective of a LCC, it is an essential link for connecting environmental concerns with core business strategies. "*Synergies between the environment and economic considerations have to be utilized in order to move towards sustainable development*" (Hunkler

¹ Sustainable development is typically viewed through three inter-related pillars of ecological, economic, and social. An important tissue is how much weight to place on each, and having a common unit of measurement (for addressing inter-relationships and trade-offs).

and Rebitzer, 2003). However, while LCC applies to all costs as defined by the life cycle, in many cases LCC suffers from a narrow system boundary. This is in evidence as Rebitzer and Hunkler (2003)discuss some of the limitations of LCC and how to deal with externalities. They discuss the issue of whether costs that are external to a firm (decision maker) as with externalities should be included in a LCC analysis (Rebitzer and Hunkler, 2003). Their discussion extends to suggest that a LCC should be defined broadly enough to include all relevant parties that are affected by the product life cycle. As noted previously, a comprehensive CBA addresses these boundary issues and conducts a CBA from each stakeholders perspective, as well as from an overall societal perspective where the value of externalities are considered, since they are internal to a broad life cycle system boundary.

At Carnegie Mellon the Green Design Initiative uses an Economic Input-Output-Based Life-Cycle Assessment (EIO-LCA) to address the economic and environmental impacts of sectors or products². At Green Design it is argued that LCA while going from cradle-to-grave still has a boundary problem in that inputs used in the production process rely on other inputs (e.g., trucks to deliver grain are made of steel and other materials, which requires iron ore, energy, etc. to manufacture). As a result a LCA may not necessarily track all of the direct and indirect interactions in the economy depending on the data available and can thereby miss some environmental burdens. Green Design starts with a traditional input-output (I-O) model that has all of the linkages within the economy (via input-output tables supplied by the federal government) and augments these tables with appropriate sectoral environmental impacts of changes in output in a sector of the economy. While this approach can apply to a sector, it is heavily dependent on linkages between inputs and outputs captured by census of manufacturing surveys and requires significant efforts to adopt to capture the impact of BMP in a sector such as beef.

In the EU a number of studies have been completed on waste management and recycling of paper and cardboard. LCA and CBA have been used in the EU to support decisions on approaches to waste management. The Danish Topic Centre on Waste and Resources prepared a booklet (Copenhagen Resource Institute, 2008) that highlighted the advantages and limitations of these two approaches. The report notes that LCA and CBA can give contradictory results on waste paper management (e.g., recycling may or may not be preferred to incineration with energy recovery). This reflects the strengths and weaknesses of each of approach, with the noted strength of CBA being its focus on monetizing impact areas. It noted that a LCA strongly supported one approach to recycling, while a CEA suggested another approach. The booklet indicates that both CBA and LCA are subject to misuse, which is one reason why the standardization process of the LCA occurred in the 1990s and resulted in the ISO 14040

²

See for example www.eiolca.net accessed October 12, 2010.

standard series – the report also suggests that CBA may benefit from a similar standardization process³. The Danish report also noted that both LCA and CBA should be transparent, as well as have a sensitivity analysis of key assumptions.

Application of CBA to environmental issues is just beginning as the weaknesses of an LCA are becoming apparent in making economic related policy decisions. Whether researchers conduct a complete CBA, or whether they are linked to (or consider all of the flows) of a LCA is an issue. The European Environment Agency recently completed a study that reviewed the use of LCA and CBA approaches in the recovery and disposal of paper and cardboard (Villanueva et al., 2006). The report did note that a CBA has a much broader scope than a LCA due to CBA quantifying more than just the environmental impact. As noted by others, the report states, "*an ideal CBA would include a full LCA up to the impact assessment stage, as just on element of the scope*" (page 10). This report provides some useful insight on how CBA have been used in the EU, which is more advanced in the use of CBA than in North America, and can provide some perspective for this project.

One interesting point is that none of the studies reviewed conducted a full CBA, which includes conducting all of the basic steps for conducting a CBA. The six steps considered in their review were: (1) problem definition, (2) scope definition, (3) monetary valuation, (4) use of discounting, (5) evaluation using NPV, and (6) evaluation of uncertainty. Of interest the criteria used to review the nine applicable studies included⁴:

- Objectives of the analysis, what scenarios are analyzed?
- Is system delimitation presented?
- Has the study gone through the six basic CBA steps⁵?
- What parts of the life cycle stages are accounted for in the study⁶?
- Which environmental and economic parameters are included in each stage of the life cycle?
- Have the assumptions for estimating the environmental emissions/impact and economic costs been presented in a transparent way?
- Are corrections in prices included (e.g., inflation, tax distortions and changes in relative prices)⁷?

³ It should be noted that the principles outline in a prior section for a CBA reflect the basic of a CBA and cover those suggested by Pearce et al in the cited OECD document.

⁴ This list can be used to guide our methodology.

⁵ It should be noted that the principles proposed above for this CBA are more comprehensive than the six basic steps proposed for their review.

⁶ Some CBA did not account for all applicable life cycle stages.

⁷ In terms of valuing the emissions per unit value of emissions had quite a range between studies. For example, CO₂ ranged from EUR 3 per tonne to EUR 109/tonne and CH₄ from around EUR 100/tonne to over EUR 18,000/tonne.

- What is the discount rate (level, fixed, or varying [declining])?
- Has a sensitivity analysis been conducted? On what parameters?
- Are distributive consequences presented?

Overall the report concludes that there is room for improvement on how CBA are conducted in the subject area, notably in the areas of (1) improved transparency, (2) improved economic methodology to derive prices, and (3) the use of more consistent system boundary.

Jeswani et al. (2010) indicate that in some CBAs the upstream and downstream impacts are evaluated based on the inventory phase of a LCA. This way a CBA can account for both the direct and indirect costs and benefits of an option (BMP) – with indirect costs and benefits including the externalities (e.g., emissions and other environmental impacts) that receive a monetary value.

The introduction of CBA into LCA has occurred in Europe, in areas such as waste management and landfills. As a consultant in Denmark, Bo Weidema has conducted some of these LCA that has incorporated economic considerations. He notes that the economic considerations in a CBA are the typical costs and benefits to the various economic agents, changes in capital stock (investments), and can sometimes include considerations such as time (e.g., for commuting or sorting waste), and distributional issues (e.g., resulting incomes between certain sectors) (Bo Weidema, 2006). In his analyses he has used social indicators such as Years of Well Being Loss, Years Lost to Disability, and Quality Adjusted Life Years in LCA. A remaining issue is to place a monetary value on these indicators to allow for a complete cost benefit analysis.

Hanley and Spash (1993) highlight five problem areas that may arise when applying CBA to environmental issues⁸:

- Valuation of non-market goods: What valuation methods have been chosen, and how reliable and correct are the monetary value estimates? The results of some studies are used in others due to the costs and difficulties inherent in valuing non-market goods (the externalities). There are also risks of using outdated values.
- **Ecosystem complexity**: How are the effects on the environment (and ecosystem) predicted? This issue can be resolved within the LCA.
- **Discounting and discount rate**: Should discounting be used, and what level of social discount rate should be used? Over a long period of time, any discount rate greater than zero will place minimal to zero value on an event in the distant future. As an example, a

A discussion of these issues can be found in Villanueva et al. Paper and Cardboard – Recovery or Disposal?.
Technical report Nr. 5, European Environment Agency, Copenhagen, Denmark, 2006.

BMP taken today may not produce the environmental impact until 10 or 15 years, and a high discount rate will generate a small net present value of the benefit, (e.g., a 7 percent discount rate has a discount factor of 0.13 after 30 years.) Some guidelines suggest using a 3 to 4 percent discount rate.

- **Institutional capture**: Is the CBA a truly objective way of making decisions or can institutions capture their own ends? This suggests the need for transparency.
- **Uncertainty and irreversibility**: How are these aspects included in the CBA? Sensitivity and risk analysis can be used to address these important issues.

An interesting issue is whether sunk costs should be included, or excluded, from analysis. These sunk costs are for investments and costs already incurred with existing systems. Some argue for their inclusion to provide a full comparison, whereas others suggest that they be excluded due to the costs being sunk⁹. A possible solution lies in the length of run of the analysis and the objective of the CBA – is it to compare two systems or to assess the costs and benefits of adopting a BMP relative to the sunk costs of the status quo.

Books and reports that have been prepared to assist in applying CBA to environmental issues. A Nordic CBA guideline developed to assist in waste management (Nordic Council of Ministers, 2007) and the previously mentioned OECD guideline (Pearce et al., 2006), designed to assist in conducting environmental CBA, are rather comprehensive documents.

A literature search restricted to North America did not generate any examples of using an environmental CBA or a CBA integrated with a LCA. Also while there are a number of LCAs in the agriculture area, there were no examples found of a CBA linked to a LCA in the agricultural area.

This literature review highlights a few key points. These include:

- A comprehensive (environmental) CBA must be integrated with a LCA, or have access to LCA findings for the base case as well as to considered alternatives
- Many of the comments in the literature revolve around issues of not having a full CBA linked to a LCA
- The literature is long on suggestions on how to improve LCA, but short on applications using CBA linked to a LCA

See for example Villanueva et al. Paper and Cardboard – Recovery or Disposal?. Technical report Nr. 5, European Environment Agency, Copenhagen, Denmark, 2006.

REFERENCES

- Bo Weidema. The Integration of Economic and Social Aspects in Life Cycle Impact Assessment. International J. of LCA, Special Issue 1, 2006, p. 89-96.
- Canadian Institute for Environmental Law and Policy. CIELAP Brief on Life Cycle Assessment. June 2009.
- Copenhagen Resource Institute. A quick Guide to LCA and CBA in waste management. 2008. Available at: http://www.cri.dk/index.php/clients-and-projects/current-projects/50 (Accessed October 12, 2010).
- Gregory Norris. Integrating Economic Analysis into LCA. Environmental Quality Management, Spring 2001 (p. 59-64).
- Hanley, Nick D. and Spash, Clive L. Cost-Benefit Analysis and the Environment. Cheltenham: Edward Elgar Publishing Ltd, 1993.
- Hunkler, David and Rebitzer, Gerald. Life Cycle Costing Paving the Road to Sustainable Development? International J of Life Cycle Assessment, 2003, 8: 109-110.
- Hunkler, David and Rebitzer, Gerald. The Future of Life Cycle Assessment. International J of Life Cycle Assessment, 2005, 10: 305-308.
- Jeswani, H.K., Azapagic, A., Schepelmann, P., and Ritthoff, M. Options for Broadening and Deepening the LCA Approaches. Journal of Cleaner Production, 2010, 18: 120-127.
- Nordic Council of Ministers. Nordic guideline for Cost-Benefit Analysis in waste management. TemaNord 2007:574, Copenhagen 2007, ISBN 978-92-893-1555-5. Available at: http://www.cri.dk/index.php/clients-and-projects/current-projects/53 (Accessed October 13, 2010).
- Pearce, David, Atkinson, Giles, and Mourato, Susana. Cost-Benefit Analysis and the Environment, Recent Developments. OECD, 2006.
- Rebitzer, Gerald and Hunkler, David. Life Cycle Costing in LCM: Ambitions, Opportunities and Limitations: Discussing a Framework. International J of Life Cycle Assessment, 2003, 8: 253-256.
- Villanueva et al. Paper and Cardboard Recovery or Disposal?. Technical Report No. 5, European Environment Agency, Copenhagen, Denmark, 2006.

APPENDIX E

BMP 1 - COMPOSTING OF FEEDLOT MANURE

ACTIVITY MAPS AND DATA COLLECTION

Activity

	Activity
	New Activity for BMP Implementation
	Activity - Affected by BMP Implementation
	Activity - Not Included
	Functional Unit
	FIGURE BMP 1a
BMP #1 - COMPOSTING AND OTHER SOLID MANURE MANAG	ACTIVITY MAP
LIFE CYCLE A ALBERTA AGRICULTURE AND RUI	SSESSMENT - BEEF RAL DEVELOPMENT <i>Edmonton, Alberta</i>

Activity - Affected by BMP Implementation	
Activity - Not Included	
Functional Unit	

FIGURE BMP 1b

ACTIVITY MAP BMP #1 - COMPOSTING AND OTHER SOLID MANURE MANAGEMENT PRACTICES LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

Page 1 of 8

BMP 1 - DATA			
			References
Manure for composting			
Total managed solid manure from feedlots		25,086,001,829 kg	From Feedlot & Pasture Act tab
Total managed solid manure for on-site composting		3,762,900,274 kg	From Feedlot & Pasture Act tab
Divide manure generation on feedlots (above) between northern and southern/cen	entral Alb	perta to account for the availability of amendment ma	aterials most realistic for composting (wood chips for northern and straw for southern/central)
Alberta 2001 Census Agricultural Regions and Census Divisions. Map 1. Statistics northern, and the rest southern/central.	es Canada	a. Assume Regions 6 and 7 are	
Cattle in feedlots in northern regions of Alberta % of total		151,642 9%	Statistics Canada - Catalogue No. 95F0301XIE. Table 19.3 Cattle and calves, by province, Census Agricultural Region (CAR) and Census Division (CD), May 15, 2001
Cattle in feedlots in southern/central regions of Alberta % of total		1,601,465 91%	Statistics Canada - Catalogue No. 95F0301XIE. Table 19.3 Cattle and calves, by province, Census Agricultural Region (CAR) and Census Division (CD), May 15, 2001
Total managed solid manure for on-site composting (northern Alberta) Total managed solid manure for on-site composting (southern/central Alberta)		325,487,106 kg 3,437,413,169 kg	Calculated from above Calculated from above
Manure for composting - Northern Alberta (WOOD CHIPS for amendment mat	terial)		
Composition of feedlot beef manure with bedding			
Nitrogen (dry weight)		1.3%	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting
C:N ratio (dry weight)		18	Manual. Available at:
Bulk density (at that moisture content)		710 kg/m^3	stated at 1.8 but not realistic. Calculator on this website indicates 18 as the ratio; therefore
Composition of wood waste (chips) for composting amendment material			
Nitrogen (dry weight)		0.14%	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting
C:N ratio (dry weight)		212	Manual. Available at:
Moisture content Bulk density (at that moisture content)		15% 264 kg/m ³	http://www1.agric.gov.ab.ca/\$department/deptdocs.nst/all/agdex8875
Amount of amendment material required (wood chips)			
Definitions and values:			
a	mass o	f amendment per kg manure	Factor to be calculated
b	11	kg manure	Assumed
M	50.0%	desired mix moisture content	Government of Alberta. Alberta Agriculture and Kural Development. Manure Composting Manual. Available at:
Ma	15%	moisture content of ingredient a	From above
Mb	68%	moisture content of ingredient b	From above
%Ca no	ot req'd	percent carbon of ingredient a (dry weight basis)	
	ot req'd	percent carbon of ingredient b (dry weight basis)	Faran alarma
%ina %Nb	0.135% 1.3%	percent nitrogen of ingredient a (dry weight basis) percent nitrogen of ingredient b (dry weight basis)	From above

BMP 1 - DATA

		References
R	30 desired C:N ratio of mix	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting
		Manual. Available at:
Ra	212.0 C:N ratio of ingredient a	From above
Kb	18 C:N ratio of ingredient b	From above
Ingredient a	wood chips	
Ingredient h	beef feedlot manure	
ingreatent b		
Mass of amendment per kg manu	re:	
1 0	$a = \% \text{ Nb}_{x} (\text{R-Rb})_{x} (1-\text{Mb})$	
	% Na (Ra-R) (1-Ma)	
	= 0.24 kg	
Total mass of woodchips required	77,801 tonnes	
Moisture content of composting materials		
Moisture content check of composting materia	ls:	
	= weight of water in ingredient a + weight of water in ingredient b	
	= (a * Ma) + (b * Mb)	
	a + b	
	= 57.8%	
Nitrogen content in composting materials		
Nitrogen content in composting materia	ls: (for 1 kg manure and 0.24 kg wood chips)	
Dry matter of manure	0.32 kg	
Dry matter of wood chips	0.20 kg	
Mass of nitrogen in manure	0.00416 kg	
Mass of nitrogen in wood chips	0.000274 kg	
Total nitrogen in composting materials	0.004434 kg	
Dry matter of composting materials (check)	0.523 kg	
% nitrogen content of composting materials	0.85%	
0 1 0		
Phosphorus content in composting materials		
Mass of phosphorus in manure (dry matter basis)	0.37%	Bremer,V.R. et al. Total and Water Soluble Phosphorus Content of Feedlot Cattle Feces and Manure Animal Science Department Nebraska Beef Cattle Reports University of Nebraska
No losses in phosphorus content after composting		Saskatchewan Agriculture. Composting Solid Manure. December 2008 Available at
to losses in phosphorus content and composing		http://www.agriculture.gov.sk.ca/Composting_Solid_Manure
Typical starting and ending mass quantities and other characteristic	s for composting	
Water loss in composting materials from composting	80%	F.J. Larney, X. Hao. Composting as a management alternative for beef feedlot manure in
Calida lass in compositing motorials from compositing	25%	southern Alberta, Canada. Nutrient and Carbon Cycling in Sustainable Plant-Soil Systems.
somes loss in composing materials from composing	/٥ لك	Available at: http://www.ramiran.net/doc04/Proceedings%2004/Larney.pdf
Volume loss for composting materials due to composting	50%	Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at:
	Manung Amondmont Min Comment	nttp://www.agriculture.gov.sk.ca/Composting_Solid_Manure
	Start (kg) Start (kg) Start (kg) End (kg)	
	$\underline{\operatorname{Diart}}_{\operatorname{Rg}}$ $\underline{\operatorname{Diart}}_{\operatorname{Rg}}$ $\underline{\operatorname{Diart}}_{\operatorname{Rg}}$ $\underline{\operatorname{Ellu}}_{\operatorname{Rg}}$	

BMP 1 - DATA

				References
1000	239	1239	536	Assumed
680	36	716	143	Calculated based on information above
320	203	523	392	Calculated based on information above
4.16	0.27	4.43	3.33	Calculated based on information above. Decrease in nitrogen due to reduced solids.
1.184	0	1.184	1.184	Calculated based on information above
1.408	0.905	2.314	1.157	Calculated based on information above
710	264	624	463	Calculated based on information above
-	-	-	46%	Calculated based on information above
	1000 680 320 4.16 1.184 1.408 710	$\begin{array}{cccc} 1000 & 239 \\ 680 & 36 \\ 320 & 203 \\ 4.16 & 0.27 \\ 1.184 & 0 \\ 1.408 & 0.905 \\ 710 & 264 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Manure for composting - Southern / Central Alberta (STRAW for amendment material)

Composition of feedlot beef manure with bedding		
Nitrogen (dry weight)	1.3%	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting
C:N ratio (dry weight)	18	Manual. Available at:
Moisture content	68%	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex8875 (Note: C:N ratio
Bulk density (at that moisture content)	710 kg/m ³	stated at 1.8 but not realistic. Calculator on this website indicates 18 as the ratio; therefore
Composition of general straw for composting amendment material		
Nitrogen (dry weight)	1.1%	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting

C:N ratio (dry weight)	48	Manual. Available at:
Moisture content	15.5%	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex8875
Bulk density (at that moisture content)	207.5 kg/m^3	

Amount of amendment material required (general straw)

1	· · · · · ,			
	Definitions and values:			
a	mass c	of amendment per kg manure	Factor to be calculated	
b	1 !	kg manure	Assumed	
М	50.0%	desired mix moisture content	Government of Alberta.	Alberta Agriculture and Rural Development. Manure Composting
			Manual. Available at:	
Ma	15.5%	moisture content of ingredient a	From above	
Mb	68%	moisture content of ingredient b	From above	
%Ca	not req'd	percent carbon of ingredient a (dry weight basis)		
%Cb	not req'd	percent carbon of ingredient b (dry weight basis)		
%Na	1.1%	percent nitrogen of ingredient a (dry weight basis)	From above	
%Nb	1.3%	percent nitrogen of ingredient b (dry weight basis)	From above	
R	30	desired C:N ratio of mix	Government of Alberta.	Alberta Agriculture and Rural Development. Manure Composting
			Manual. Available at:	
Ra	48.0	C:N ratio of ingredient a	From above	
Rb	18	C:N ratio of ingredient b	From above	
Ingredient a	straw - genera	al		
Ingredient b	beef feedlot m	nanure		

Mass of amendment per kg manure:

 $a = \frac{\% \text{ Nb}_{x} (\text{R-Rb})_{x} (1-\text{Mb})}{\% \text{ Na} (\text{Ra-R}) (1-\text{Ma})}$ = 0.30 kg

BMP 1 - DATA

References

Total mass of general straw required

1,025,615 tonnes

Moisture content of composting materials

Moisture content check of composting materials:

= weight of water in ingredient a + weight of water in ingredient b total weight of all ingredients = (a * Ma) + (b * Mb)a + b 55.9%

Nitrogen content in composting materials

Nitrogen content in composting materials: (for 1 kg manure and 0.24 kg wood chips)

Dry matter of manure	0.32 kg
Dry matter of straw	0.25 kg
Mass of nitrogen in manure	0.00416 kg
Mass of nitrogen in straw	0.002773 kg
Total nitrogen in composting materials	0.006933 kg
Dry matter of composting materials (check)	0.572 kg
% nitrogen content of composting materials	1.21%

Phosphorus content in composting materials

Mass of phosphorus in manure (dry matter basis)	0.37%
---	-------

No losses in phosphorus content after composting

Water loss in composting materials from composting	80%
Solids loss in composting materials from composting	25%

Volume loss for composting materials due to composting

	Manure <u>Start (kg)</u>	Amendment <u>Start (kg)</u>	Mix <u>Start (kg)</u>	Compost <u>End (kg)</u>
Manure	1000	298	1298	574
Water	680	46	726	145
Solids	320	252	572	429
Nitrogen	4.16	2.77	6.93	5.20
Phosphorus	1.184	0	1.184	1.184
Volume (m ³)	1.408	1.438	2.846	1.423
Bulk density (kg/m ³)	710	208	595	404
Mass reduction (%)	-	-	-	43%

Bremer, V.R. et al. Total and Water Soluble Phosphorus Content of Feedlot Cattle Feces and Manure. Animal Science Department. Nebraska Beef Cattle Reports. University of Nebraska. Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at: http://www.agriculture.gov.sk.ca/Composting_Solid_Manure

F.J. Larney, X. Hao. Composting as a management alternative for beef feedlot manure in southern Alberta, Canada. Nutrient and Carbon Cycling in Sustainable Plant-Soil Systems. Available at: http://www.ramiran.net/doc04/Proceedings%2004/Larney.pdf

Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at: http://www.agriculture.gov.sk.ca/Composting_Solid_Manure

End (kg)	
574	Assumed
145	Calculated based on information above
429	Calculated based on information above
5.20	Calculated based on information above. Decrease in nitrogen due to reduced solids.
1.184	Calculated based on information above
1.423	Calculated based on information above
404	Calculated based on information above
43%	Calculated based on information above

50%

Page 5 of 8

BMP 1 - DATA

Total weight of wood chips (amendment)	77,801 tonnes
Total weight of straw (amendment)	1,025,615 tonnes
Total weight of compost	2,148,560 tonnes
Total volume of manure	5,299,860 m ³
Total volume of wood chips (amendment)	294,700 m ³
Total volume of straw (amendment)	4,942,723 m ³
Total volume of compost	5,268,642 m ³

Typical windrow pile sizing information (for detailed info to be used i	n this model, please refer to BM	IP 1-Windrow Sizing tab)	
	Min. (m)	Max. (m)	
Height	1	2.8	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting
Width	3	6	Manual. Available at:
Front End Loader	Min. (ft)	Max. (ft)	
Height	6	12	Alberta Environment. Leaf and Yard Waste Composting Manual. 1st Edition, 1st Printing.
Width	10	20	April 1998. Revised December 1999.
OMAFRA suggest windrows no higher than 8 ft and no wider than 12 ft			Ontario Ministry of Agriculture, Food & Rural Affairs. Agricultural Composting Basics. 2005. Available at: http://www.omafra.gov.on.ca/english/engineer/facts/05-023.htm
Values to use in model:	See BMP 1-Windrow Sizing t	ab	
Construction activities			
Total area of clay composting pads			
Front end loader		6748920.327 m ²	From BMP 1-Windrow Sizing tab
CT 1010TX (windrow turner)		0 m ²	From BMP 1-Windrow Sizing tab
Area requirements for manure storage		9 months	Province of Alberta. Agricultural Operation Practices Act. Standards and Administration Regulation. Alberta Regulation 267/2001. Section 10.1.
(manure storage facilities must be large enough to store all manure p	roduced by the operation for at le	east 9 consecutive months)	
Typical max height of manure piles		2.5 m	Guidelines to Beneficial Management Practices: environmental Manual for Poultry Producers in Alberta. November 2003. Section 7.
** Assume that the required area above is already available at the feed	llots, and therefore, the existing p	pad will be extended to achieve	the area required for composting
Total manure required to be stored		9,132,508,124 kg	Using manure generated by heifers and steers, and including only 9 months of backgrounding and feedlot manure for storage.
Bulk density of feedlot manure		710 kg/m3	From above data
Total volume of this manure		12,862,687 m3	
Assume manure stockpiled in a manner to optimize area (no account	ing for slopes, etc. to be conserv	$2,268 m^2$	
Adjusted composting area required (in addition to what is already av	ailable)		
Front end loader		6,748,920 m ²	From BMP 1-Windrow Sizing tab

References
BMP 1 - DATA		
		References
CT 1010TX (windrow turner)	$0 m^2$	From BMP 1-Windrow Sizing tab
Thickness of clay pad	0.5 m	Government of Alberta. Alberta Agriculture and Rural Development. Facilities and Environment: Composting Animal Manures. Available at:
Permeability of clay pad	<5 x 10 ⁻⁸ m/sec	http://www1.agric.gov.ab.ca/sdepartment/deptdocs.nst/all/beef11831 Government of Alberta. Alberta Agriculture and Rural Development. Facilities and Environment: Composting Animal Manures. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/beef11831
2% slope also required for clay composting pad, with run-on control system to prevent surface water to flow or and run-off control system to protect surface water quality. Assume no run-on or run-off in model .	ıto pad,	Government of Alberta. Alberta Agriculture and Rural Development. Facilities and Environment: Composting Animal Manures. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/beef11831
Volume of clay soil needed (at permeability above)	3,374,460 m ³	
Typical bulk density of clay soil	1.3 g/cm^3	Wikipedia, Porosity, Available at: http://en.wikipedia.org/wiki/Porosity
\mathcal{F}_{1}	1.300 kg/m^3	
Mass of clay needed	4,386,798 tonnes	
Mass of elay to be transmented to the site	4 286 708 tomas	Eron Crannary Tak
Mass of clay to be transported to the site	4,386,798 tonnes	From Summary Tab
Volume	3,374,400 m [°]	Energy Constant Tab
Values of clay available at the site	0 tonnes	From Summary 1ab
Excavating clay (Assume 330D Cat - Large Hydraulic Excavator) (Fuel consumption and operating speed taken from similar model) Operating speed Fuel Consumption	160 m³/hr 48 L/hr	http://www.aefinley.com/uploads/products/pdfs/20081218121127592815.pdf http://www.aefinley.com/uploads/products/pdfs/20081218121127592815.pdf
Time to excavate	21,090 hrs	
Fuel consumed	1,012,338 L diesel 895,919 kg diesel	
Transport clay - assumed long distance	250 km	Assumed distance for transporting clay to site (i.e. from Calgary to Lethbridge)
Compacting clay (Soil compactor SWR214)		
Rated nower	85 kW	http://www.alibaba.com/product-gs/252377194/Soil_Compactor_SWR214.html
Rated fuel consumption	215 g/kW*h	http:///
Tuttu Tuti Coloung uon	210 g/km	
Compaction requirements for clay pad	0.5 ha per day 5000 m2/day	Typical construction knowledge of compacting clay (10 hrs per day)
Time to compact (assuming 10 hr days)	13,498 hrs	
Fuel consumed	278,727 L diesel	
	246,673 kg diesel	

Vermeer CT1010TX Compost Turner

057586-BMP 1 - 2010 baseline

Alberta Environment. Leaf and Yard Waste Composting Manual. 1st Edition, 1st Printing.

Ontario Regulation 101/94. Recycling and Compost of Municipal Waste.

April 1998. Revised December 1999.

BMP 1 - DATA

		References
# of units required	0 units	See BMP 1-Windrow Sizing tab
weight	43,000 lbs	Vermeer. CT1010TX Compost Turner. Available at:
		http://www2.vermeer.com/vermeer/AP/en/N/equipment/compost_turners/ct1010tx
Total weight of turners to transport	0 1bs	
	0 kg	
Closest Vermeer dealer located in Saskatchewan. Assumed transport distance	500 km	

Windrow composting time periods and turning requirements	Min. (days)	Max. (days)	
Active Period	21	40	Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting Manual. Available at:
Curing	30	120	Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at: http://www.agriculture.gov.sk.ca/Composting_Solid_Manure Government of Alberta. Alberta Agriculture and Rural Development. Manure Composting Manual. Available at:
	30	90	Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at: http://www.agriculture.gov.sk.ca/Composting_Solid_Manure
Total composting and curing time (using windrow turner)	60	120	Basic On-Farm Composting Manual. Final Report. Prepared for The Clean Washington Center. May 1997. Prepared by Peter Moon, Land Technologies.

Pathogen reduction by achieving 55 degrees C for a minimum of 15 days

Pathogen reduction by achieving 55 degrees C for a minimum of 15 days, and cure for 6 months turning at least one time per month

Beginning of composting period 1 turn/day Alberta Environment. Midscale Composting Manual. 1st Edition. First Printing. December Closer to end of composting period 1 turn/week Alberta Environment. Midscale Composting Manual. 1st Edition. First Printing. December Initial 2-3 weeks turn at regular intervals Initial 2-3 weeks Turning schedule to be used in model Days Turning Rate Assumed based on information above Assumed based on information above Active composting manure 90 1 turn/month Assumed based on information above Assumed based on information above Transportation costs of trucking manure 90 1 turn/month Assumed based on information above Transportation costs of trucking manure 21,323,101,554 kg Transportation distance 7 km Fuel consumption of transport truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://oee.nrcan.gc.a/Publications/statistics/cvs05/chapter5.cfm?attr=0 Number of trucks required 2,410,207 trucks 5,921,879 L Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv	Turning frequency			
Closer to end of compositing period 1 turn/week Alberta Environment. Midscale Compositing Manual. 1st Edition. First Printing. December Initial 2-3 weeks turn at regular intervals Turning schedule to be used in model Days Turning Rate Assumed based on information above Assumed based on information above Active compositing Manuare 0 1 turn/week after first 2 weeks Assumed based on information above Assumed based on information above Curing 90 1 turn/month Assumed based on information above Transportation costs of trucking manure 21,323,101,554 kg Assumed based on information above Total manure to be trucked off feedlots 21,323,101,554 kg Tamaportation distance Fuel consumption of transport truck 8,847 kg Dieselnet. Canadia Vehicle Survey 2005, Summary Report. Available at: Number of trucks required 2410,207 trucks Dieselnet. Canadia: On-road vehicles. Available at: Number of trucks required 2410,207 trucks 5,921,879 L	Beginning of composting period		1 turn/day	Alberta Environment. Midscale Composting Manual. 1st Edition. First Printing. December
Initial 2-3 weeks turn at regular intervals Turning schedule to be used in model Active composting Curing Days 1 turn/day for first 2 weeks 1 turn/week after first 2 weeks 1 turn/month Assumed based on information above Assumed based on informatio	Closer to end of composting period		1 turn/week	Alberta Environment. Midscale Composting Manual. 1st Edition. First Printing. December
Turning schedule to be used in model Active compostingDays thurn/active compostingTurning Rate 1 turn/day for first 2 weeks 1 turn/week after first 2 weeks 1 turn/monthAssumed based on information above Assumed based on information above Assumed based on information aboveTransportation costs of tracking manure Total manure to be trucked off feedlots Transportation distance21,323,101,554 kg 7 kmCanadian Vehicle Survey 2005, Summary Report. Available at: http://wew.diselent.com/statistics/cvs05/chapter5.cfm?attr=0Fuel consumption of transport truck8,847 kgDieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdvNumber of trucks required Diesel consumed2,410,207 trucks 5,921,879 L2,410,207 trucks	Initial 2-3 weeks	turn at regu	lar intervals	
Active compositing401 turn/day for first 2 weeks 1 turn/week after first 2 weeks 1 turn/week after first 2 weeks Assumed based on information above Assumed based on information aboveCuring901 turn/monthAssumed based on information above Assumed based on information aboveTransportation costs of trucking manure Total manure to be trucked off feedlots Transportation distance21,323,101,554 kg 7 kmAssumed based on information aboveFuel consumption of transport truck21,323,101,554 kg 7 kmAssumed based on information aboveRated load weight for heavy duty truck8,847 kg 5,921,879 LDieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv	Turning schedule to be used in model	Days	Turning Rate	
Curing901 turn monthAssumed based on information aboveTransportation costs of trucking manure Total manure to be trucked off feedlots21,323,101,554 kg 7 km	Active composting	40	1 turn/day for first 2 weeks 1 turn/week after first 2 weeks	Assumed based on information above Assumed based on information above
Transportation costs of trucking manure Total manure to be trucked off feedlots 21,323,101,554 kg Transportation distance 7 km Fuel consumption of transport truck 35.1 L/100 km Canadian Vehicle Survey 2005, Summary Report. Available at: http://oee.nrcan.gc.ca/Publications/statistics/cvs05/chapter5.cfm?attr=0 Rated load weight for heavy duty truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv Number of trucks required 2,410,207 trucks 5,921,879 L	Curing	90	1 turn/month	Assumed based on information above
Total manure to be trucked off feedlots 21,323,101,554 kg Transportation distance 7 km Fuel consumption of transport truck 35.1 L/100 km Canadian Vehicle Survey 2005, Summary Report. Available at: http://oee.nrcan.gc.ca/Publications/statistics/cvs05/chapter5.cfm?attr=0 Rated load weight for heavy duty truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv Number of trucks required 2,410,207 trucks http://www.dieselnet.com/standards/ca/#hdv Diesel consumed 5,921,879 L Full State	Transportation costs of trucking manure			
Transportation distance 7 km Fuel consumption of transport truck 35.1 L/100 km Canadian Vehicle Survey 2005, Summary Report. Available at: http://oee.nrcan.gc.ca/Publications/statistics/cvs05/chapter5.cfm?attr=0 Rated load weight for heavy duty truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv Number of trucks required 2,410,207 trucks Diesel consumed 5,921,879 L	Total manure to be trucked off feedlots		21,323,101,554 kg	
Fuel consumption of transport truck 35.1 L/100 km Canadian Vehicle Survey 2005, Summary Report. Available at: http://oee.nrcan.gc.ca/Publications/statistics/cvs05/chapter5.cfm?attr=0 Rated load weight for heavy duty truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv Number of trucks required 2,410,207 trucks Diesel consumed 5,921,879 L	Transportation distance		7 km	
Rated load weight for heavy duty truck 8,847 kg Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv Number of trucks required 2,410,207 trucks Diesel consumed 5,921,879 L	Fuel consumption of transport truck		35.1 L/100 km	Canadian Vehicle Survey 2005, Summary Report. Available at: http://oee.nrcan.gc.ca/Publications/statistics/cvs05/chapter5.cfm?attr=0
Number of trucks required2,410,207 trucksDiesel consumed5,921,879 L	Rated load weight for heavy duty truck		8,847 kg	Dieselnet. Canada: On-road vehicles. Available at: http://www.dieselnet.com/standards/ca/#hdv
Diesel consumed 5,921,879 L	Number of trucks required		2,410,207 trucks	-
	Diesel consumed		5,921,879 L	

Page 8 of 8

BMP1-DATA

Addition

Additional Labour for Composting		
Man-hours per week (with windrow turner)	Min. (hrs) Max. (hrs) 4 16	Basic On-Farm Composting Manual. Final Report. Prepared for The Clean Washington Center. May 1997. Prepared by Peter Moon, Land Technologies.
Front end loader Vermeer CT1010TX Compost Turner	474,445 hrs 0 hrs	Calculated from BMP 1-Windrow Sizing tab Calculated from BMP 1-Windrow Sizing tab
Compost Trucking Requirements		
Typical truck volume for transporting manure or compost	$12 m^3$	Saskatchewan Agriculture, Composting Solid Manure, December 2008. Available at: http://www.agriculture.gov.sk.ca/Composting_Solid_Manure
Manure		
Total volume of manure	5,299,860 m ³	
Truck trips required	441,655 trips	
Mass of manure per truck	8,520 kg	
Mass of solids per truck	2,726 kg	
Mass of N per truck	35 kg	
Mass of P per truck	10 kg	
Compost		
Total volume of compost	$5,268,642 \text{ m}^3$	
Truck trips required	439,053 trips	
Mass of compost per truck	4,843 kg	
Mass of solids per truck	3,618 kg	
Mass of N per truck	44 kg	
Mass of P per truck	10 kg	
Diesel Requirements for Composting		
Diesel required to compost	11,880,334 L diesel	See BMP 1-Windrow Sizing tab

References

Emissions from composting manure

Assuming proper composting techniques, there is not expected to be any emissions from composting beef manure, curing, and storage of the compost (CH_4 and N_2O).

BMP 1 - Windrow Sizing Information

Windrow Sizing	Available on-site	Vermeer Turner		
	Loader	CT 1010TX		
height	3.5	2.7	m	References: below (Co-Composter)
width	7.0	3.0	m	Cambridge Leaf & Yard Waste Composting Pad operations
length	100	100	m	http://www2.vermeer.com/vermeer/AP/en/N/equipment/compost_turners/ct1010tx
Pad Sizing				
Spacing between windrows	3	0.1	m	
Buffer at edge of pad	3	3 10	m	

Co-Composter vers. 2a November 15, 2001

Cornell University

Written by Douglas Haith, Thomas Crone, Adam Sherman, Julie Lincoln, Jeffrey Reed, Suzanne Saidi, Joshua Trembley, with assistance from Peter Wright, Jean Bonhotal, Molly Moffe, Ellen Harrison, A. Edward Staehr, Wayne Knoblauch. Model used for many composting inputs in this tab

Estimation of Fuel Use

{referred to in Turning & Handling Costs sheet of model above}

Fuel was estimated using .048 gal/hp-hr. (Downs, 1998) Annual diesel fuel was calculated by multiplying the appropriate horsepower, weekly hours and .048 gal/hr-hp. This was then multiplied by 52 to report annual diesel consumption in gallons.

In order to estimate diesel use for the self powered, and self propelled turner (Systems 3.1 & 3.2) the same calculation was made. The horsepower of each turner was known and the same calculation was carried out. Note: Fuel consumption might not be as efficient with the turner as the tractors. (Downs, 1998)

Fuel and Electrical Costs

{See Section N in the Background sheet for sources and explanation of fuel estimates.}

						Option		
						#2 Fuel	Option #3	Option #4
		Estimated		Estimated fuel Use ^a	Option #1 Fuel Use	Use	Fuel Use	Fuel Use
Required Equipment	Type of Fuel	Use	Units	(gal/hr) ^b	(gal/yr)	(gal/yr)	(gal/yr)	(gal/yr)
Diesel Use								
Turning and Handling:								
Front Loader, 135 hp, 3 yd bucket	diesel	6.51	hr/wk	6.615			1525	

a: Calculated with tractors using .049 gal/hp-hr doing average work.

1/ FRONT END LOADER (typical)

Equipment Specs		
Bucket Size	2.29	m ³
Operating speed	300	m ³ /hr
Horsepower	135	hp
Fuel Consumption	25	L/hr
<u>Windrow Size (Triangular)</u>		
Height	3.5	

References

majority of inputs from co-composter model

Cambridge Leaf & Yard	Waste Composting Pad operations				
Assumes 3 yards					
About 150 tonnes/hr	from co-composter model				
Typical from co-composter model					
http://thedieselgarage.com/forums/showthread.php?t=50336					
Calculated with tractors using .049 gal/hp-hr doing average work.					
- from co-composter me	odel (6.6 gal/hr)				

Spacing between windrows - enough aisle room for loader to maneuver

BMP 1 - Windrow Sizing Information 7.0

Width

$ 2 \ CTOHOTX (SIDE-THROW) \\ 0 \ Pertains Speed 1911 m2/hr min http://www2.vermeer.com/vermeer/LA/en/N/equipment/compost_turmers/t1010x 2.1 m2/hr max 2.485 m2/hr average 2.13 hp Engine option One -12.1 gal/hr 2.7 Width 3.0 the provided option One -12.1 gal/hr 2.7 Width 3.0 the provided option One -12.1 gal/hr 2.7 Kitch 2.7 Kitc$
Operating Speed1.911m'nminhttp://www2.vermeer.com/vermeer/LA/en/N/equipment/compost_turners/c1000x $3,088$ m'nnax $2,485$ m'naverageHorsepower requirements215hpFed Consumption45L/hrEngine option One -121 gal/hr <i>Windton Size</i> 2.7Height2.7Width3.0State1.002,000 tonnesAnnure3.062,000 tonnesAnnure1.003,416 tonnesActive composing time40 daysCuring time6 weeks1.304,416 tonnesWeight4.866,316 tonnesWeight4.866,316 tonnesWeight4.866,316 tonnesWeight5.5 turns per weekWeeks 3.65.5 turns per weekWeeks 3.61.1 turn per week
3,058 m²/hr max 1.10. hold to be the to be to be the to be the to be the to be
2,485m²/hr averageaverageHorsepower requirements215hpFuel Consumption45L/hrHeight2.7Height2.7With3.0
Horsepower requirements 215 hp Horsepower requirements 215 hp Fuel Consumption 45 L/hr Engine option One - 12.1 gal/hr Windrow Size Height 2.7 Width 3.0 Estimated Sizing and Operating Requirements 3,762,900 tonnes Amendment 1,103,416 tonnes Amendment 4,866,316 tonnes Active composting time 40 days Curring time 90 days 6 weeks 13 weeks Density 0.62 tonnes/m3 Density 0.62 tonnes/m3 Weight 4,866,316 tonnes Weight 4,866,316 tonnes Turning Frequency Turning Frequency uring active composting time. 4,709,902 m3 Weeks 3-6 1 turn per week Weeks 7-19 0.25 turns per week Assume operational 7 days per week
Interpretend with the second secon
Interface Light Light Light Height 2.7 Width 3.0 Estimated Sizing and Operating Requirements Manure 3.762,900 tonnes Amendment 1,103,416 tonnes 4.866,316 tonnes 4.866,316 tonnes 6 weeks 13 weeks Density 0.62 tonnes/m3 Density 0.62 tonnes/m3 Volume 7,799,092 m3 Yolume 7,799,092 m3 Turning Frequency Turning Frequency Weeks 1-2 55 turns per week Weeks 3-6 1 turn per week
Height 27 Width 3.0 Estimated Sizing and Operating Requirements Manure Amendment Amendment Attive composting time 40 days 6 weeks 4.866,316 tonnes Active composting time 40 days 6 weeks 1103,416 tonnes 4.866,316 tonnes Active composting time 40 days 6 weeks 13 weeks 14 weeks 14 weeks 15 tornes/m3 10 weeks 10 days 10
Night 2. Width 3.0 Estimated Sizing and Operating Requirements 3.762,900 tonnes 1.103,416 tonnes 4.866,316 tonnes Amure Amendment 3.762,900 tonnes 1.103,416 tonnes 4.866,316 tonnes Active composting time 40 days Curing time 6 weeks Density 0.62 tonnes/m3 Density 0.62 tonnes/m3 Volume 7.799,092 m3 Veks 1.2 5.5 turns per week Weeks 1.2 5.5 turns per week Weeks 3.6 1 turn per week
Within 3.0 Estimated Sizing and Operating Requirements 3.762,900 tonnes 1.103,416 tonnes 4.866,316 tonnes Amendment 3.762,900 tonnes 1.103,416 tonnes 4.866,316 tonnes Active composting time 40 days 6 weeks 13 weeks Density 0.62 tonnes/n3 Weight 4,866,316 tonnes Weight 4,866,316 tonnes Volume 7,799,092 m3 Turning Frequency Turning Frequency Weeks 1-2 55 turns per week Veeks 3-6 1 turn per week
Stinated Sizing and Operating Requirements 3,762,900 tonnes 1,103,116 tonnes 2,103,116 tonnes 4,866,316 tonnes 3,762,900 tonnes 1,103,116 tonnes Amendment 3,762,900 tonnes 1,103,116 tonnes Subsect Subsect Active composting time 40 days 6 weeks Curing time 90 days 13 weeks Subsect Density 0.62 tonnes/m3 Density 0.62 tonnes/m3 Assume same density, weight and volume as during active composting time. Volume 7799/027 m3 Volume 7799/027 m3 Volume 7799/027 m3 Yurning Frequency Weeks 1-2 5.5 turns per week 1 turn per week Weeks 7.19 0.25 turns per week Assume operational 7 days per week
Manure Amendment3,762,900 tones 1,103,416 tonnes 4866,316 tonnesActive composting time40 days 6 weeksCuring time90 days 13 weeksActive composting time40 days 6 weeks0.62 tonnes/m3Assume same density, weight and volume as during active composting time.Density0.62 tonnes/m3Density0.62 tonnes/m3Assume same density, weight and volume as during active composting time.Volume7,799,092 m3Volume7,799,092 m3Weight4,866,316 tonnes during Frequency Turning Frequency Weeks 1-25.5 turns per week 1 turn per weekWeeks 7.190.25 turns per weekAssume operational 7 days per week
Amendment1,103,416 tonnes 4,866,316 tonnesActive composting time40 days 6 weeksCuring time90 days 13 weeksDensity.062 tonnes/m3Density.062 tonnes/m3Assume same density, weight and volume as 0.62 tonnesDensity.062 tonnes/m3Density.062 tonnes/m3Assume same density, weight and volume as 0.62 tonnesVeight.4866,316 tonnesWeight.4866,316 tonnesduring active composting time.Volume.7,799,092 m3.799,092 m3.799,092 m3.Turrning Frequency Weeks 1-2.55 turns per weekWeeks 7-190.25 turns per weekAssume operational 7 days per weekWeeks 3-61 turn per week
Active composting time 40 days Curing time 90 days 6 weeks 13 weeks Density 0.62 tonnes/m3 Density 0.62 tonnes/m3 Assume same density, weight and volume as Weight 4,866,316 tonnes Weight 4,866,316 tonnes during active composting time. Volume 7,799,092 m3 Volume 7,799,092 m3 Turning Frequency Weeks 1-2 5.5 turns per week Weeks 7-19 0.25 turns per week Assume operational 7 days per week Weeks 3-6 1 turn per week 1 turn per week 1 turn per week 1 turn per week
Active composting time40 daysCuring time90 days6 weeks6 weeks13 weeksDensity0.62 tonnes/m3Density0.62 tonnes/m3Assume same density, weight and volume asWeight4,866,316 tonnesWeight4,866,316 tonnesduring active composting time.Volume7,799,092 m3Volume7,799,092 m3uring FrequencyWeeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekAssume operational 7 days per weekWeeks 3-61 turn per week1111
6 weeks13 weeksDensity0.62 tonnes/m3Density0.62 tonnes/m3Assume same density, weight and volume asWeight4,866,316 tonnesWeight4,866,316 tonnesduring active composting time.Volume7,799,092 m3Volume7,799,092 m3Turning FrequencyTurning FrequencyTurning FrequencyVeeks 7-190.25 turns per weekWeeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekWeeks 3-61 turn per week1 turn per week
Density0.62 tonnes/m3Density0.62 tonnes/m3Assume same density, weight and volume as during active composting time.Weight4,866,316 tonnesWeight4,866,316 tonnesduring active composting time.Volume7,799,092 m3Volume7,799,092 m3Turning FrequencyTurning Frequency5.5 turns per weekWeeks 7-190.25 turns per weekAssume operational 7 days per weekWeeks 3-61 turn per week1Turning FrequencyNeeks 7-190.25 turns per week
Weight4,866,316 tonnesWeight4,866,316 tonnesduring active composting time.Volume7,799,092 m3Volume7,799,092 m3Turning FrequencyTurning FrequencyTurning FrequencyNeeks 7-19Weeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekWeeks 3-61 turn per week1
Volume7,799,092 m3Volume7,799,092 m3Turning FrequencyTurning FrequencyWeeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekAssume operational 7 days per weekWeeks 3-61 turn per week
Turning FrequencyTurning FrequencyWeeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekWeeks 3-61 turn per week
Weeks 1-25.5 turns per weekWeeks 7-190.25 turns per weekAssume operational 7 days per weekWeeks 3-61 turn per week
Weeks 5-0 I tull per week
Windrow Sizing <u>Loader</u> <u>CT 1010TX (straddle)</u>
height 3.5 2.7 m
width 7.0 3.0 m
length 100.0 100.0 m
Pad Sizing
Spacing between windrows 3 0 m Illustrations of pad layouts above
Buffer at edge of pad
No. of Windrow Piles
Loader 6,367 According to % breakdown in Summary Tab
CT1010TX 0
Pad Area
Loader $6.748.920 \text{ m}^2$
1.667.7 acres
$CT1010TX$ 0 m^2

Storage Storage Area

0

0.0

 m^2

acres

Additional area for storing finished material prior to shipping off-site. Not required, but may be considered. Assumed 0

Spacing between windrows - minimal Larger space is required at ends for the large turning radius

BMP 1 - Windrow Sizing Information

Total Units Required

Operating Hours	8	hours / day	Assumed						
	7	days / week	_						
Operating Time	Weeks 1-2	Weeks 3-6	Weeks 7-19			Max Hrs	Required # of Machines	3	Req'd # of machines based on divide
	(hrs/day)	(hrs/day)	(hrs/day)	TOTAL		per period	to process all manure		
Loader	20,426	3,714	928	25,069	hours	20,426	2,553	units	2,553 units
CT1010TX (straddle)	2,466	448	112	3,027	hours	2,466	308	units	0 units
Diesel Fuel Consumption	L/day	L/day	L/day	To process	all manure	Re	eq'd diesel based on div	ide	
Loader	511,482	92,997	23,249	12	M Litres/19) wks	12	Million Litres / un	nit/cycle of 19 weeks
CT1010TX	112,038	20,370	5,093	3	M Litres/19	9 wks	0	Million Litres / un	nit/cycle of 19 weeks

Canada Cattle: Alberta Feedlot Industry Demographics. Available at: www.cattlenetwork.com/Canada-Cattle. Accessed on May 29, 2005.

Comments

Total number of feedlots in Alberta currently4000Alberta Beef Producers. Beef Production. Available at: http://albertabeef.org/industry/beef-production-chain/About 100 feedlots with capacities over 1,000 head produce 75% of the finished beef cattle in the province.

Alberta Bunk Capacity	# of lots
1,000 - 5,000	127
5,001 - 10,000	45
10,001 - 15,000	15
15,001 - 20,000	8
20,000 and over	13

FEEDLOT OPERATIONS

Dog Link

BMP 1 - Improved manure management practice (2010 Baseline) Composting of solid managed manure stream produced in fedlots				
Assumed Percent Composting On-Site (only affects feedlot)	15% (% can be adjusted here for the entire model)		Provided by ARD 2010 Baseline Scenario	
% farms using existing equipment for on-site composting	100% (% can be adjusted here for the entire model)	(assumed)	Total GHG emissions	2.12E+10 kg CO2e
% farms purchasing new windrow turners for on-site composting	0 % (updates automatically)		Total acidification	3.12E+07 kg SO2-Eq
% farms using clay source on-site for compost pad	0% (% can be adjusted here for the entire model)	(assumed)	Total eutrophication	5.74E+06 kg PO4-Eq
% farms purchasing and shipping clay to site for compost pad	100 % (updates automatically)		Total non-renewable energy	3.53E+11 MJ-Eq
Assumed Percent Composting Off-site or Off-site Direct Land Application (only affects feedlots) (only affects feedlot)	85%			
Total number of animals (only affects feedlots)	319,871 animals			
Total weight affected to slaughter (only affects feedlots)	194,459 tonnes			

Dog Lin

COW/CALF OPERATIONS

	BMP 1	Baselin	e (2001)	Change	Market Valu	e Total Impact	BMP 1	Baseline (2001)	Change	Market Value	Total Impact
	(amount) (1	unit) (amount	(unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)
Inputs with Change											
Production of pesticide/herbicide											
Production of chemical fertilizer											
Production of bedding Production of min_trc min_coholt_protein suppl_vit_aptibiotic											
Purchase of chemical fertilizer											
Urea as N at regional storehouse											
Ammonia liquid at regional storehouse											
Monoammonium phosphate as P2O5 at regional storehouse											
Monoammonium phosphate, as N, at regional storehouse											
Ammonium sulphate, as N, at regional storehouse											
Purchase of manure for land application											
Purchase of pesticide/herbicide											
Purchase of seed for barley											
Purchase of seed for barlye silage											
Purchase of seed for alfalfa/grass hay											
Purchase of water to irrigate crops											
Purchase of amendment materials (wood waste/wood chips)							7.78E+07 kg	0 kg	7.78E+07 kg	\$0.13	\$10.29
Purchase of amendment materials (straw)							1.03E+09 kg	0 kg	1.03E+09 kg	\$0.06	\$59.81
Purchase of composting equipment (Windrow turner)							0 turners	0 turners	0 turners	\$175,000	\$0.00
Purchase of clay for composting pad and compaction							3.37E+06 m ³	$0 m^3$	3.37E+06 m ³	\$28	\$94.48
Compaction of clay (source on-site)							0.00E+00 m ³	0 m ³	0.00E+00 m ³	\$15	\$0.00
Transportation costs for clay to site (250 km assumed)							4.39E+06 tonne	0 tonne	4.39E+06 tonne	\$25	\$109.67
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E-	09 kg	0 kg	-	-					
Purchase of barley	Ű		Ŭ	Ű			4.49E+09 kg	4.49E+09 kg	0 kg	-	-
Purchase of barley silage							7.58E+09 kg	7.58E+09 kg	0 kg	-	-
Purchase of bedding	5.09E+08 kg	5.09E-	-08 kg	0 kg	-	-	4.22E+08 kg	4.22E+08 kg	0 kg	-	-
Purchase of animal shelters, wind breakers, fencing, etc.	0 units		0 units	0 units	-	-					
Purchase of ionophores	0 kg		0 kg	0 kg	-	-					
Purchase of RAC							0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.91E+07 kg	7.91E-	07 kg	0 kg	-	-	1.45E+08 kg	1.45E+08 kg	0 kg	-	-
Purchase of vitamins	1,684 kg	1,0	84 kg	0 kg	-	-	1.76E+05	1.76E+05 kg	0 kg	-	-
Purchase of RFI testing (includes transportation)	0 tests		0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-
Fuel/energy required to operate composting equipment							1.19E+07 L	0 L	1.19E+07 L	\$0.75	\$8.89
Fuel consumed to transport barley and barley silage											
Fuel consumed to transport alfalfa/grass hay											
Fuel consumed for cropping activities	0.1		0.1	0.1			0.1	0.1	0.1		
Fuel consumed to bed livestock (change)	0 L		0 L 0 I	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport badding (change)	01		0 L	0 L	-	-	0 L	0 L	UL	-	-
Fuel consumed to feed livestock (change)	0.1		0.1	0.1	-	-	0.1	0.1	0.1	-	-
Fuel consumed to collect manure (change)	θE		0 E	0 E			01	01	01		
Fuel consumed to transport manure off-site for disposal (change)							5 92E+06 I	6 97E+06 I	-1.05E+06 I	\$0.75	-\$0.78
Fuel cons to transp min tre min coh prot supply vit antibiotic							0.72E.00 E	0.77E-00 E	-1.001.00 L	φ0.75	-40.70
Fuel consumed to transport livestock for testing	01		0 L	01	-	-	0 L	0 L	0 L	-	-
Labour (change)	0 hrs		0 hrs	0 brs	-	-	4.74.E+05 hrs	0 hrs	4.74.E+05 hrs	\$16.22	\$7.70
Working capital interest	0 \$		0\$	0 \$	-	-	0 \$	0 \$	0 \$		\$0.00
Total Input Value Change						\$0.00					\$290.06

Outputs with Change Manure sold for land application 2.13E+10 kg

Manure sold for land application		2.13E+10 kg	2.51E+10 kg	-3.76E+09 kg	\$0.00	\$0.00
Compost sold for land application		2.15E+06 tonne	0 tonne	2.15E+06 tonne	\$6.00	\$12.89
Sale price for beef to slaughterhouse (change)		0 \$	0 \$	0 \$	-	-
Total Output Value Change	\$0.00					\$12.89

CHANGE IN OVERALL GHG EMISSIO	INS	COV	V/CALF OPERATIONS			FEEDLOT OPERATIONS	6
		BMP 1	Baseline (2001)	Change	BMP 1	Baseline (2001)	Chan
		(amount) (unit)	(amount) (unit)	(change) (unit)	(amount) (unit)	(amount) (unit)	(change)
BEEF ACTIVITIES - SOIL AND CROP							
Manure generation		3.45E+10 kg	3.45E+10 kg	0 kg	1.89E+10 kg	1.89E+10 kg	0
Mathana amiasiana faan atawa dagaaraa		1.40E+08.1-a.CO.a	1 40E + 08 h = CO =	0 ha CO a	1.24E+08-b=CO =	1.44E+08-bacO a	0.07E+06
Figure and the second stored manure		1.49E+08 kg CO ₂ e	1.49E+08 kg CO ₂ e	$0 \text{ kg CO}_2 e$	1.34E+08 kg CO ₂ e	1.44E+08 kg CO ₂ e	-9.97E+06
Enteric fermentation emissions		7.03E+09 kg CO ₂ e	7.03E+09 kg CO ₂ e		3.56E+09 kg CO ₂ e	3.56E+09 kg CO ₂ e	0.055.05
N_2O emissions from stored manure (direct	t)	1.83E+09 kg CO ₂ e	1.83E+09 kg CO ₂ e	0 kg CO ₂ e	3.60E+08 kg CO ₂ e	3.27E+08 kg CO ₂ e	3.35E+07
N_2O emissions from stored manure (indire	ect)	4.04E+08 kg CO ₂ e	4.04E+08 kg CO ₂ e	$0 \text{ kg CO}_2 e$	3.06E+08 kg CO ₂ e	3.06E+08 kg CO ₂ e	0
N ₂ O emissions from cropping and land us	se						
Total P emissions from run-off							
Soil Carbon Change in Soil From Land Us	e						
Direct CO2 emissions from managed soils							
ADDITIONAL ACTIVITIES							
Construction		0 kg CO₂e	0 kg CO ₂ e	0 kg CO ₂ e	5.89E+06 kg CO ₂ e	0 kg CO ₂ e	5.89E+06 l
Forage and cereal sub-activities		0 -			0 2	0.2	
Energy generation and consumption activ	ities	2.81E+09 kg CO ₂ e	2.81E+09 kg CO ₂ e	0 kg CO ₂ e	1.10E+09 kg CO ₂ e	1.04E+09 kg CO ₂ e	5.74E+07 l
O&M activities		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e	01
Cereal activities		0 -		0 -	0 2	0.2	
Forage activities							
Feedlot and pasture activities		3.20E+06 kg CO2e	3.20E+06 kg CO ₂ e	0 kg CO ₂ e	1.39E+08 kg CO2e	1.40E+08 kg CO ₂ e	-1.74E+06 }
Cow activities (transportation)		2.49E+07 kg CO ₂ e	2.49E+07 kg CO2e	0 kg CO ₂ e			
Bull activities (transportation)		3.14E+06 kg CO ₂ e	3.14E+06 kg CO2e	0 kg CO ₂ e			
Yearling-fed system activities (transportat	ion)	0.1112×00 kg c0jc	0.1112-00 kg CO2C	0 46 0020	1.08E+08 kg CO-e	1.08E+08.kg.CO.e	0.1
Calf-fed system activities (transportation)					6 59E+07 kg CO_e	6 59E+07 kg CO-e	01
cui icu system acuviles (aalisporadon)					0.072.07 % 6 6026	0.092.07 16 0020	
Total GWP for BMP							
	kg CO₂e	1.22E+10 Cow/Calf			5.77E+09 Feedlot		
Total Change in GWP for BMP							
	kg CO₂e			0.00E+00			8.51E+07
Overall Baseline GWP (2001)							
kg	g CO ₂ e/kg live weight	14.705					
Overall Baseline GWP (2010)	CO olka livo woiaht	14 924	(This is the 2010 baselin				
N.	J CO2erky live weight	17.034	(11115 15 the 2010 Dasellin	e mouer)			
Overall BMP GWP							
kg	g CO ₂ e/kg live weight	14.834	(includes construction e	missions)			
Change in overall GWP from 2001		0 1 2 0					
ĸg	J CO2erky live weight	0.127					
Change in overall GWP from 2010							
kg	g CO ₂ e/kg live weight	0.000					
Change in GWP per kg of beef affected	from 2001						
kg	g CO ₂ e/kg live weight	0.944	(total change in GHG e	missions divided by total weight (of cattle affected)		
			. 0	2 . 8 .	,		

Notes: Energy generation emission changes assumed all to feedlot as only feedlot affected by this BMP Feedlot and pasture activities assumed all to feedlot and beef industry as cow calf not affected by this BMP

BENEFITS AND COSTS

BEEF INDUSTRY											
BMP 1	Baseline	(2001)	Cha	inge							
(amount) (unit)	(amount)	(unit)	(change)	(unit)							
9.57E+08 kg CO ₂ e	9.57E+08	kg CO ₂ e		0 kg CO ₂ e							
4.15E+06 kg PO4-eq	4.15E+06	kg PO₄-eq		0 kg PO ₄ -eq							
-2.36E+08 kg CO ₂ e	-2.36E+08	kg CO ₂ e		0 kg CO ₂ e							
1.89E+08 kg CO ₂ e	1.89E+08	kg CO ₂ e		0 kg CO ₂ e							
0 -		0 -		0 2							
1.20E+09 kg CO2e	1.20E+09	kg CO2e		0 kg CO2e							
		1.8 00 20		0 116 0 0 20							
3 38E+08 kg COae	3 38E+08	kg CO2e		0 kg COve							
2 86E+08 kg CO-e	2.86E+08	kg CO-e		0 kg CO.e							
4.02E+08 kg CO-e	3.04E+08	kg CO-e	9.85E+0	0 kg СО <u>-</u> е							
1.0211.00 Kg CO2C	5.041.100	n ₆ co ₂ c	7.00E (C	., x ₅ co ₂ c							

3.14E+09 Beef Industry

9.85E+07

BMP 1 - Improved manure management practice (BMP 1.1a Windrow and C Composting of solid managed manure stream produced in fedlots	n-site Clay)		
Assumed Percent Composting On-Site	100% (% can be adjusted here for the entire model)		
(only affects feedlot)		Scenario BMP 1.1a	
% farms using existing equipment for on-site composting	0% (% can be adjusted here for the entire model)	Total GHG emissions	2.21E+10 kg CO2e
% farms purchasing new windrow turners for on-site composting	100 % (updates automatically)	Total acidification	3.42E+07 kg SO2-Eq
% farms using clay source on-site for compost pad	100% (% can be adjusted here for the entire model)	Total eutrophication	6.83E+06 kg PO4-Eq
% farms purchasing and shipping clay to site for compost pad	0% (updates automatically)	Total non-renewable energy	3.64E+11 MJ-Eq
Assumed Percent Composting Off-site	0%		
or Off-site Direct Land Application (only affects feedlots)			
(only affects feedlot)			
Total number of animals (only affects feedlots)	2,132,470 animals		
Total weight affected to slaughter (only affects feedlots)	1,296,392 tonnes		
	COW/CALF OPERATIONS	FI	EDLOT OPERATIONS

							Per Unit								Per Unit	
	BM	P1	Baseline	(2010)	Char	ige	Market Value	Total Impact	BMI	P1	Baseline	(2010)	Chan	ge	Market Value	Total Impact
	(amount)	(unit)	(amount)	(unit)	(change)	(unit)	(\$/unit)	(\$ Million)	(amount)	(unit)	(amount)	(unit)	(change)	(unit)	(\$/unit)	(\$ Million)
Inputs with Change																
Production of pesticide/herbicide																
Production of chemical fertilizer																
Production of bedding																
Production of min., trc min., cobalt, protein suppl., vit., antibiotic																
Purchase of chemical fertilizer																
Urea, as N, at regional storehouse																
Ammonia, liquid, at regional storehouse																
Monoammonium phosphate, as P2O5, at regional storehouse																
Monoammonium phosphate, as N, at regional storehouse																
Ammonium sulphate, as N, at regional storehouse																
Purchase of manure for land application																
Purchase of pesticide/herbicide																
Purchase of seed for barley																
Purchase of seed for barlye silage																
Purchase of seed for alfalfa/grass hay																
Purchase of water to irrigate crops																
Purchase of amendment materials (wood waste/wood chips)									5.19E+0	8 kg	7.78E+0	7 kg	4.41E+08	kg	\$0.13	\$58.32
Purchase of amendment materials (straw)									6.84E+0	9 kg	1.03E+0) kg	5.81E+09	kg	\$0.06	\$338.92
Purchase of composting equipment (Windrow turner)									2,055	turners	0	turners	2,055	turners	\$175,000	\$359.69
Purchase of clay for composting pad and compaction									0.00E+0	0 m^3	3 37E+0	5 m ³	-3 37E+06	m ³	\$28	-\$94.48
Compaction of clay (source on site)									1 36E+0	7 m ³	0.072.0	m ³	1 36E+07	m ³	\$15	\$204.14
Transportation costs for clay to site (250 km assumed)									0.00E+0) tonno	4 30E+0	i tonno	-4 39E+06	tonno	\$25	\$109.67
Purchase of alfalfa (grass hav	6 50E±00 k	<i>a</i>	6 50E±0	0 kg) ka			0.001.+0	0 torne	4.391.+0	5 torne	-4.391-00	torne	\$25	-\$109.07
Purchase of harlow	0.59E+09 k	·g	0.391-10	5 Kg		, kg	-	-	4.405±0	a ka	4.400+0) ka	0	ka		
Durchase of barley									4.49E+0	9 Kg	4.49E+0	, kg	0	kg ha	-	-
Purchase of bad ding	E 00E 108 1	-	E 00E 10	0 l.m		1			7.36ETU	9 Kg	7.36ETU) kg	0	kg 1. m	-	-
Purchase of prime alchaltere using breakers for sing ate	5.09E+08 K	.g	5.09E+0	5 кg О нитіта	() Kg	-	-	4.22E+0	5 кд	4.22E+0	5 кд	0	кд	-	-
Purchase of animal shelters, while breakers, fencing, etc.	01	inits			() units	-	-								
Purchase of BAC	0 k	.g		J Kg) kg	-	-		0.1.0		1		1		
Purchase of min tramin scholt protein sumplementibistic	7.01E+07.1	-	7.01E+0	7 1		1			1.455+0) kg	1.455+0) kg	0	kg	-	-
Durshase of vitamine	1.91L+07 K	·g	1.911.+0	/ Kg 4 1) kg	-	-	1.45E+0	-	1.45E+0	, kg	0	kg ha	-	-
Furchase of PEI testing (includes transmostation)	1,004 K	.g	1,00	± Kg D taata	() kg	-	-	1.76E+0) taata	1.76E+U) Kg	0	kg	-	-
Furchase of KFI testing (includes transportation)	01	ests		J lesis) tests			1 72E±0	7 1	1 10E±0	7 1	5 47E±06	tests	\$0.75	\$4.00
Fuel consumed to transport barley and barley silage									1.73E+0.	/ L	1.191.+0.	L	5.4712+00	L	\$0.75	\$ 4. 09
Fuel consumed to transport alfalfa (grass hav																
Fuel consumed for cropping activities																
Fuel consumed to bed livestock (change)	0.1			D I) I) I) I	0	I		_
Fuel consumed to transport garbage (change)	01	,			() I	-	-) L) I	0	I	-	
Fuel consumed to transport bedding (change)	01	,		JL		, L	_	_		JL		, L		L	_	-
Fuel consumed to feed livestock (change)	0.1			D I) I) I		1	0	I		_
Fuel consumed to rellect measure (change)	01	,		JL) L	_	_) L	0	I	-	-
Fuel consumed to conect manure (change)											E ODE LO)L T	E ODE LOG	L	¢0.75	- ¢4.42
Fuel consumed to transport manure on-site for disposal (change)										J L	5.92E+0	, L	-3.92E+06	L	ə0.75	-74.43
Fuel const. to transp. min., trc min., cob., prot. suppl., vit., antibiotic	0.1			0 I										т		
Lebour (charge)	01			UL Dhan	() L	-	-	203 11 - 0	J L E hano	4 74 12 - 01	L	0.05 5.01	L	- #14.00	- 61 E0
Labour (change)	0 F	irs		Unrs		nrs	-	-	3.82.E+0	o nrs	4.74.E+0	nrs	-9.25.E+04	nrs	\$16.22	-\$1.50
Total lumit Value Chauge	0\$			υφ	(φ	-	-		<mark>ፓ</mark> ቅ		<mark>ק ו</mark>	0	Þ		\$0.00
10111 Input value Change								\$0 . 00								\$735.07

Outputs with Change

Manure sold for land application		0.00E+00 kg	2.13E+10 kg	-2.13E+10 kg	\$0.00	\$0.00
Compost sold for land application		1.43E+07 tonne	2.15E+06 tonne	1.22E+07 tonne	\$6.00	\$73.05
Sale price for beef to slaughterhouse (change)		0 \$	0\$	0 \$	-	-
Total Output Value Change	\$0.00					\$73.05

First year only First year only First year only First year only

CHANGE IN OVERALL GHG EMISSIONS			COW/CALF OPERATIONS		
		BMP 1	Baseline (2010)	Change	BMP 1
		(amount) (unit)	(amount) (unit)	(change) (unit)	(amount) (unit)
BEEF ACTIVITIES - SOIL AND CROP					
Manure generation		3.45E+10 kg	3.45E+10 kg	0 kg	1.89E+10 kg
Methane emissions from stored manure		1.49E+08 kg CO ₂ e	1.49E+08 kg CO2e	0 kg CO ₂ e	7.77E+07 kg CO ₂ e
Enteric fermentation emissions		7.03E+09 kg CO2e	7.03E+09 kg CO ₂ e	0 kg CO ₂ e	3.56E+09 kg CO ₂ e
N ₂ O emissions from stored manure (direct)		1.83E+09 kg CO2e	1.83E+09 kg CO ₂ e	0 kg CO ₂ e	5.50E+08 kg CO ₂ e
N ₂ O emissions from stored manure (indirect)		4.04E+08 kg CO2e	4.04E+08 kg CO ₂ e	0 kg CO ₂ e	3.06E+08 kg CO ₂ e
N ₂ O emissions from cropping and land use					
Total P emissions from run-off					
Soil Carbon Change in Soil From Land Use					
Direct CO2 emissions from managed soils					
ADDITIONAL ACTIVITIES					
Construction		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e	2.58E+08 kg CO ₂ e
Forage and cereal sub-activities					
Energy generation and consumption activities		2.81E+09 kg CO ₂ e	2.81E+09 kg CO ₂ e	0 kg CO ₂ e	1.12E+09 kg CO ₂ e
O&M activities		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
Cereal activities		0 -	0 -	0 -	
Forage activities					
Feedlot and pasture activities		3.20E+06 kg CO ₂ e	3.20E+06 kg CO-e	0 kg CO ₂ e	1.31E+08 kg CO ₂ e
Cow activities (transportation)		2.49E+07 kg CO ₂ e	2.49E+07 kg CO ₂ e	0 kg CO ₂ e	0 1
Bull activities (transportation)		3.14E+06 kg CO ₂ e	3.14E+06 kg CO ₂ e	0 kg CO ₂ e	
Yearling-fed system activities (transportation)		0 -	0 2	0 -	1.08E+08 kg CO ₂ e
Calf-fed system activities (transportation)					6.59E+07 kg CO ₂ e
Total GWP for BMP	ka CO.e	1 22E+10 Cow/Calf			6 18E+09 Feedlot
Total Change in GWP for BMP	Ng 0020	1.22E. 10 Conjean			0.10E+09 Teculor
	ka CO.e			0.00E+00	
	Ng 0020			0.002.00	
Total change in emissions		962,702 tonnes			
Overall Baseline GWP (2001)					
kg C0	D₂e/kg live weight	14.705			
Overall Baseline GWF (2010)) o/ka livo wojaht	14 024	Construction estimation or	also for first more of one such	l
kg CC	J ₂ e/kg live weight	14.834	Construction activities of	hiy for first year of operat	ion
Ourseall BMB CWB			values without construct	tion activities	
overall bivit Givit		15 500	15 222		
	J ₂ e/kg live weight	13.309	15.552		
Change in overall GWP from 2001					
kg C0	D ₂ e/kg live weight	0.803	0.627		
Change in overall GWP from 2010		0.477	0.400		
kg C0	J ₂ e/kg live weight	0.675	0.498		
Change in GWP per kg of beef affected from 20	10				
kg C(D₂e/kg live weight	0.743	(total change in GHG en	nissions divided by total v	weight of cattle affected)

	FEEDLOT OPERATIONS											
BMP	1	Baseline	(2010)	Chan	ge							
(amount)	(unit)	(amount)	(unit)	(change)	(unit)							
1.89E+10	kg	1.89E+10	kg	C	kg							
7.77E+07	kg CO ₂ e	1.34E+08	kg CO2e	-5.65E+07	′ kg CO₂e							
3.56E+09	kg CO ₂ e	3.56E+09	kg CO ₂ e	C	kg CO ₂ e							
5.50E+08	kg CO ₂ e	3.60E+08 kg CO ₂ e 1.90E+08 kg CC										
3.06E+08	kg CO ₂ e	3.06E+08 kg CO ₂ e 0 kg CO										
2.58E+08	kg CO ₂ e	5.89E+06	kg CO ₂ e	2.52E+08	kg CO ₂ e							
1.12E+09	kg CO₂e	1.10E+09	kg CO ₂ e	2.64E+07	′ kg CO₂e							
0	kg CO ₂ e	0	kg CO ₂ e	C	kg CO ₂ e							
					0 -							
1.31E+08	kg CO ₂ e	1.39E+08	kg CO ₂ e	-8.17E+06	kg CO ₂ e							
1.08E+08	kg CO ₂ e	1.08E+08	kg CO ₂ e	C	kg CO ₂ e							
6.59E+07	kg CO ₂ e	6.59E+07	′ kg CO₂e	C	kg CO ₂ e							

4.04E+08

Notes: Energy generation emission changes assumed all to feedlot as only feedlot affected by this BMP Feedlot and pasture activities assumed all to feedlot as only feedlot affected by this BMP

D) (D 4	BEEF IND	USTRY	C	
BMP 1	Baseline	(2010)	Chai	nge
(amount) (unit)	(amount)	(unit)	(change)	(unit)
9.57E+08 kg CO ₂ e	9.57E+08	kg CO ₂ e	() kg CO ₂ e
4.15E+06 kg PO ₄ -ec	4.15E+06	kg PO ₄ -eq	() kg PO ₄ -e
-2.36E+08 kg CO ₂ e	-2.36E+08	kg CO ₂ e	() kg CO ₂ e
1.89E+08 kg CO2e	1.89E+08	kg CO ₂ e	() kg CO ₂ e
1.20E+09 kg CO ₂ e	1.20E+09	kg CO ₂ e) kg CO ₂ e
3.38E+08 kg CO ₂ e	3.38E+08	kg CO ₂ e	() kg CO ₂ e
2.86E+08 kg CO2e	2.86E+08	kg CO ₂ e	() kg CO ₂ e
9.61E+08 kg CO2e	4.02E+08	kg CO ₂ e	5.59E+08	8 kg CO ₂ e

3.70E+09 Beef Industry

5.59E+08

					DENEITI	0 1110 00010				
BMP 1 - Improved manure management practice (BMP 1.1b - Wind Composting of solid managed manure stream produced in fedlots	frow Turner and Off-site Clay)]				
Assumed Percent Composting On-Site (only affects feedlot)	100%	6 (% can be adjusted here	e for the entire model)			Scenario BMP 1.1b				
% farms using existing equipment for on-site composting	0%	6 (% can be adjusted here	e for the entire model)			Total GHG emissions		2.21E+10 kg CO2e	P	1
% farms nurchasing new windrow turners for on-site compost	ing 100%	(undates automatically)				Total acidification		3 42E+07 kg SO2-I	Fa.	
70 fains purchasing new which with the store compose	ing 1007	(updates automatically)				i otal actuilication		5.42E 107 Kg 502-1	M.	
% farms using clay source on-site for compost pad	0%	6 (% can be adjusted here	for the entire model)			Total eutrophication		6.83E+06 kg PO4-I	ŝq	
% farms purchasing and shipping clay to site for compost pad	100%	6 (updates automatically)				Total non-renewable energy 3.64E+11 MJ-Eq				
Assumed Percent Composting Off-site or Off-site Direct Land Application (only affects feedlots) (only affects feedlot)	0%	<i>′</i> 0								
Total number of animals (only affects feedlots)	2,132,47	<mark>0</mark> animals				1				
Total weight affected to slaughter (only affects feedlots)	1,296,392	2 tonnes								
		COMPLETE	TIONS				FFDIOT	OPERATIONS		
		COW/CALF OF EKA	ATIONS	Per Unit			FEEDLOI	OFERATIONS	Per Unit	
	BMP 1	Baseline (2010)	Change	Market Value	Total Impact	BMP 1	Baseline (2010)	Change	Market Value	e Total Impact
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)
Inputs with Change										
Production of posticide /berbicide	·	_								
Production of chemical fertilizer									(
Production of bedding										
Production of min., trc min., cobalt, protein suppl., vit., antibiotic										
Purchase of chemical fertilizer										
Urea, as N, at regional storehouse										
Ammonia, liquid, at regional storehouse										
Monoammonium phosphate, as P2O5, at regional storehouse										
Monoammonium phosphate, as N, at regional storehouse										
Ammonium sulphate, as N, at regional storehouse										
Purchase of manure for land application										
Purchase of pesticide/herbicide										
Purchase of seed for barley										
Purchase of seed for barlye silage										
Purchase of seed for alfalfa/grass hay										
Purchase of water to irrigate crops										
Purchase of amendment materials (wood waste/wood chips)						5.19E+08 kg	7.78E+07 kg	4.41E+08 kg	\$0.13	\$58.32
Purchase of amendment materials (straw)						6.84E+09 kg	1.03E+09 kg	5.81E+09 kg	\$0.06	\$338.92
Purchase of composting equipment (Windrow turner)						2,055 turners	0 turners	2,055 turners	\$175,000	\$359.69
Purchase of clay for composting pad and compaction						1.36E+07 m ³	3.37E+06 m ³	$1.02E+07 \text{ m}^3$	\$28	\$286.58
Compaction of clay (source on site)						$0.00E+00 m^3$	0 m ³	$0.00E+00 m^3$	\$15	\$0.00
Transportation costs for day to site (250 km accume 3)						1.77E±07 torra	4 20E±06 topra	1.22E±07 torra	\$15 \$25	\$0.00 \$222.62
Purchase of alfalfa (among have	(EOE + 00 h =	6 50E + 00 hrs	0.1-2			1.77E+07 torine	4.59ETU0 101100	1.55E+07 totine	⊅ ∠0	\$332.03
i urchase of analia/ grass flay	0.39ETU9 Kg	0.39E+09 Kg	U Kg	-	-	4.40E+00.ha	4.40E+00.1-a	0 ha		
r urchase of barley						4.49E+09 Kg	4.49E+09 Kg	U Kg	-	-

1 , , , ,										
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	0 kg	-	-					
Purchase of barley						4.49E+09 kg	4.49E+09 kg	0 kg	-	-
Purchase of barley silage						7.58E+09 kg	7.58E+09 kg	0 kg	-	-
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0 kg	-	-	4.22E+08 kg	4.22E+08 kg	0 kg	-	-
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-					
Purchase of ionophores	0 kg	0 kg	0 kg	-	-					
Purchase of RAC						0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.91E+07 kg	7.91E+07 kg	0 kg	-	-	1.45E+08 kg	1.45E+08 kg	0 kg	-	-
Purchase of vitamins	1,684 kg	1,684 kg	0 kg	-	-	1.76E+05	1.76E+05 kg	0 kg	-	-
Purchase of RFI testing (includes transportation)	0 tests	0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-
Fuel/energy required to operate composting equipment						1.73E+07 L	1.19E+07 L	5.47E+06 L	\$0.75	\$4.09
Fuel consumed to transport barley and barley silage										
Fuel consumed to transport alfalfa/grass hay										
Fuel consumed for cropping activities										
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport bedding (change)										
Fuel consumed to feed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to collect manure (change)						0 L	0 L	0 L	-	-
Fuel consumed to transport manure off-site for disposal (change)						0 L	5.92E+06 L	-5.92E+06 L	\$0.75	-\$4.43
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic										
Fuel consumed to transport livestock for testing	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	3.82.E+05 hrs	4.74.E+05 hrs	-9.25.E+04 hrs	\$16.22	-\$1.50
Working capital interest	0\$	0 \$	0\$	-	-	<mark>0</mark> \$	<mark>0</mark> \$	0\$		\$0.00
Total Input Value Change					\$0.00					\$1,374.30

Outputs with Change

Manure sold for land application		0.00E+00 kg	2.13E+10 kg	-2.13E+10 kg	\$0.00	\$0.00
Compost sold for land application		1.43E+07 tonne	2.15E+06 tonne	1.22E+07 tonne	\$6.00	\$73.05
Sale price for beef to slaughterhouse (change)		0 \$	0 \$	0 \$	-	-
Total Output Value Change	\$0.00					\$73.05

.69First year only.58First year only.00First year only.63First year only

CHANGE IN OVERALL GHG EMISSIO	INS		COW/CALF OPERATIONS		FEEDLOT OPERATIONS					
		BMP 1	Baseline (2010)	Change		BMI	21	Baseline	2010)	Change
		(amount) (unit) (amount) (unit)	(change) (unit)		(amount)	(unit)	(amount)	(unit)	(change) (unit)
BEEF ACTIVITIES - SOIL AND CROP										
Manure generation		3.45E+10 kg	3.45E+10 kg	0 kg		1.89E+10) kg	1.89E+10	kg	0 kg
Methane emissions from stored manure		1.49E+08 kg CO2e	1.49E+08 kg CO ₂ e	0 kg CO ₂ e		7.77E+07	7 kg CO₂e	1.34E+08	kg CO ₂ e	-5.65E+07 kg CO ₂ e
Enteric fermentation emissions		7.03E+09 kg CO2e	7.03E+09 kg CO ₂ e	0 kg CO ₂ e		3.56E+09	9 kg CO ₂ e	3.56E+09	kg CO ₂ e	0 kg CO ₂ e
N2O emissions from stored manure (direct	t)	1.83E+09 kg CO ₂ e	1.83E+09 kg CO ₂ e	0 kg CO ₂ e		5.50E+08	3 kg CO ₂ e	3.60E+08	kg CO ₂ e	1.90E+08 kg CO2e
N ₂ O emissions from stored manure (indire	ect)	4.04E+08 kg CO ₂ e	4.04E+08 kg CO ₂ e	0 kg CO ₂ e		3.06E+08	3 kg CO ₂ e	3.06E+08	kg CO ₂ e	0 kg CO ₂ e
N ₂ O emissions from cropping and land us	ie i		0						-	
Total P emissions from run-off										
Soil Carbon Change in Soil From Land Us	e									
Direct CO2 emissions from managed soils										
ADDITIONAL ACTIVITIES										
Construction		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		2.70E+08	3 kg CO ₂ e	5.89E+06	kg CO ₂ e	2.64E+08 kg CO ₂ e
Forage and cereal sub-activities										
Energy generation and consumption activ	ities	2.81E+09 kg CO ₂ e	2.81E+09 kg CO ₂ e	0 kg CO ₂ e		1.12E+09	9 kg CO ₂ e	1.10E+09	kg CO ₂ e	2.64E+07 kg CO ₂ e
O&M activities		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e) kg CO ₂ e	0	kg CO ₂ e	0 kg CO ₂ e
Cereal activities										
Forage activities										
Feedlot and pasture activities		3.20E+06 kg CO ₂ e	3.20E+06 kg CO ₂ e	0 kg CO ₂ e		1.31E+08	3 kg CO ₂ e	1.39E+08	kg CO ₂ e	-8.17E+06 kg CO ₂ e
Cow activities (transportation)		2.49E+07 kg CO ₂ e	2.49E+07 kg CO ₂ e	0 kg CO ₂ e						
Bull activities (transportation)		3.14E+06 kg CO ₂ e	3.14E+06 kg CO ₂ e	0 kg CO ₂ e						
Yearling-fed system activities (transportat	ion)					1.08E+08	3 kg CO ₂ e	1.08E+08	kg CO ₂ e	0 kg CO ₂ e
Calf-fed system activities (transportation)						6.59E+07	7 kg CO ₂ e	6.59E+07	kg CO ₂ e	0 kg CO ₂ e
Total GWP for BMP	kg CO₂e	1.22E+10 Cow/Cal	Ē			6.19E+09	Feedlot			
Total Change in GWP for BMP										
	kg CO₂e			0.00E+00						4.16E+08
Total change in emissions		974,634 tonnes								
Overall Baseline GWP (2001)										
	kg CO ₂ e/kg live weight	14.705								
Overall Baseline GWP (2010)										
	kg CO2e/kg live weight	14.834	Construction activites or	nly for first year of operati	on					
			Adjusted to exclude con	struction emissions for yea	ars after implementation					
Overall BMP GWP	ka CO.e/ka live weight	15 517	15 328							
Change in overall GWP from 2001										
	kg CO ₂ e/kg live weight	0.812	0.622							
Change in overall GWP from 2010										
	kg CO ₂ e/kg live weight	0.683	0.494							
Change in GWP per kg of heaf affected	from 2010									
change in own per ky or beet directed	kg CO ₂ e/kg live weight	0.752	(total change in GHG en	nissions divided by total w	veight of cattle affected)					

Notes:

Energy generation emission changes assumed all to feedlot as only feedlot affected by this BMP Feedlot and pasture activities assumed all to feedlot as only feedlot affected by this BMP

D) (D 4	BEEF IND	USTRY	C				
BMP 1	Baseline	(2010)	Chai	nge			
(amount) (unit)	(amount)	(unit)	(change)	(unit)			
9.57E+08 kg CO ₂ e	9.57E+08	kg CO ₂ e	() kg CO ₂ e			
4.15E+06 kg PO ₄ -ec	4.15E+06	kg PO ₄ -eq	() kg PO ₄ -e			
-2.36E+08 kg CO ₂ e	-2.36E+08	kg CO ₂ e	() kg CO ₂ e			
1.89E+08 kg CO2e	1.89E+08	kg CO ₂ e	0 kg CC				
1.20E+09 kg CO ₂ e	1.20E+09	kg CO ₂ e) kg CO ₂ e			
3.38E+08 kg CO ₂ e	3.38E+08	kg CO ₂ e	() kg CO ₂ e			
2.86E+08 kg CO2e	2.86E+08	kg CO ₂ e	() kg CO ₂ e			
9.61E+08 kg CO2e	4.02E+08	kg CO ₂ e	5.59E+08	8 kg CO ₂ e			

3.70E+09 Beef Industry

5.59E+08

BMP 1 - Improved manure management practice (BMP 1.2a - Existing Equi Composting of solid managed manure stream produced in fedlots	pment and On-site Clay)		
Assumed Percent Composting On-Site (only affects feedlot)	100% (% can be adjusted here for the entire model)	Scenario BMP 1.2a	
% farms using existing equipment for on-site composting	100% (% can be adjusted here for the entire model)	Total GHG emissions	2.22E+10 kg CO2e
% farms purchasing new windrow turners for on-site composting	0% (updates automatically)	Total acidification	3.39E+07 kg SO2-Eq
% farms using clay source on-site for compost pad	100% (% can be adjusted here for the entire model)	Total eutrophication	6.91E+06 kg PO4-Eq
% farms purchasing and shipping clay to site for compost pad	0 % (updates automatically)	Total non-renewable energy	3.95E+11 MJ-Eq
Assumed Percent Composting Off-site or Off-site Direct Land Application (only affects feedlots) (only affects feedlot)	0%		
Total number of animals (only affects feedlots)	2,132,470 animals		
Total weight affected to slaughter (only affects feedlots)	1,296,392 tonnes		
	COW/CALF OPERATIONS	FI	EEDLOT OPERATIONS

	RMD 1	Bacolina (2010)	Change	Per Unit Market Value	Total Impact	PMD 1	Bacalina (2010)	Change	Per Unit Market Value	Total Impact
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)
Inputs with Change										
Production of pesticide/herbicide										
Production of chemical fertilizer										
Production of bedding										
Production of min., trc min., cobalt, protein suppl., vit., antibiotic										
Purchase of chemical fertilizer										
Urea, as N, at regional storehouse										
Ammonia, liquid, at regional storehouse										
Monoammonium phosphate, as P2O5, at regional storehouse										
Monoammonium phosphate, as N, at regional storehouse										
Ammonium sulphate, as N, at regional storehouse										
Purchase of manure for land application										
Purchase of pesticide/herbicide										
Purchase of seed for barley										
Purchase of seed for barlye silage										
Purchase of seed for alfalfa/grass hay										
Purchase of water to irrigate crops										
Purchase of amendment materials (wood waste/wood chips)						5.19E+08 kg	7.78E+07 kg	4.41E+08 kg	\$0.13	\$58.32
Purchase of amendment materials (straw)						6.84E+09 kg	1.03E+09 kg	5.81E+09 kg	\$0.06	\$338.92
Purchase of composting equipment (Windrow turner)						0 turners	0 turners	0 turners	\$175,000	\$0.00
Purchase of clay for composting pad and compaction						0.00E+00 m ³	3.37E+06 m ³	-3.37E+06 m ³	\$28	-\$94.48
Compaction of clay (source on-site)						2.25E+07 m ³	0 m ³	2.25E+07 m ³	\$15	\$337.43
Transportation costs for clay to site (250 km assumed)						0.00E+00 tonne	4.39E+06 tonne	-4.39E+06 tonne	\$25	-\$109.67
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	0 kg	-	-					
Purchase of barley						4.49E+09 kg	4.49E+09 kg	0 kg	-	-
Purchase of barley silage						7.58E+09 kg	7.58E+09 kg	0 kg	-	-
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0 kg	-	-	4.22E+08 kg	4.22E+08 kg	0 kg	-	-
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-					
Purchase of ionophores	0 kg	0 kg	0 kg	-	-					
Purchase of RAC						0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.91E+07 kg	7.91E+07 kg	0 kg	-	-	1.45E+08 kg	1.45E+08 kg	0 kg	-	-
Purchase of vitamins	1,684 kg	1,684 kg	0 kg	-	-	1.76E+05	1.76E+05 kg	0 kg	-	-
Purchase of RFI testing (includes transportation)	0 tests	0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-
Fuel/energy required to operate composting equipment						7.92E+07 L	1.19E+07 L	6.73E+07 L	\$0.75	\$50.39
Fuel consumed to transport barley and barley silage										
Fuel consumed to transport alfalfa/grass hay										
Fuel consumed for cropping activities										
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	-	· · ·	0 L	0 L	0 L	-	-
Fuel consumed to transport bedding (change)										
Fuel consumed to feed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to collect manure (change)						0 L	0 L	0 L	-	-
Fuel consumed to transport manure off-site for disposal (change)						0 L	5.92E+06 L	-5.92E+06 L	\$0.75	-\$4.43
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic	0.7						A. *			
Fuel consumed to transport livestock for testing	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Labour (change)	U hrs	U hrs	0 hrs	-	-	3.16.E+06 hrs	4.74.E+05 hrs	2.69.E+06 hrs	\$16.22	\$43.61
Total Junut Value Chauge	UΦ	05	0 \$	-	-	U \$	U \$	05		\$0.00
101ai input vaine Change					\$0.00					\$620.08

Outputs with Change

Manure sold for land application		0.00E+00 kg	2.13E+10 kg	-2.13E+10 kg	\$0.00	\$0.00
Compost sold for land application		1.43E+07 tonne	2.15E+06 tonne	1.22E+07 tonne	\$6.00	\$73.05
Sale price for beef to slaughterhouse (change)		0\$	0 \$	0 \$	-	-
Total Output Value Change	\$0.00					\$73.05

First year only First year only First year only First year only

CHANGE IN OVERALL GHG EMISSIO	ONS		C		FEEDLOT OPERATIONS								
		BN	MP 1	Baseline (2010)	Chan	ge		BMI	?1	Baseline	(2010)	Char	nge
		(amount)	(unit)	(amount) (uni	t) (change)	(unit)		(amount)	(unit)	(amount)	(unit)	(change)	(unit)
BEEF ACTIVITIES - SOIL AND CROP													
Manure generation		3.45E+10	kg	3.45E+10 kg	() kg		1.89E+1) kg	1.89E+10) kg	() kg
Methane emissions from stored manure		1.49E+08	kg COre	1 49E+08 kg CC)-e (kg COre		7 77F+0	7 kg COve	1 34E+08	ka COre	-5.65E+0'	7 kg COre
Enteric formentation emissions		7.03E+00	kg CO ₂ e	7.03E+09 kg CC) <u>2</u> e ()	kg CO ₂ e		3 56E+0	$k_{g} CO_{2e}$	3.56E+00	$k_{\alpha} CO_{\alpha}$	-5.051.10	$kg CO_2e$
N-O emissions from stored manure (direct	t)	1.83E+09	kg CO-e	1.83E+09 kg CC) kg CO-e		5 50E+0	8 kg CO.e	3.60E+05	kg CO-e	1 90E+0	8 kg CO.e
N ₂ O emissions from stored manure (indire	ect)	4.04E+08	kg CO ₂ e	4.04E+08 kg CC		kg CO-e		3.06E+0	8 kg CO.e	3.06E+08	kg CO-e	1.501.00) kg CO.e
N-O emissions from cropping and land us	20	1.011.100	Kg CO ₂ c	4.04E+00 Kg CC	520	к <u>в со</u> 2с		3.002.00	5 Kg CO ₂ C	5.001100	Kg CO2C		5 Kg CO ₂ C
Total P emissions from run-off													
Soil Carbon Change in Soil From Land Us	e												
Direct CO2 emissions from managed soils													
-													
ADDITIONAL ACTIVITIES		-								= 00T			
Construction		0	kg CO ₂ e	0 kg CC	0 ₂ e (kg CO ₂ e		1.96E+0	/ kg CO ₂ e	5.89E+06	⊳ kg CO₂e	1.37E+0	/ kg CO ₂ e
Forage and cereal sub-activities			1 60	0.017:001		1 66		4 197		4.407	1 02		
Energy generation and consumption activ	ities	2.81E+09	kg CO ₂ e	2.81E+09 kg CC	$D_2 e$ (kg CO ₂ e		1.42E+0	9 kg CO ₂ e	1.10E+09	kg CO ₂ e	3.25E+08	8 kg CO ₂ e
O&M activities		0	kg CO ₂ e	0 kg CC	D ₂ e () kg CO ₂ e) kg CO ₂ e	0	∣ kg CO₂e	() kg CO ₂ e
Cereal activities													
Forage activities													
Feedlot and pasture activities		3.20E+06	kg CO ₂ e	3.20E+06 kg CC	$D_2 e$ () kg CO ₂ e		1.31E+0	8 kg CO ₂ e	1.39E+08	s kg CO ₂ e	-8.17E+0	5 kg CO ₂ e
Cow activities (transportation)		2.49E+07	kg CO ₂ e	2.49E+07 kg CC	$D_2 e$ () kg CO ₂ e							
Bull activities (transportation)		3.14E+06	kg CO ₂ e	3.14E+06 kg CC	J ₂ e () kg CO ₂ e		1.002	1 00	1.001	1 00		
Yearling-ted system activities (transportat	ion)							1.08E+0	$3 \text{ kg CO}_2 \text{e}$	1.08E+08	kg CO ₂ e	() kg CO_2e
Calf-fed system activities (transportation)								6.59E+0	/ kg CO ₂ e	6.59E+07	kg CO₂e	() kg CO ₂ e
Total GWP for BMP													
Tatal Change in OWD (or DMD	kg CO ₂ e	1.22E+10	Cow/Calf					6.24E+09	Feedlot				
Total Change In GWP for BMP	ka COse				0.00F+00							4 64E+08	
					01002.00							1012.00	
Total change in emissions		1,022,630	tonnes										
Overall Baseline GWP (2001)	ka CO olka livo wojaht	14 705											
	kg CO ₂ e/kg live weight	14.705											
Overall Baseline GWP (2010)													
	ka CO₂e/ka live weiaht	14.834		Construction activt	ies only for first ve	ar of operati	on						
				Adjusted to exclude	e construction emis	sions for ve	ars after implementation						
Overall BMP GWP				,			I.						
	kg CO ₂ e/kg live weight	15.551		15.537									
Change in overall GWP from 2001													
	kg CO ₂ e/kg live weight	0.845		0.832									
Change in overall GWP from 2010													
	kg CO ₂ e/kg live weight	0.717		0.703									
Change in GWP per kg of beef affected	from 2010	0 500		(whether a state of the term						
	kg CO ₂ e/kg live weight	0.789		(total change in GH	iG emissions divid	ea by total v	veight of cattle affected)						

Notes: Energy generation emission changes assumed all to feedlot as only feedlot affected by this BMP Feedlot and pasture activities assumed all to feedlot as only feedlot affected by this BMP

BMP 1	Baseline	(2010)	Cha	ισe				
(amount) (unit)	(amount)	(unit)	(change)	(unit)				
()	(,	()	(***********	()				
9.57E+08 kg CO ₂ e	e 9.57E+08	3 kg CO ₂ e	(kg CO ₂ e				
4.15E+06 kg PO ₄ -	eq 4.15E+06	6 kg PO ₄ -eq	0	kg PO ₄ -e				
-2.36E+08 kg CO26	-2.36E+08	3 kg CO ₂ e	(kg CO ₂ e				
1.89E+08 kg CO ₂ e	e 1.89E+08	3 kg CO ₂ e	0 kg CO					
1.20E+09 kg CO26	e 1.20E+09	9 kg CO ₂ e	(kg CO ₂ e				
3.38E+08 kg CO ₂ e	e 3.38E+08	3 kg CO ₂ e	(kg CO ₂ e				
2.86E+08 kg CO26	2.86E+08	8 kg CO₂e	(kg CO ₂ e				
9.61E+08 kg CO26	e 4.02E+08	8 kg CO ₂ e	5.59E+08	kg CO ₂ e				

3.70E+09 Beef Industry

5.59E+08

BMP 1 - Improved manure management practice (BMP 1.2b - Existing Composting of solid managed manure stream produced in fedlots	g Equipment a	nd Off-site Cla	y)													
Assumed Percent Composting On-Site		100%	(% can be ad	ljusted here	e for the entire r	nodel)										
(only affects feedlot)									Scenario BM	P 1.2b						
% farms using existing equipment for on-site composting		100%	(% can be ad	ljusted here	e for the entire r	nodel)			Total GHG	emissions			2.22E+10 kg CO2e			
% farms purchasing new windrow turners for on-site composting	ng	0%	(updates auto	omatically)					Total acidifi	cation			3.39E+07	3.39E+07 kg SO2-Eq		
% farms using clay source on-site for compost pad		0%	(% can be ad	ljusted here	e for the entire r	nodel)			Total eutrop	hication			6.91E+06 kg PO4-Eq			
% farms purchasing and shipping clay to site for compost pad		100%	(updates auto	omatically)					Total non-re	newable en	iergy		3.95E+11	MJ-Eq		
Assumed Percent Composting Off-site or Off-site Direct Land Application (only affects feedlots) (only affects feedlot)		0%														
Total number of animals (only affects feedlots)		2,132,470	animals						1							
Total weight affected to slaughter (only affects feedlots)		1,296,392	tonnes													
			COW/CA	LF OPERA	ATIONS							FEEDLOT	OPERATIONS			
							Per Unit								Per Unit	
	BN (amount)	1P 1 (unit)	Baseline	(2010)	(change)	ge	Market Value	Total Impact	BMI	?1	Baseline	(2010) (unit)	Chang (change)	ge (unit)	Market Value	Total Impact
	(umount)	(unit)	(umount)	(ипп)	(chunge)	(<i>unit</i>)	(\$ unit)	(\$ 11111011)	(umount)	(ипп)	(umount)	(unit)	(enunge)	(<i>unit</i>)	(<i>y</i> unit)	(\$ 141111011)
Inputs with Change																
Production of pesticide/herbicide Production of chemical fertilizer Production of bedding Production of min., trc min., cobalt, protein suppl., vit., antibiotic																
Purchase of chemical fertilizer								_		_		_		_	_	
Urea, as N, at regional storehouse Ammonia, liquid, at regional storehouse Monoammonium phosphate, as P2O5, at regional storehouse																

Inputs with Change										
Production of pesticide/herbicide										
Production of chemical fertilizer										
Production of bedding										
Production of min., trc min., cobalt, protein suppl., vit., antibiotic										
Purchase of chemical fertilizer										
Urea, as N, at regional storehouse										
Ammonia, liquid, at regional storehouse										
Monoammonium phosphate, as P2O5, at regional storehouse										
Monoammonium phosphate, as N, at regional storehouse										
Ammonium sulphate, as N, at regional storehouse										
Purchase of manure for land application										
Purchase of pesticide/herbicide										
Purchase of seed for barley										
Purchase of seed for barlye silage										
Purchase of seed for alfalfa/grass hay										
Purchase of water to irrigate crops										
Purchase of amendment materials (wood waste/wood chips)						5.19E+08 kg	7.78E+07 kg	4.41E+08 kg	\$0.13	\$58.32
Purchase of amendment materials (straw)						6.84E+09 kg	1.03E+09 kg	5.81E+09 kg	\$0.06	\$338.92
Purchase of composting equipment (Windrow turner)						0 turners	0 turners	0 turners	\$175,000	\$0.00
Purchase of clay for composting pad and compaction						2.25E+07 m ³	3.37E+06 m ³	1.91E+07 m ³	\$28	\$535.39
Compaction of clay (source on-site)						$0 m^3$	$0 m^3$	0 m ³	\$15	\$0.00
Transportation costs for clay to site (250 km assumed)						2.92E+07 tonne	4.39E+06 tonne	2.49E+07 tonne	\$25	\$621.43
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	0 kg	-	-					
Purchase of barley						4.49E+09 kg	4.49E+09 kg	0 kg	-	-
Purchase of barley silage						7.58E+09 kg	7.58E+09 kg	0 kg	-	-
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0 kg	-	-	4.22E+08 kg	4.22E+08 kg	0 kg	-	-
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-		, in the second s			
Purchase of ionophores	0 kg	0 kg	0 kg	-	-					
Purchase of RAC						0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.91E+07 kg	7.91E+07 kg	0 kg	-	-	1.45E+08 kg	1.45E+08 kg	0 kg	-	-
Purchase of vitamins	1,684 kg	1,684 kg	0 kg	-	-	1.76E+05	1.76E+05 kg	0 kg	-	-
Purchase of RFI testing (includes transportation)	0 tests	0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-
Fuel/energy required to operate composting equipment						7.92E+07 L	1.19E+07 L	6.73E+07 L	\$0.75	\$50.39
Fuel consumed to transport barley and barley silage										
Fuel consumed to transport alfalfa/grass hay										
Fuel consumed for cropping activities										
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to transport bedding (change)										
Fuel consumed to feed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-
Fuel consumed to collect manure (change)						0 L	0 L	0 L	-	-
Fuel consumed to transport manure off-site for disposal (change)						0 L	5.92E+06 L	-5.92E+06 L	\$0.75	-\$4.43
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic										
Fuel consumed to transport livestock for testing	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	3.16.E+06 hrs	4.74.E+05 hrs	2.69.E+06 hrs	\$16.22	\$43.61
Working capital interest	0 \$	0 \$	0\$	-	-	0 \$	0 \$	0 \$		\$0.00
Total Input Value Change					\$0.00					\$1,643.63

Outputs with Change 0.00E+00 kg Manure sold for land application

Manure sold for land application		0.00E+00 kg	2.13E+10 kg	-2.13E+10 kg	\$0.00	\$0.00
Compost sold for land application		1.43E+07 tonne	2.15E+06 tonne	1.22E+07 tonne	\$6.00	\$73.05
Sale price for beef to slaughterhouse (change)		0\$	0 \$	0 \$	-	-
Total Output Value Change	\$0.00					\$73.05

First year only First year only First year only First year only

CHANGE IN OVERALL GHG EMISSIC	ONS		C	OW/CALF OPERATIO	ONS			FEEDLOT OPERATIONS							
		BN	MP 1	Baseline (2010)) Cł	nange		BM	P1	Baseline	(2010)	Char	nge		
		(amount)	(unit)	(amount) (un	it) (change) (unit)		(amount)	(unit)	(amount)	(unit)	(change)	(unit)		
BEEF ACTIVITIES - SOIL AND CROP															
Manure generation		3.45E+10) kg	3.45E+10 kg		0 kg		1.89E+1	0 kg	1.89E+10) kg		0 kg		
Mathana amissions from stored manure		1 405+08	ka CO a	1 40E±08 kg C	0.0	0 ka CO a		7 775+0	7 kg CO a	1 24E±0	ka CO a	5 45E±0	7 kg CO a		
Enteric formentation emissions		7.02E±00	$kg CO_2 e$	7.02E+00 kg C	0.0	$0 \text{ kg CO}_2 e$		2 56E±0	$h kg CO_2 e$	2.54E+00	$kg CO_2 e$	-5.051.+0	$1 \text{ kg CO}_2 \text{e}$		
N O emissions from stored manure (direct	+)	1.03E+09	$kg CO_2 e$	1.03E+09 kg C	0.0	$0 \text{ kg CO}_2 e$		5.50E+0	$8 \log CO_2 e$	2 40E+0	$kg CO_2 e$	1 00E±0	$0 \text{ kg CO}_2 e$		
N ₂ O emissions from stored manure (unec	n() (act)	4.04E+09	$kg CO_2 e$	4.04E+08 kg C	0.0	$0 \text{ kg CO}_2 e$		3.06E+0	$8 kg CO_2 e$	3.06E+08	$kg CO_2 e$	1.901-0	$0 \text{ kg CO}_2 e$		
N ₂ O emissions from cropping and land u	20	4.041.00	rg CO ₂ e	4.04E+00 Kg C	020	0 Kg CO ₂ e		5.00110	0 kg CO2e	5.001+00	, kg CO ₂ e		0 kg CO ₂ e		
Total Pemissions from run-off															
Soil Carbon Change in Soil From Land Us	:P														
Direct CO2 emissions from managed soils	~~ }														
ADDITIONAL ACTIVITIES															
Construction		0	kg CO2e	0 kg C	O ₂ e	0 kg CO ₂ e		3.93E+0	7 kg CO ₂ e	5.89E+06	6 kg CO ₂ e	3.34E+0	7 kg CO ₂ e		
Forage and cereal sub-activities															
Energy generation and consumption activ	rities	2.81E+09	kg CO ₂ e	2.81E+09 kg C	O ₂ e	0 kg CO ₂ e		1.42E+0	9 kg CO ₂ e	1.10E+09	kg CO ₂ e	3.25E+0	8 kg CO ₂ e		
O&M activities		0	kg CO ₂ e	0 kg C	O ₂ e	0 kg CO ₂ e			0 kg CO ₂ e	() kg CO ₂ e		0 kg CO ₂ e		
Cereal activities															
Forage activities															
Feedlot and pasture activities		3.20E+06	kg CO ₂ e	3.20E+06 kg C	O ₂ e	0 kg CO ₂ e		1.31E+0	8 kg CO ₂ e	1.39E+08	8 kg CO ₂ e	-7.69E+0	6 kg CO ₂ e		
Cow activities (transportation)		2.49E+07	′ kg CO2e	2.49E+07 kg C	O ₂ e	0 kg CO ₂ e									
Bull activities (transportation)		3.14E+06	kg CO ₂ e	3.14E+06 kg C	O ₂ e	0 kg CO ₂ e									
Yearling-fed system activities (transportat	tion)							1.08E+0	8 kg CO ₂ e	1.08E+08	3 kg CO ₂ e		0 kg CO ₂ e		
Calf-fed system activities (transportation)								6.59E+0	7 kg CO ₂ e	6.59E+07	7 kg CO₂e		0 kg CO ₂ e		
Total GWP for BMP															
	kg CO₂e	1.22E+10	Cow/Calf					6.26E+09	Feedlot						
Total Change in GWP for BMP															
	kg CO₂e				0.00E+0	0						4.84E+08			
l otal change in emissions		1,042,414	tonnes												
Overall Baseline GWP (2001)															
Overall Dasellile GVVI (2001)	ka CO₂e/ka live weight	14,705													
	kg oogerkg inte weight	14.705													
Overall Baseline GWP (2010)															
	ka CO₂e/ka live weiaht	14.834		Construction activ	ties only for first	vear of operati	on								
	5 - 2 - 5 5 -			Adjusted to exclud	le construction en	missions for ye	ars after implementation								
Overall BMP GWP				,		5	1								
	kg CO₂e/kg live weight	15.565		15.537											
Change in overall GWP from 2001															
	kg CO ₂ e/kg live weight	0.859		0.832											
Change in overall GWP from 2010															
	kg CO ₂ e/kg live weight	0.731		0.703											
Change in GWP per kg of best affected	from 2010														
Change in GWF per ky of beel allected	kg CO ₂ e/kg live weight	0.804		(total change in GI	HG emissions div	vided by total v	veight of cattle affected)								
				, .			J · · · · · · · · · · · · · · · · · · ·								

Notes: Energy generation emission changes assumed all to feedlot as only feedlot affected by this BMP Feedlot and pasture activities assumed all to feedlot as only feedlot affected by this BMP

BEEF INDUSTRY BMP 1 Baseline (2010) Change													
BMP 1	Baseline	(2010)	Chai	nge									
(amount) (unit)	(amount)	(unit)	(change)	(unit)									
0.575+00.1 - CO -	0.575+00												
9.57E+08 kg CO ₂ e	9.57E+08	kg CO ₂ e	(kg CO ₂ e									
4.15E+06 kg PO ₄ -eq	4.15E+06	₀ kg PO₄-eq	() kg PO ₄ -e									
-2.36E+08 kg CO ₂ e	-2.36E+08	kg CO₂e	() kg CO ₂ e									
1.89E+08 kg CO2e	1.89E+08	kg CO ₂ e	() kg CO ₂ e									
1 20E±00 kg CO a	1.205+00	lka CO a		ka CO a									
1.20E+09 kg CO ₂ e	1.20E+09	kg CO₂e	(rg CO ₂ e									
3.38E+08 kg CO ₂ e	3.38E+08	kg CO₂e	() kg CO ₂ e									
2.86E+08 kg CO_e	2.86E+08	kg CO ₂ e	() kg CO ₂ e									
9.61E+08 kg CO ₂ e	4.02E+08	kg CO ₂ e	5.58E+08	kg CO ₂ e									
		0 - 920		0 10 20									

3.70E+09 Beef Industry

5.58E+08

APPENDIX F

BMP 2 – INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING

ACTIVITY MAPS AND DATA COLLECTION

FIGURE BMP 2a

ACTIVITY MAP BMP #2 - PROMOTION OF INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING SYSTEMS LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

Sustainable Energy Solutions

FIGURE BMP 2b

ACTIVITY MAP BMP #2 - PROMOTION OF INCREASED EFFICIENCY IN COW/CALF FEEDING AND GRAZING SYSTEMS LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

									Source
Available forage coefficient		0.8							Determining your stocking rate. At: http://extension.usu.edu/files/publications/publication/NR_RM_04.pdf
Weight of cattle	COW	454	kσ	1000	lbs		606	ko	1335 Ibs Beef I CA - Phase 1
	bull	544	kg	1200	lbs		998	kg	2200 lbs Beef LCA - Phase 2
Food intake coefficient		0.75							Using the Animal Unit Month (AUM) Effectively. At: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf
		0.02							
Animal units equivalent AU eq - cow, dry Animal units equivalent AU eq - bull		1							Using the Animal Unit Month (AUM) Effectively. At: http://www1.agric.gov.ab.ca/sdepartment/deptdocs.nsf Using the Animal Unit Month (AUM) Effectively. At: http://www1.agric.gov.ab.ca/sdepartment/deptdocs.nsf
Animal Unit Equivalent (AUE)	Animal Live Weight (lbs)	Animal Unit					Animal Live Weight (lbs)	Animal Unit	
based on metabolic weight	1000	Equivalent					1200	Equivalent	Llauellun I. Animal Unit Equivalent for Reaf Cattle Read on Matchelic Weight At http://www.og.ndou.ned
	1200	1.2					2200	1.806	Llewellyn L. , Animal Unit Equivalent for Beef Cattle Based on Metabolic Weight. At: http://www.ag.ndsu.nod
1.12 lbs/acre × 1.12 = kg/ha									
daily food intake	COW	11 34	kσ						
		25.00	lbs						
	bull	13.61	kg						
Determining stocking rates		30.00	IDS						http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex113
Network Conduction Construction and a state	a that do a the sta								
Note: use for the daily food intake the data p	cow	28.00	lbs						
	bull	28.00	lbs						
Swath system						Crops			Source
Single graze	Cereal	Annual	DP	А		oats			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	Р	А		oats			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	NR	А		oats			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	DP	А		triticale			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	Р	А		triticale			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	NR	А		triticale			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Vield gron - DM						Crops	Vield dry matter)	Vield dry matter	Source: see also comments on cells
Tiene crop - Divi						Clops	kg/ha	(lb/ac)	Source, see also comments on cens
Single graze	Cereal	Annual	DP	А		oats	4704	4200	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	Р	А		oats	9632	8600	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	NR	А		oats	6720	6000	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	DP	А		triticale	5040	4500	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	Р	А		triticale	9856	8800	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Single graze	Cereal	Annual	NR	А		triticale	6720	6000	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant lastiwka
Days on pasture						Days			Source
Single graze	Cereal	Annual	DP	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www1
Single graze	Cereal	Annual	Р	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www
Single graze	Cereal	Annual	NR	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www
Single graze	Cereal	Annual	DP	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www
Single graze	Cereal	Annual	Р	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www
Single graze	Cereal	Annual	NR	А		90			Agri-Facts, October 2004. Swath grazing in Western Canada: An Introduction. Table 1, page 5. At: http://www1
Area for swath grazing									Source
Single graze	Cereal	Annual	DP	A		698,196			Statistics Canada. Table 5.1-6 Hay and field crops - Barley, census years 2006 and 2001. 2001 data. At: http://ww
Single graze	Cereal	Annual	Р	А		1,039,365			Statistics Canada. Table 5.1-6 Hay and field crops - Barley, census years 2006 and 2001. 2001 data. At: http://ww
Single graze Note: for swath grazing systems: annual cror	Cereal os as cereals - add more land for s	Annual grazing (ARD, confere	NR mce call Nov 3	A 30. 2010)		246,241			Statistics Canada. Table 5.1-6 Hay and field crops - Barley, census years 2006 and 2001. 2001 data. At: http://ww
Cattle and crop data		grunning (r neb) cornere		, 2010)					
•							% Breakdown		
							per region from		
Total number of cattle (includes beef cows,	replacement heifers and bulls)					# cattle	total		Source
DP						773,130	30		Statistics Canada. Table 6.1
Р						1,303,129	51		Statistics Canada. Table 6.2
NR						493,699	19		Statistics Canada. Table 6.3
				total		2,569,958	100	2,569,958	Statistics Canada. Table 19 -May 15, 2001. At: http://www.statcan.gc.ca/pub/95f0301x/t/html/4064782-eng.ht
Manakan Cardles and the Merce of the	91-1 1.1		,						Connect
number of cattle on winter diet, as per the in	iuai model		days	cows		2 458 579			Comment 59 days from the diet (see Cow Rnlc tab) are approximated to 60 days
			40	bulle		2,400,079			uays nom me uner (see Cow repre tab) are approximated to bo days
			00	ouns		107,420			
			60	iotal		2,306,007			

2,230,364 89,730 **2,320,093**

 30
 cows

 30
 bulls

 30
 total

f/all/agdex1201

sf/all/agdex1201 sf/all/agdex1202

dak.edu/dickinso/research/1997/animal.htm dak.edu/dickinso/research/1997/animal.htm

w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement w1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex9239/\$file/420_56-2.pdf?OpenElement

ww.statcan.gc.ca/pub/95-629-x/5/4124257-eng.htm#48 ww.statcan.gc.ca/pub/95-629-x/5/4124257-eng.htm#49 ww.statcan.gc.ca/pub/95-629-x/5/4124257-eng.htm#50

ntm

									Source	
Breakdown per region, based on %			days				50%	50%	100%	
DP			60	cows		739,623	369,812	369,812	739,623	
			60	bulls		32,920	16,460	16,460	32,920	
			60	total		772,543	386,272	386,272	772,543	0 data check
Р			60	cows		1.246.653	623.326	623,326	1.246.653	
-			60	bulls		55.487	27.743	27.743	55.487	
			60	total		1,302,140	651,070	651,070	1,302,140	
NID			60	2011/2		472 202	226 151	226 151	472 202	
INK			60	bulle		472,303	230,131	200,101	472,303	
			60	total		493 324	246 662	246 662	493 324	
			00	lotut		2 568 007	210,002	210,002	155,521	
						2,500,007				
P			20	2011/2		670.060	225 484	225 494	670.060	
DI			30	bulle		36.004	12 407	12 407	26 004	
			20	buils tatal		20,994	13,497	13,497	20,994	
			50	101111		097,902	540,901	546,961	097,902	
Р			30	cows		1,130,933	565,467	565,467	1,130,933	
			30	bulls		45,499	22,749	22,749	45,499	
			30	total		1,176,432	588,216	588,216	1,176,432	
NR			30	cows		428.462	214.231	214.231	428.462	
			30	bulls		17.237	8.619	8.619	17.237	
			30	total		445,699	222,850	222,850	445,699	
						2.320.093	,	,	,	
Seeding rates							kg/ha			
Single graze	Cereal	Annual	DP	A	oats		143.02			
Single graze	Cereal	Annual	P	A	oats		143.02			
Single graze	Cereal	Annual	NK	A	oats		143.02			
Single graze	Cereal	Annual	DP	A	triticale		111.24			
Single graze	Cereal	Annual	P	A	triticale		111.24			
Single graze	Cereal	Annuai	INK	A	triticale		111.24			
Yield of seeds per cultivated ha										
Single graze	Cereal	Annual	DP	А	oats		7,151	kg/ha		
Single graze	Cereal	Annual	Р	А	oats		7,151	kg/ha		
Single graze	Cereal	Annual	NR	А	oats		7,151	kg/ha		
Single graze	Cereal	Annual	DP	А	triticale		2225	kg/ha		
Single graze	Cereal	Annual	Р	Α	triticale		2225	kg/ha		
Single graze	Cereal	Annual	NR	А	triticale		2225	kg/ha		
200 bu/ac=12.713 kg/ha									http://www.extension.ias	tate.edu/agdm/wholefarm/pdf/c6-80.pdf
1	bu/ac	63.57	kg/ha							
			Food							
			intake	Food intake	Food intake					
DM intake	Weight of cattle	Food intake coefficient	munc	1 Jou marke	1 Jou mune					
L'III IIIIINC	ko	month	kg/mon	th kø/dav		lbs/dav				
Cows	606	0.75	454	15.14		33.37				
Bulls	998	0.75	748	24.95		55.00				
		00	. 10			20.00				

Change in gas, diesel, and electricity usage on feedlots for reduced feed time, replaced by extended grazing (swath grazing)

Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Energy requirements to feed cattle in the feedlot	1785 Mcal/animal		ACRES USA. From Mid-East Oil to Lo Broil: A Comparison of Energy Inputs i Feedlot versus Grass-Fed Beef. Novem Available at: http://www.acresusa.com/magazines	ndon in ıber 2005.
Days on winter feed in feedlot (in reference) Days on winter feed in feedlot (in model) Mass of feed per day in feedlot during the winte Energy requirements to feed 1 lb of feed in the	255 days of feed in fe 90 days of feed in fa 28 lbs feed per cow	edlot irm per day	ing, j , , , , accouncer, inguine,	, accure
feedlot	1 lb feed = 0.28 Mo	cal		
	0.28 Mcal	=	1111.13 Btu	
		=	1.1723 MJ	
	(

Note: Assume that diesel is the fuel used to operate the machinery to feed cattle (as per reference)

Change in gas and diesel for manure handling on feedlot for reduced time, replaced by swath grazing on the pasture

Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Manure collection and handling Diesel consumption for a tractor Number of feedlot cattle in reference Pens with 250 head/pen in reference times per year heads per pen Time to pile up manure in pen in reference

Diesel required per year CO_2 emission factor for truck diesel CH_4 emission factor for truck diesel Total emissions from manure collection (calculated based on data) 16.6 L/hr 50,000 cattle 200 pens 2 2550 60 min/pen two times per year 400 hrs/yr 6,640 L/yr 2,569 g CO₂/L 0.21 g CH₄/L 17.09 tonnes CO₂e/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Asses

Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3

1,172 tonnes CO2e/year Total emissions from manure collection (total provided in reference) reference different than total emissions provided in reference. Only raw data from reference will be used to calculate emissions in model.) Quantity of manure (in reference) (Alberta Beef LCA model used same reference to quantify manure) Emission factor for the combustion of diesel in agricultural equipment - Alberta Beef LCA Density of diesel Total emissions from manure collection using the LCA model emission factor (comparable to emissions calculated using reference data) Total emissions from manure collection per animal per dav Change in gas and diesel for bedding animals in feedlot for reduced time, replaced by extended swath grazing on the pasture Note: Energy required to provide bedding in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated. Bedding required for feedlot in Alberta Beef LCA model Total mass of barley and barley silage (feedlot diet) % of bedding mass compared to total feed mass 3.5 % Bedding mass negligible compared to feed. Change in quantity of agricultural plastics for reduced winter feed, replaced by extended swath grazing on the pasture Current agricultural plastics disposal methods - Burning is still the most prominent method of getting rid of agricultural plastics (2008) - There is little industry capacity to handle agricultural plastics in Alberta - Pilot recycling program conducted in Alberta in 2008 to understand the amount, type, and quality of used agricultural plastics and the capacity of industry to use it - Alberta Beef LCA baseline model assumed the same as the current situation for the handling of agricultural plastics (burning and - No change in the disposal of plastics - Total change in plastics will be calculated based on percentage of total change in feed Change in labour Average reduction in days on feedlot Average labor time per day cattle on farm Average labor time per day cattle on extended grazing Price Information Average farm hand wage Purchase of barley Purchase of barley silage Purchase of bedding (model assumes 100% straw bedding used) (Straw estimate for 2010) Wheat straw (fertilizer costs) Barley and oat straw (fertilizer costs) 35.3 \$/tonne Pea straw (fertilizer costs) 30 \$/ton 33.1 \$/tonne

58,700 tonne dry manure/year Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3 3.28 kg CO₂e/kg diesel Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2. Chapter 3: Mobile Combustion. Available at: http://www.ipcc-nggip.iges.or.jp/put 0.885 kg/L Simetric. Specific Gravity of Liquids. Available at: http://www.simetric.co.uk/si_liquids.htm 3.71 kg CO₂e/L 24.61 tonnes/yr ^{0.00135} kg/animal/day Calculated 422,073 tonnes 12,061,530 tonnes Recycling Council of Alberta. Agricultural Plastics Recycling Pilot Project. Summary 90.0 days 2 hrs/day Assumption The WFBG showed 44% less labor for swath grazing versus traditional feeding. 1 hrs/day YEAR ROUND GRAZING = 365 DAYS http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf 16.22 \$/hr WAGEinfo, Alberta Wage and Salary Survey, 2009 data. Available at: http://alis.alberta.ca/wageinfo/Content/RequestAction.asp?aspAction=GetWageDetail&format=html&RegionID=20&NOC=8431 161.38 \$/tonne Lethbridge Barley Price, Alberta Grains Council, Alberta Canola Producers Commission. Weekly Average from 2005 to 2010 0.16 \$/kg 40 \$/tonne Based on a conversation with a local dairy farmer on January 3, 2011. 0.04 \$/kg 24.2 \$/ton What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 26.7 \$/tonne 32 \$/ton What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

Source

What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

			Source
Canola straw (fertilizer costs)	22.6 \$/ton		What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development
	24.9 ¢/ toffic		
Average weight of straw bale Baling costs	450 kg 9.00 - 11.50 \$/large round bale		Microsoft Word document provided by Alberta Agriculture and Rural Development in an email from Emmanue What is Straw Worth? - Frequently Asked Ouestions, Ag-Info Centre, Alberta Agriculture and Rural Developm
0	10.25 \$/large round bale	Average	
	0.023 \$/kg		
	22.78 \$/ tonne		
Hauling and stacking	2.00 - 3.00 \$/large round bale	A	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development
	0.0056 \$/kg	Average	
	5.56 \$/tonne		
Average price (wheat straw)	55.01 \$/tonne		
Average price (barley and oat straw)	63.61 \$/tonne		
Average price (pea straw)	61.40 \$/tonne		
Average price (carloa straw)	58.32 \$ / tonne		
Durshans of alfalfa (many have (alfalfa man tan)	0.058 \$ / kg		Internet Hay Fusher as Hay Drive Colordator. Assilable at http://www.hayou.hayou.com//taols/ass.mice.as
Furchase of analia/grass nay (analia per ton)	137.17 \$/tonne		internet may exchange. may rrice calculator. Available at: http://www.hayexchange.com/tools/ave_price_ca
	0.14 \$ / kg		
Purchase of seed for alfalfa/grass	0.55 \$/lb		Source: Historical Turf and Forage Seed Prices in Alberta to 2009. At: http://www1.agric.gov.ab.ca/\$departm
	1.21 \$/kg		
Purchase of seed for oats	4 \$/bu		http://alberta.kiijii.ca/c-buv-and-sell-other-12000-bushels-of-seeding-oats-W0OOAdIdZ261197051
	0.26 \$/kg	Canada: 34 lb = 15.4221 kghttp://www.answers.com/topic/bushel	······································
Purchase of seed for triticale	28 \$/50 lb	http://www.geertsonseedfarms.com/Pages/Prices.htm	
	0.56 \$/lb		
	1.23 \$/kg		
Purchase of chemical fertilizer			
Urea, as N, at regional storehouse	0.45 \$/kg		http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sdd11027
Ammonia, liquid, at regional storehouse Monoammonium phosphate, as P2O5, at region;	0.88 \$/kg 0.62 \$/ke		http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf
Monoammonium phosphate, as N, at regional st	0.62 \$/kg		http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf
Ammonium sulphate, as N, at regional storehou Purchase of pesticide	0.44 \$/kg 88 74 \$/kg		insert reference http://www1.agric.gov.ab.ca/\$department/deptdocs.psf/all/sdd11027
	00.1 47 46		ing, / / / / might by notal superior of a processory and successory
Purchase of water to irrigate crop	1.22 \$/m3		http://www.coop.co/Jerigation.In Alberta 2004.pdf
Calculated	1.22 \$/m3		http://www.saaep.ca/inigation_in_Abbena_2004.put
Tillage			
No till			
Heavy harrow	8 \$/ac 19 77 \$/ba	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Reduced till Chisel plow (3 inch)	74.67 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.psf/all/inf12992	
	184.50 \$/ha		
Heavy harrow	8 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.psf/all/inf12992	
5	19.77 \$/ha		
Full till			
Chisel plow (3 inch)	75 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
	185.33 \$/ ha		
Field cultivator	10 \$/ac 24.71 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nst/all/inf12992	
Heavy off-set disk	40 \$/ac 98.84 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nst/all/inf12992	
Apply fertilizer Broadcasting			
Sprayer	6 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
	14.83 \$/ha		
Injected or knifed in			
Anhydrous applicator	17.5 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
	43.24 ψ/ Ha		
Plant crop	21.4.1		
Air ufili	24 \$/ ac 59.30 \$/ha	nttp://wwwi.agric.gov.ab.ca/\$department/deptdocs.nst/all/inf12992	
Apply chemical treatment Spraver	6 \$/ac		
. · · ·	14.83 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Swath crop			
Swather	10 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	

057586-BMP 2.1 - Extended Grazing_Swath

nent. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

uel Laate to Stephen Ball on November 20, 2009 ment. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

nent. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

calc.php.

ment/deptdocs.nsf/all/sis6720

		Source	
	24.71 \$/ ha		
Harvesting alfalfa hav			
Combine - proxy	16 \$/ac	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
contait provid	39.54 \$/ha		
Purchase of min., trc min., cobalt, protein			
suppl., vit., antibiotic for feedlot			
32% Feedlot Supplement (pellets with	11.89 \$/25 kg	UFA Limited. Available	at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
	0.48 \$/kg		
Vitamins (A-D-E Premix) for feedlot			
Mash	24.99 \$/20 kg	UFA Limited. Available	at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
Crumble	30.00 \$/20 kg	UFA Limited. Available	at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
Average	27.50 \$/20 kg		
	1.37 \$/kg		
Purchase of manura	0 \$ /1-a	Coursement of Alberto	A grigulture and Bural Davalanment Manure and Compact Directory Available at h
i urchase of manufe	0 \$/ Kg	Government of Arbeita.	Agriculture and Kurai Development. Manure and Compost Directory. Available at h
Sale price for beef to slaughterhouse			
(reduction due to younger age)	0 \$/kg	Assumed value - only approximately 5 day difference and therefore price shouldn't be affected.	
Furthermore the facility of all factors			
diegoly and			
Fuel consumed to collect manure (on-farm			
Ultra Low Sulphur Diesel (ULSD)			
Calgary, AB	80.7 cents/L (excluding taxes)	UFA Petroleum. Rack P	ices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack
Edmonton, AB	77.5 cents/L (excluding taxes)	UFA Petroleum. Rack P	ices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack
Ultra Low Sulphur Diesel Lite (ULSD-LT)			
Calgary, AB	84.2 cents/L (excluding taxes)	UFA Petroleum. Rack P	ices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack
Edmonton, AB	81.0 cents/L (excluding taxes)	UFA Petroleum. Rack P	ices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack
Average	80.85 cents/L (excluding taxes)		
Fuel tax rates (diesel - all grades) (April 1, 2007	9 cents/L	All este Teu est Deuseu	A designished in a Compart of d Distante Tay Dates Assoluble at survey finance allocate
to current) Alberta Farm Fuel Benefit Program and Farm	-15 cents /I	Alberta Tax and Kevenu	Administration - Current and Historic Tax Rates. Available at: www.finance.alberta.
Fuel Distribution Allowance (taxes)	-15 tents) E	Alberta Tax and Revenue	Administration - Current and Historic Tax Rates Available at: www.finance.alberta.
Fuel tax is exempted for diesel used on farms			
and a subsidy of 6 cents per L of diesel is			
Average diesel price minus Alberta programs	0.75 \$/L		
Electric Fencing			
Charger (energizer)	799.00 \$/unit	LIFA Co-operative Limit	ed. Available at www.ufa.net. Accessed. Jan 18, 2011
High tensile wire - 14 gauge	24.99 \$/ 400 m	UFA Co-operative Limit	ed. Available at www.ufa.net. Accessed Jan 18, 2011.
Connectors - wire tensioners	22.49 \$/5 units	UFA Co-operative Limit	ed. Available at www.ufa.net. Accessed Jan 18, 2011.
Grounding rod -			
3/4" x 10' Galvanized Pipe	62.34 \$/unit	at: http://www.fastenal	com/web/search/products/plumbing/pipe-pipe-accessories/pipe-lengths/_/N-gj4z
insulators for wooden posts (for permanent			
fences)	9.79 \$/25	UFA Co-operative Limit	ed. Available at www.ufa.net. Accessed Jan 18, 2011.
Posts - wood	6.69 \$/unit	at: http://www.ufa.net/	products/Building-Supply/38/Lumber.html
rosis indergiass - proxy step-in temporary post	3.59 \$/cach		ad Available at www.ufa.pet. Accessed Jap 19, 2011
(Pory) voltage meter - Gallagher Smart Fix Fault Finder	148 99 \$/each	orA Co-operative Limit	noducts/Animal-Care/Livestock/Fencing/196/Flectric-Fence-Supplies html
Barbwire Fencing	110.22 φ/ cuch	a. http://www.ula.het/	producto, ramanie cure, investock, reacing/ 190/ Electric-reace-supplies.html
Barbed wire	62.99 \$/400m	UFA Co-operative Limit	ed. Available at www.ufa.net. Accessed Jan 18, 2011.
			· · · · · · · · · · · · · · · · · · ·
Windbreaker	5.00 \$/foot	information from Ab Ag	(discussion with Emamnuel Latte on February 24, 2011)
	16.40 \$/m		

Notes:

A Applicable NA Not Applicable Please see inserted comments in cells for additional references, details

Additional resources Winter feeding Beef Cows on Pasture with Bale Grazing and Bale Processing versus Drylot <u>http://www.angelfire.com/trek/mytravels/nutrientmanagement.html</u>

Estimated manure nutrients. Feedlot management http://www.extension.iastate.edu/Publications/PM1867.pdf

http://www.agric.gov.ab.ca/app68/manure. Accessed on January 3, 2011.

k_pricing.html k_pricing.html

k_pricing.html k_pricing.html

.ca/publications/tax_rebates/rates/hist1.html#fuel

.ca/publications/tax_rebates/rates/hist1.html#fuel

z0iZjudqgqZjucbwsZjudwhl&Nty=0

Swath Grazing Management Data

Grazing management: Fences, including electric fencing, gates, windbreakers. Source: ARECA, November 2006. Year Round Grazing 365 Days, At: http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf

Items	Composition			Materials used	Materials requirements	Process	Ecoinvent
	polywire			wire		Production of poly wire	wire drawing, steel
		energizers (battery powered	or plug-in)	miscellaneous	calculated		
Electric fencing (1) g		minimum of three ground	galvanized large surface area ground rods that are 6- 7 feet in length, to extend below the frost line (e.g. galvanized pipe + 1 ¼" tubing used to frame link fence gates)	galvanized pipe and tubing	calculated	Production of galvanized pipe	drawing of pipes, steel
	grounding system	rods (http://www.extension.um n.edu/beef/components/ho mestudy/plesson3.PDF)	One half-inch diameter galvanized steel rods or 3/4" galvanized pipe make the best ground rods. They should be at least 6 feet long and driven 5-1/2 feet into the soil (http://www.extension.um n.edu/beef/components/h omestudy/plesson3.PDF))	galvanized pipe	calculated	Production of galvanized pipe	drawing of pipes, steel
		ground rod clamps	[]/ []/		calculated	Production of ground rod clamps	connector, clamp connection, at plant
		electric posts (ground rods) s	see above	-	-		
·	1 1 .						
E	barb wire	2 (0) diamatan (ilamatan ang	1-	metal	calculated	Production of barb wire	Wire drawing, steel
Fence (1)	posts	3/8" diameter fiberglass post	ts	nberglass	calculated	Production of fiberglass	noergiass, at plant
	Posis	wooden		wood	calculated	i founction of wood for poles	iouna wood, narawood, under bark, t
	barb wire			metal	calculated	Production of barb wire	wire drawing, steel
Gates (1)	posts	3/8" diameter fiberglass pos	ts	fiberglass	calculated	Production of fiberglass	fiberglass, at plant
	posts	wooden		wood	calculated	Production of wood for poles	round wood, hardwood, under bark, i

Electricity

Drill (1)	cordless drill with a masonary	bit, 24 volt power pack drill with a long masonry drill	units	calculated
	frame	steel tubing	steel	calculated
windbreakers (portable)	planks	wooden	wood	calculated

Barbed wire

Barbed wire for agriculture use is typically double-strand 12^{1/2}-gauge, zinc-coated (galvanized) steel and comes in rolls of 1,320 ft (400 m) length.

http://en.wikipedia.org/wiki/Barbed_wire#Agricultural_fencing

Windbreakers

a variety of models to select from http://www.agriculture.gov.sk.ca/Default.aspx?DN=adb8ecee-7d31-4f72-8d83-c71ac97baba4

as a general rule, one foot of fence (windbreaker) protects enough area for one cow http://www.agriculture.gov.sk.ca/Default.aspx?DN=adb8ecee-7d31-4f72-8d83-c71ac97baba4

Portable Windbreak Fencing - Sustainable Livestock Wintering: How Can It Work for You? <u>http://www.gov.mb.ca/agriculture/crops/forages/pdf/bjb05s17.pdf</u> Calculations of material requirements are based on the total grazing area and the grazing management strategy

Grazing management strategies Strip grazing leave 10 to 20 % crop residue each year source: YEAR ROUND GRAZING = 365 DAYS http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf

watering: Solar-powered systems. cost of water per cow ranged from \$0.03 to \$0.15 per day. The cost per gallon of pumped water ranged from \$0.002 to \$0.007 per gallon. http://attra.ncat.org/attra-pub/solarlswater.html

http://	/ www. thoboofsito.com	/articlos/2078	Vivoetock foncing evetome for pacture management	
mup./	www.ulebeeisite.com	articles/ 2070	myestock-reneing-systems-tor-pasture-management	

		2001	2006	Source: Table 1.3 Selected agricultural data, selected livestock data, Canada and provinces, census years 1921 t
Total cattle and calves number	er	6,615,201	6,369,116	
Farms reporting		31,774	28,751	
Average number of cattle per	farm	208	222	
Tame or seeded pasture	Average area in acres	2001	2006	Source: Table 2.5 Total land area and use of farm land. Canada and provinces, census years 1976 to 2006. At: h
	acres	229	267	

 Production of galvanized pipe
 drawing of pipes, steel

 Production of wood for planks
 plywood, outdoor use, at plant

to 2006. At: http://www.statcan.gc.ca/pub/95-632-x/2007000/t/4129740-eng.htm#48

http://www.statcan.gc.ca/pub/95-632-x/2007000/t/4185579-eng.htm#48

Swath Grazing Calculations

				Crops	Yield dry matter (kg/ha)	Number of cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Total cow days (# cows * # days)	Total bull days (# bulls * # days)	Available forage coefficient	Weight of cattle - cows (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq cows	AU eq bulls	Days on pasture	Months on pasture	Total cultivated area ha (calculated) (1)
Single graze	Cereal	Annual	DP	oats	4704	369,812	16,460	21,820,189	971,369	0.8	454	544	0.75	1	1.2	60	2	71,148
			Р	oats	9632	623,326	27,743	36,778,447	1,637,265	0.8	454	544	0.75	1	1.2	60	2	58,566
			NR	oats	6720	236,151	10,511	13,933,757	620,289	0.8	454	544	0.75	1	1.2	60	2	31,803
						1,284,003											oats	161,516

1,229,290 54,714

				Crops	Yield dry matter (kg/ha)	cattle - cows (50% of total)	cattle - bulls (50% of total)	Total cow days (# cows * # days)	Total bull days (# bulls * # days)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture	Months on pasture	Total cultivated area ha (calculated) (1)
Single graze	Cereal	Annual	DP	oats	4704	335,484	13,497	10,414,966	416,987	0.8	454	544	0.75	1	1.2	30	1	32,085
			Р	oats	9632	565,467	22,749	17,554,673	702,842	0.8	454	544	0.75	1	1.2	30	1	26,411
			NR	oats	6720	214,231	8,619	6,650,704	266,276	0.8	454	544	0.75	1	1.2	30	1	14,342
						1,160,047											oats	72,838
						1,115,182	44,865										TOTAL OATS	234,354

				Crops	Yield dry matter (kg/ha)	number of cattle - cows (50% of total)	cattle - bulls (50% of	Total cow days (# cows * # days)	Total bull days (# bulls * # days)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture	Months on pasture	Total cultivated area ha (calculated) (1)
Single graze	Cereal	Annual	DP	triticale	5040	369,812	16,460	21,820,189	971,369	0.8	454	544	0.75	1	1.2	60	2	66,404
			Р	triticale	9856	623,326	27,743	36,778,447	1,637,265	0.8	454	544	0.75	1	1.2	60	2	57,235
			NR	triticale	6720	236,151	10,511	13,933,757	620,289	0.8	454	544	0.75	1	1.2	60	2	31,803
						1,284,003											triticale	155,442

1,229,290 54,714

			Crops	Yield dry matter (kg/ha)	Number oj cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Total cow days (# cows * # days)	Total bull days (# bulls * # days)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture	Months on pasture	Total cultivated area ha (calculated) (1)
Single graze	Cereal	Annual DP	triticale	5040	335,484	13,497	10,414,966	416,987	0.8	454	544	0.75	1	1.2	30	1	29,946
		Р	triticale	9856	565,467	22,749	17,554,673	702,842	0.8	454	544	0.75	1	1.2	30	1	25,811
		NR	triticale	6720	214,231	8,619	6,650,704	266,276	0.8	454	544	0.75	1	1.2	30	1	14,342
					1,160,047											triticale	70,099
					1,115,182	44,865										TOTAL TRITICALE	225,541

44,865

223,535,524

Summary crop areas

Triticale

Oats

Sources

(1) Pratt, M., and Rasmussen, A., 2001. Determining your stocking rate, Range Management Fact Sheet. At: http://extension.usu.edu/files/publications/publication/NR_RM_04.pdf

Notes	
DP	Dry Prairie
Р	Parkland
NR	Northern Regions

for swath grazing systems: annual crops as cereals - add more land for grazing; perennial crops as forage - do not add more land, keep the same area (ARD, conference call Nov 30, 2010)

Agri-Facts, September 2008. Agronomic Management of Swath Grazed Pastures:

Very little research done in Western Canada on swath grazing perennial forage crops. Winterkill could be a problem because swath grazing may leave the perennial crop with insufficient snow cover.

Page 1 of 1

Tame or seeded										
pasture (as per										
Statistics Canada)										
,										
672,135										
1,025,787										
532,970										

ha 234,354

225,541

Swath Grazing Management Calculations

CALCULATE THE AREA REQUIRED BY ONE DAY OF GRAZING/ONE CATTLE

days on pasture

					Yield dry matter (kg/ha)	Number of cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Available forage coefficient	Weight of cattle - cows (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq cows	AU eq bulls	Days on pasture
				Crops										
Single graze	Cereal	Annual	DP	oats	4704	369,812	16,460	0.8	454	544	0.75	1	1.2	1
0.0			Р	oats	9632	623,326	27,743	0.8	454	544	0.75	1	1.2	1
			NR	oats	6720	236,151	10,511	0.8	454	544	0.75	1	1.2	1
				Crops	Yield dry matter (kg/ha)	1,284,003 1,229,290 Area (ha)	54,714	Available forage coefficient	Weight of cattle (kg)		Food intake coefficient	AU eq		Days on pasture
Single graze	T	D 1	DD	1	E0.40	0.40.050		0.0	45.4		0.85	#DEE1		90
condice brance	Forage	Perennial	DP	triticale	5040	348,252		0.8	454		0.75	#REF!		
0.1.0.0 0.000	Forage	Perennial	P	triticale	9856	767,036		0.8	454		0.75	#REF!		90
	Forage	Perenniai	P NR	triticale triticale	9856 6720	348,252 767,036 469,300		0.8 0.8 0.8	454 454 454		0.75 0.75 0.75	#REF! #REF!		90 90

1

				Crops	Yield dry matter (kg/ha)	Number of cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture
Single graze	Cereal	Annual	DP	oats	4704	335,484	13,497	0.8	454	544	0.75	1	1.2	1
			Р	oats	9632	565,467	22,749	0.8	454	544	0.75	1	1.2	1
			NR	oats	6720	214,231	8,619	0.8	454	544	0.75	1	1.2	1
						1,160,047								
						1,115,182	44,865							

				Crops	Yield dry matter (kg/ha)	Number of cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture
Single graze	Forage	Perennial	DP	triticale	5040	369,812	16,460	0.8	454	544	0.75	1	1.2	1
			Р	triticale	9856	623,326	27,743	0.8	454	544	0.75	1	1.2	1
			NR	triticale	6720	236,151	10,511	0.8	454	544	0.75	1	1.2	1
						1,284,003								
						1,229,290	54,714							

				Crops	Yield dry matter (kg/ha)	Number of cattle - cows (50% of total)	Number of cattle - bulls (50% of total)	Available forage coefficient	Weight of cattle (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture
Single graze	Forage	Perennial	DP	triticale	5040	335,484	13,497	0.8	454	544	0.75	1	1.2	1
			Р	triticale	9856	565,467	22,749	0.8	454	544	0.75	1	1.2	1
			NR	triticale	6720	214,231	8,619	0.8	454	544	0.75	1	1.2	1
						1,160,047								
						1,115,182	44,865							

		number of cattle total area 1 day/1 head	1,284,003 head 1,160,047 head 1,284,003 head 1,160,047 head 4,888,100 head 0.002 ha	
CALCULATE THE GRAZI	NG AREA PER HERD			
Pasture area for swath grazi	ing		459,895 ha	
Average number of cattle/fa	arm		208 head	
Number of cattle on winter	diet, as per the initial model	total	2,458,579 cows 109,428 bulls 2,568,007 head	95.7 $\%$ of total cattle 4.3 $\%$ of total cattle 100.0 $\%$ of total cattle
Average number of cattle pe	er herd and composition of herd		200 head 191.48 cows 8.52 bulls	192 cows 8 bulls
Number of herds, per total,	based on average head/herd and total number of cattle		12,840 herds	
Daily requirement of forage	/herd		2177 kg 109 kg	cows bulls
Average number of herds/f	arm		1	based on average number of cattle/farm and average cattle in a herd
average area/head/day area/ 200 head herd/day, b	ased on average area for 1 head per day and number of head in the herd		0.002 ha 0.41 ha 1.02 acres	
average area of farm used for	or grazing/ 90 days, based on area/herd and number of herds per farm		91 acres	
Tame or seeded pasture	Average area in acres per farm reporting	200 200	1 229 acres 6 267 acres	

Conclusion: for one farm, the available area for grazing is larger than the minimum grazing area requirements, calculated based on number of head and individual grazing area needs

Months on pasture	Total cultivated area ha (calculated) (1)	Tame or seeded pasture (as per Statistic Canada)	Conclusion: the area currently cultivated with these species can support more cattle than in the model
0.03	1,186	672,135	
0.03	976	1,025,787	
0.03	530	532,970	
Oats	2,692		
Months on pasture	No. of cattle (calculated) (1)		
3.00	#REF!	Т	
3.00	#REF!		
3.00	#REF!		
Months on pasture	Total cultivated area ha (calculated) (1)		
0.03	1,069		
0.03	880		
0.03	478		
Oats	2,428		
TOTAL	5,120		
Months on pasture	Total cultivated area ha (calculated) (1)		
0.03	1,107	Τ	
0.03	954	1	
0.03	530		
grass as forage	2,591		
, ,			

Months on pasture	Total cultivated area ha (calculated) (1)
0.03	998
0.03	860
0.03	478
grass as forage	2,337
TOTAL	4,927
area for 1 day,	
all cattle	2,692
	2,428
	2,591

total

ha ha 2,337 ha 10,047 ha

Swath Grazing Management Calculations

FENCING

at: http://www.hallman.ca/principl.htm

Elements of portable of	electric fence	
Charger (energizer)		1 unit/line
Power source	outlets	1 unit/energizer
	12 or 6 volt wet cell DC batteries	1 unit/energizer
	9 volt dry cell batteries	1 unit/energizer
Wire	high tensile wire	2 wire lines
Connecting wire	connectors	3 units/charger
Grounding rods		3 units/charger
-		1 extra unit/1500 feet of fence 500r
Insulators		1 unit/grounding rod
Fence posts	wood	1 every 50 feet of fence 15m
	fiber glass	1 every 50 feet of fence 15m
	metal	1 every 50 feet of fence 15m
Gate for portable fence	e	1 unit/line
Voltage meter		1 unit/line

Elements of barbed	d wire fence for perimeter enclosure	
Barbed wire		3 strand lines
Fence posts	wood	1 unit/5 m of fence
-	fiber glass	1 unit/5 m of fence
	metal	1 unit/5 m of fence
Gate for fence		2 units/enclosure

CALCULATE FENCING PER FARM

1 quarter section = 160 acres 1 quarter section = 0.5 mile long and 0.5 mile wide

Assumed the total grazing perimeter for a herd for 90 days enclosed with barbed wire. The entire area to be enclosed	91 acres	369979 m2
Length	0.50 miles	805 m
Width	0.29 miles	460 m
Total perimeter of the enclosure	1.57 miles	2529 m

Within the perimeter, portable electric fence is used to delineate grazing of the heard (grazing cell). Assumed lines of portable fence delineating strips 0.5 mile long, moved every 3 days. 2 lines of portable fence The cell is moved every 3 days, for 30 times, to cover all winter grazing period of 90 days

Summary fencing for one herd and farm	
Lines of electric fence	2 units
Length of electric fence	1609 m
Gates for electric fence	2 units
Length of barbed wire fence	2529 m
Gates for barbed wire fence	2 units

Summar	y /one	her	d and	farm
61	1			

Charger (energizer)				2	unit	
Power source					unit	
	outlets	0% use of outlets	0.00	0	unit	
	12 or 6 volt wet cell DC batteries	100% use of 12 or 6 volt wet cell DC batteries	1.00	2	unit	
	9 volt dry cell batteries	0% use of 9 volt dry cell batteries	0.00	0	unit	
Wire	high tensile wire			3219	m	
Connecting wire	connectors			6	unit	
Grounding rods				6	unit	
_				4	extra unit	
Insulators				10	unit	
Electric fence posts	wood post	0% use of wood posts	0.00	0	unit	
_	fiber glass post	100% use of fiber glass post	1.00	107	unit	
	metal post	0% use of metal posts	0.00	0	unit	
Gate for portable electric fe	nce					
_	wood post	100% use of wood posts	1.00	2	unit	
	fiber glass post	assuming 0% use of fiber glass post	0.00	0	unit	
	metal post	0% use of metal posts	0.00	0	unit	
Voltage meter	•	·		1	unit	
Barbed wire				7587	m	
Barbed wire fence posts	wood post	100% use of wood posts	1.00	506	unit	
_	metal post	0% use of metal posts	0.00	0	unit	
Gate for barbed wire fence	wood post	100% use of wood posts	1.00	2	unit	
	metal post	0% use of metal posts	0.00	0	unit	

Summary all farms			31,774 (Census data 2001)			
Number of farms cow-calf operators			12,840			
1				material	quantity	Ecoinvent process
Charger (energizer)			25,680 unit	misc	data gap	data gap
Power source 12 or 6 volt wet cell DC batteries			25,680 unit	misc	data gap	data gap
High tensile wire			41,328,066 m	steel wire	5,635,517	kg wire drawing, steel
Connectors - wire tensioners			77,040 unit	connectors	3,852	kg connector, clamp connection, at plant
Grounding rods			128,400 unit	galvanized pipe	83,460	kg drawing of pipes, steel
Insulators			128,400 unit	misc	data gap	data gap
Posts - wood			6,545,647 unit	wood	373,102	m3 round wood, hardwood, under bark, u=70%, at forest road
Posts fiberglass			1,377,602 unit	fiber glass	119,767	kg fiberglass, at plant
Posts metal			0 unit	metal	0	kg drawing of pipes, steel
Voltage meter			12,840 unit	misc	data gap	data gap
Barbed wire			97,414,308 m	steel wire	13,283,467	kg wire drawing, steel
WINDBREAKERS as a general rule, one foot of fence (windbreaker) protects enough area for one cow Number of cattle on winter grazing	total 60 days 60 days 60 days 30 days 30 days 30 days	DP P NR DP P NR	1 foot of windbreaker 2,569,958 head 772,543 1,302,140 493,324 697,962 1,176,432 445,699			
7.5% of the cattle are protected by artificial windbreakers in the DP 1% of the cattle are protected by artificial windbreakers in the P and NR Windbreakers used for the first 60 days are also used for the next 30 days of winter grazing.	8% 1%		75,895 feet of windbreaker			
With 25% porosity, an 8' long section of fence 8' tall would require 12 1x6" boards and 3 2x6" boards						

1 feet windbreaker

1 feet windbreaker		material	quantity	Ecoinvent process	
1x6" wood board, 8 feet high	1.5 unit				
	0.24 ft3				
	0.006796043 m3	wood	516 m3	plywood, outdoor use, at plant	
2x6" wood board, 8 feet high	0.375 unit				
	0.48 ft3				
	0.013592087 m3	wood	1032 m3	plywood, outdoor use, at plant	

Page 2 of 3

Swath Grazing Management Calculations

steel pipe metal components (frame, support, axel, etc), tyres, or wooden bracing is sourced from old machinery or surplus materials already on-farm (old combines, irrigation piping, old tractors, spare fence posts, etc.)

TOTALS

83,460	kg drawing of pipes, steel	use this number for AG1-a
13,283,467	kg wire drawing, steel	use this number for AG1-b
5,635,517	kg wire drawing, steel	use this number for AG1-c
1547	m3 plywood, outdoor use, at plant	use this number for AG1-d
373,102	m3 round wood, hardwood, under bark, u=70%, at forest road	use this number for AG1-e
3,852	kg connector, clamp connection, at plant	use this number for AG1-f
119,767	kg fiberglass, at plant	use this number for AG1-g

Page 3 of 3

BMP 2 - SWATH GRAZING - BENEFITS AND COSTS

BMP 2 (BMP 2.1 - Swath Grazing) Extended grazing during winter - swath grazing		
Assumed Percent Adoption of BMP 2	100%	
(% adoption can be adjusted for the entire model in the source cell)		
Number of cattle affected by this BMP	2,568,007	cows and bulls affect
(cow/call operation only) Weight of affected cattle (slaughtered cows and bulls)	130,388,870	kg live shrunk weigh
Density of diesel	0.885	kg/L

				COW/CA	ALF OPERATIONS						F	EEDLOT O	PERATIONS			
							Per Unit								Per Unit	
-	BM (amount)	P 2 (unit)	Baselin (amount)	e (unit)	(change)	hange (unit)	Market Value (\$/unit)	Total Impact (\$ Million)	BMP (amount)	2 (unit)	Baseline (amount)	e (unit)	Chang (change)	ge (unit)	Market Value (\$/unit)	Total Impact (\$ Million)
Inputs with Change																
Purchase of seed for harley									202 360 278		202 360 278		0			
Purchase of seed for barley silage									82,029,696		82,029,696		0			
Purchase of seed for alfalfa/grass hay	4,661,566	kg	0 8,190,019	kg	0 -3,528,453	kg										
Purchase of seed for oats	33,517,641	kg	0 0	kg	0 33,517,641	kg										
Purchase of seed for triticale	25,088,879	kg	0 0	kg	0 25,088,879	kg										
Purchase of alfalfa/ grass hay	3,/50,/4/,349	кg	6,589,779,580	кg	-2,839,032,231	кд										
Total urea, as N	820,506	kg	0 0	kg	0 820,506	kg			114.107.963	kg	120.290.430	kg	-6,182,467	kg		
Total ammonia, liquid	642,847	kg	0 0	kg	0 642,847	kg			89,400,826	kg	94,244,639	kg	-4,843,813	kg		
Total monoammonium phosphate as P2O5	0	kg	0 19,131,205	kg	0 -19,131,205	kg			41,555,961	kg	46,773,950	kg	-5,217,990	kg		
Total monoammonium phosphate as N	0	kg	0 4,487,567	kg	0 -4,487,567	kg			9,747,694	kg	10,971,667	kg	-1,223,973	kg		
Total ammonium sulphate as N	2,870,815	kg	0 0	kg	0 2,870,815	kg			11,979,163	kg	11,979,163	kg	0	kg		
Iurea as N at regional storehouse	820 506	ka	0	ka	0 820 506	ka			114 107 963	kσ	120 290 430	ka	6 182 467	kσ		
Ammonia, liquid, at regional storehouse	642.847	кg ko	0	kg	0 642.847	kσ			89.400.826	kg kg	94,244,639	kg	-4.843.813	kg		
Monoammonium phosphate, as P2O5, at regional storehouse	0	kg	0 0	kg	0 0	kg			41,555,961	kg	46,773,950	kg	-5,217,990	kg		
Monoammonium phosphate, as N, at regional storehouse	0	kg	0 0	kg	0 0	kg			9,747,694	kg	10,971,667	kg	-1,223,973	kg		
Ammonium sulphate, as N, at regional storehouse	2,870,815	kg	0 0	kg	0 2,870,815	kg			11,979,163	kg	11,979,163	kg	0	kg		
Fuel consumed to transport fertilizer	60,529	L	0	L	60,529	L			2,061,626	kg	1,934,516	kg	127,110	kg		
Fuel consumed to transport manure as soil amendment for application	2,000,740	L		L	2,000,740	L			11,179,009	kg ka	9893423.126 3.660.568	kg	1285586.056	kg ka		
Purchase of pesticide/herbicide	382,775	kσ	0	kø	0 382,775	kg			4,136,235	kø	0 3.660.568	kø	0 475.667	kø		
Fuel consumed to transport pesticide	689	L		kg	689	L			5,829	kg	5,829	kg	475,667	8		
Fuel consumed for forage activities																
Fuel consumed to cultivate soil	3,690,386	L	0	L	3,690,386	L			5,920,675	L	5,920,675	L	0	L		
Fuel consumed to apply fertilizer	1,269,703	L	0	L	1,269,703	L			2,037,050	L	2,037,050	L	0	L		
Fuel consumed to plant crop	1,875,956	L	0	L	1,8/5,956	L			3,009,693	L	3,009,693	L	0	L		
Fuel consumed to apply chemical treatment to crop	96,760 415 724	L	0	L	90,700 415 724	L			156,476	L	156,478	L I	0	L I		
Fuel consumed to harvest crop	2,611,269	L	0	L	2,611,269	L			8,378,784	L	8,378,784	Ĺ	0	L		
Fuel consumed to transport forage	0	L	0	L	0	L			1,160,473	L	1,160,473	L	0	L		
Purchase of water to irrigate crop	13,876,276	m3	0	m3	13,876,276	m3			44,524,839	kg	44,524,839	kg	0	kg		
Fuel consumed to collect manure during winter feeding																
Fuel consumed to transfer manure of site - included above																
Production of bedding	409.313.507	kg	509,445,174	kg	-100.131.666	kg			422,073,796	kg	422,073,796	kg	0	kg		
Fuel consumed to transport bedding	290,450,715	L	361,504,598	L	-71,053,883	L			299,505,473	L	299,505,473	L	0	L		
Fuel consumed to feed livestock (change)					-44,640,145	L										
Fuel consumed to bed livestock (no change)																
Production of min., trc min., cobalt, protein suppl., vit., antibiotic (no change)																
Production of vitamins (no change)																
Purchase of min., trc min., cobalt, protein suppl., antibiotic (no change)																
Purchase of vitamins (no change)																
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic (no change)																
Purchase of fencing elements																
Charger (energizer)	25680	unit	0		25680	unit										
Power source - included in the price of energizer																
High tensile wire - 14 gauge	41328066	m	0		41328066	m										
Connectors - wire tensioners	77040	unit	0		77040	unit										
Grounding rod	128400	unit	0		128400	unit										
Insulators	128400	unit	0		128400	unit										
Posts - wood	6545647	unit	0		6545647	unit										
Posts fiberglass	1377602	unit	0		1377602	unit										
Voltage meter	12840	unit	0		12840	unit										
Barbed wire	97414308		0		97414308	m										
Windbreakers	75,895	feet of windbreaker	0	1	75895.36898	feet of windbreak	er 1(00	0.21								
Cropping costs (change)	12,840	nrs	20,680	nrs	-12,840	hrs	\$ 16.22	-0.21								
Working capital interest								155.12								
Total Innut Value Change																
Outputs with Change																
oupus mit clange									_							
Manure sold for land application																

Compost sold for land application Total Output Value Change

BMP 2 - SWATH GRAZING - BENEFITS AND COSTS

CHANGE IN OVERALL GHG EMISSIONS				COW/CALF O	PERATIONS		
		В	MP 2	Basel	line	Ch	nange
BEEF ACTIVITIES - SOIL AND CROP		(amount)	(unit)	(amount)	(unit)	(change)	(unit)
Manure generation							
Methane emissions from stored manure		1.49E+08	kg CO2eq	1.49E+08	kg CO2eq	0.00E+00	kg CO2eq
Enteric fermentation emissions		7.03E+09	kg CO2eq	7.03E+09	kg CO2eq	0.00E+00	kg CO2eq
N2O emissions from stored manure (direct)		1.83E+09	kg CO2eq	1.83E+09	kg CO2eq	0.00E+00	kg CO2eq
N2O emissions from stored manure (indirect)		4.04E+08	kg CO2eq	4.04E+08	kg CO2eq	0.00E+00	kg CO2eq
N ₂ O emissions from cropping and land use		1.48E+08	kg CO2eq	0.00E+00	kg CO2eq	1.48E+08	kg CO2eq
Total P emissions from run-off		6.28E+05	kg PO ₄ -eq	0.00E+00	kg PO ₄ -eq	6.28E+05	kg PO ₄ -eq
Soil Carbon Change in Soil From Land Use		-3.90E+07	kg CO2eq	0.00E+00	kg CO2eq	-3.90E+07	kg CO2eq
Direct CO2 emissions from managed soils		1.29E+06	kg CO2eq	0.00E+00	kg CO2eq	1.29E+06	kg CO2eq
OVERALL SUMMARY							
Construction		1.44E+07	kg CO ₂ e	0	kg CO ₂ e	1.44E+07	kg CO ₂ e
Forage and cereal sub-activities		2.24E+08	kg CO ₂ e	0.00E+00	kg CO ₂ e	2.24E+08	kg CO ₂ e
Energy generation and consumption activities		2.59E+09	kg CO2eq	2.81E+09	kg CO2eq	-2.16E+08	kg CO2eq
O&M activities		0	kg CO2e	0	kg CO2e	0	kg CO2e
Cereal activities							
Forage activities		5.48E+07	kg CO ₂ eq	0.00E+00	kg CO2eq	5.48E+07	kg CO ₂ eq
Feedlot and pasture activities		4.19E+07	kg CO2eq	3.20E+06	kg CO2eq	3.87E+07	kg CO2eq
Cow activities (transportation)		2.49E+07	kg CO2eq	2.49E+07	kg CO2eq	0.00E+00	kg CO2eq
Bull activities (transportation)		3.14E+06	kg CO2eq	3.14E+06	kg CO2eq	0.00E+00	kg CO2eq
Yearling-fed system activities (transportation)							
Calf-fed system activities (transportation)							
Total GWP for BMP							
	kg CO ₂ e	1.25E+10	Cow/Calf				
Total Change in GWP for BMP	0 -						
-	kg CO ₂ e					2.27E+08	
Overall Baseline GWP (2001)			_				
	kg CO ₂ e/kg live weight	14.705					
One will PM (D) (D) (D)							
Overall BMP GWP	ha CO allea lina maiaht	14 550					
	kg CO ₂ e/kg live weight	14.552					
Change in overall GWP from 2001							
Change in overall Gvvi from 2001	kg CO ₂ e/kg live weight	-0.153					
	0	-0.100					
Change in GWP per kg of beef affected from 2	2001						
	kg CO ₂ e/kg live weight	-1.673		(total change in G	GHG emissions di	vided by total weigl	ht of cattle affected)

Notes: Energy generation emissions divided by the number of cattle on cow/calf vs feedlot Feedlot and pasture activities are divided appropriately.

Page 2 of 2

Stockpiling Data

Available forage coefficient		0.8						Determining your stocking rate. At: http://extension.usu.edu/files/publications/pub
Weight of cattle	cow bull	454 544	kg kg	1000 lbs 1200 lbs		606 998	kg kg	YEAR KOUND GRAZING = 365 DAYS http://www.agrireseau.qc.ca/bovinsboucherie/6 Beef LCA - Phase 1 Beef LCA - Phase 1
Food intake coefficient body weight/month		0.75						Using the Animal Unit Month (AUM) Effectively. At: http://www1.agric.gov.ab.ca/\$dep
Animal units equivalent AU eq - cow, dry Animal units equivalent AU eq - bull		0.92 1						Using the Animal Unit Month (AUM) Effectively. At: http://www1.agric.gov.ab.ca/\$dep
Animal Unit Equivalent (AUE)	Aminai Live weign	۰ Animal Unit				Animal Live Weight (lbs)	Animal Unit	
based on metabolic weight	1000	Equivalent				1200	Equivalent	Lowellyn I. Animal Unit Equivalent for Pool Cattle Poord on Matchelia Weight At http://
	1200	1.2				2200	1.806	Lleweilyn L., Animal Unit Equivalent for Beef Cattle Based on Metabolic Weight. At: http://leweilyn L., Animal Unit Equivalent for Beef Cattle Based on Metabolic Weight. At: http://www.attle.com/attle/att
lbs/acre × 1.12 = kg/ha		1.12						
daily food intake	cow	11.34	kg					
		25.00	lbs					
	bull	13.61 30.00	kg lbs					
Note: use for the daily food intake the data provi	ided by the nutritio	nist						
	cow	28.00	lbs					
	bull	28.00	lbs					
Stockpiling system - Cultivated crops					Crops			Source
	Grass	Perennial	DP	А	grass mix			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass	Perennial	DP	А	grass mix			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass	Perennial	DP	А	grass mix			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass Grass	Perennial Perennial	P NR	A A	meadow brome meadow brome			discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
						Yield dry matter	Yield dry matter	
Yield - Cultivated crops					Crops	(kg/na)	(16/ac)	Source: see comments on cells
	Grass	Perennial	DP	А	grass mix	2800	2500	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass	Perennial	DP	А	grass mix	2800	2500	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass	Perennial	DP	А	grass mix	2800	2500	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Grass	Perennial	P NR	A A	meadow brome	3360 3920	3000 3500	discussion (Febr 25, 2011) and e-mail (March 1, 2011) - Grant Lawstika
	Glass		INK	7	meadow brome	3920	3300	
Note: for stockpile grazing systems: keep the same area	as current for grazing	g (AKD, conference cal	I Nov 30, 20	(10)				
Hay and field crops - All other tame hay and fo	odder crops				ha			Source
	Grass	Perennial	DP	А	152,360			Statistics Canada. Table 5.1-23 Hay and field crops - All other tame hay and fodder crops,
	Grass	Perennial	Р	А	487,091			Statistics Canada. Table 5.1-23 Hay and field crops - All other tame hay and fodder crops,
	Grass	Perennial	NR	А	283,139			Statistics Canada. Table 5.1-23 Hay and field crops - All other tame hay and fodder crops,
Stockniling system - Native grone (energe)					Crops			Source
E							-	Source
to another native, green needle grass.	an tame forage spec	cies. The native spe	cies, west	ern wheatgrass	s, had similar nutritive value to the tame s	pecies, meadow bromegrass, and was superior	r	At: http://www.mbforagecouncil.mb.ca/resources/forage-grassland-manual/9-extended
								The single-graze system is suited to the drier prairie regions where low summer rainfall n
Cattle on cultivated crops (assumption applied	to the total number	r of cattle on pastur	e, below)		0.075			conversation with Emmanuel Latte on February 23, 2011
p					0.075			
NR					1			
Total number of cattle	Jan.1-Feb.28				all cattle	cows	bulls	7
DP					773,130	737,823	35,307	
Р					1,303,129	1,246,517	56,612	

493,699

474,239

19,460

References

cation/NR_RM_04.pdf /documents/00105%20p.pdf

partment/deptdocs.nsf/all/agdex1201

partment/deptdocs.nsf/all/agdex1201

p://www.ag.ndsu.nodak.edu/dickinso/research/1997/animal.htm p://www.ag.ndsu.nodak.edu/dickinso/research/1997/animal.htm

prevents good regrowth.

s, census years 2006 and 2001. At: http://www.statcan.gc.ca/pub/95-629-x/2007000/4123849-eng.htm#hay s, census years 2006 and 2001. At: http://www.statcan.gc.ca/pub/95-629-x/2007000/4123849-eng.htm#hay s, census years 2006 and 2001. At: http://www.statcan.gc.ca/pub/95-629-x/2007000/4123849-eng.htm#hay

ed-grazing/94-plan-your-stockpiling-program-now/#Native vs. Tame Species

prevents good regrowth.

Stockpiling Data

References

Number of cattle on cultivated crops	Jan.1-Feb.28		number of cattle from Statistics Canada. Census 2001					% breakdown by regions		% breakdown by regions- all cattle,		
					all cattle	cows	bulls	cows	bulls	cows	bulls	
DP - total # of cattle	57,985	grass	perennial	0.33	19,328	18,446	883					
DP - # of cows	55,337	grass	perennial	0.33	19,328	18,446	883					
DP - # of bulls	2.648	grass	perennial	0.33	19,328	18,446	883	3.12	3.36	30.01	31.70	
	,											
P - total # of cattle	1.303.129	grass	perennial	1	1.303.129	1.246.517	56.612	70.18	71.92	50.70	50.83	0
P - # of cows	1 246 517	8-100	P	-		, ,,-	, -					
P = # of bulls	56 612											
	50,012											
NIR total # of cottals	402.600	2#2.00	monomial	1	493 699	474 239	19.460	26 70	24.72	10.20	1747	0
NR - total # of cattle	493,099	grass	perenniai	1	±33,033	474,237	17,400	26.70	24.72	19.29	17.47	0
INK - # OF COWS	4/4,239											
NR - # of bulls	19,460											
Total # of cottle on collingted second	Level Each 00				1 054 010	1 77(002	78 700	100	100	100	100	
Total # of cattle on cultivated crops	Jan.1-Feb.28				1,834,813	1,776,093	78,720	100	100	100	100	
						2,458,579	109,428					
T () (()	D 1 D 11				-11 44]-		1 11					
l otal number of cattle	Dec.2-Dec.31				all cattle	cows	bulls					
DP					697,779	669,335	28,444					
Р					1,176,418	1,130,810	45,608					
NR					445,896	430,218	15,677					
totals					2,320,093	2,230,364	89,730					
Number of cattle on cultivated crops	Dec.2-Dec.31											
						cows	bulls					
DP - total # of cattle						50,200	2,133					
DP - # of cows		grass	perennial	0.33		16.733	711					
DP - # of bulls		grass	perennial	0.33		16.733	711					
Di "orbuis		grass	perennial	0.33		16,733	711					
		51033	perennua	0.00		10,733	711					
P		arace	perennial	1		1,130,810	45.608					
1		grass	perennai	1		1,100,010	10,000					
NR		grass	perennial	1		430,218	15,677					
						·	,					
Total cows/bulls						2,230,364	89,730					
Total all cattle						2.320.093						
						,,						
Days on stockniling grazing					Davs			Source				
Duys on stockpring gruznig					Duys			Source				
	Cross	Doronnial	DB		20			ARECA November 2006 Veer reve	d amorting 26E	lavia maga 1 A	to better / / your	
	Grass	Perennial	DP	Δ	30			ARECA November 2006, Year rou	d grazing 365 c	lays, page 4. A	t: http://ww	w.agiireseau
	Grass	Perennial	DP	Δ	30			ARECA November 2006, Year rou	nd grazing 365 c	lays, page 4. A	t: http://ww	w.agrireseau
	01055	rerennar	DI	11	30			ARECA November 2006, Year rou	nd grazing 365 c	lays, page 4. A	t: http://ww	w.agrireseau
	Crass	Perennial	Р	Δ	30			ARECA November 2006, Year rou	nd grazing 365 c	lays, page 4. A	t: http://ww	w.agrireseau
	Grass	Perennial	NR	A	30			ARECA November 2006. Year rou	nd grazing 365 c	lays, page 4. A	t: http://ww	w.agrireseau
	Gruos	rerennun							in grunnig ood t	ujo, puge 1.11		magnicocua
Seeding rates												
Security futes						ka/ba						
	Cross	Doronnial	DB	٨	anaga min	Kg /lia 6.0E						
	Grass	Perennial	DP	A	grass mix	6.05 6.05						
	Grass	Perennial	DP	A	grass mix	6.05						
	Grass	Perennial	P	A	grass mix	6.05 11.20						
	Crass	Poronnial	NIP	л л	meadow brome	11.20						
	Glass	refefiliai	INK	A	meadow brome	11.20						
Viold of coods not cultivated by						10						
field of seeds per cultivated ha	0	D : 1	DD			kg/na						
	Grass	Perennial	DP	A	grass mix	217						
	Grass	Perennial	DP	A	grass mix	217						
	Grass	Perennial	DP	A	grass mix	217						
	Grass	Perennial	r ND	A	meadow brome	196						
	Grass	Perenniai	INK	A	meadow brome	196						
Posticido requiremente						ka /ba						
i esuciue requirements	Crass	Donor !- 1	חח	٨		kg/ na						
	Grass	Perennial	DP	A .	grass mix	0.8						
	Grass	Perennial	DP	A	grass mix	0.8						
	Grass	Perennial	DP	A	grass mix	0.8						
	Grass	Perennial	r' NIP	A A	meadow brome	0.8						
	Grass	rerenniai	INK	п	meauow brome	0.8						
Notes:												
А	Applicable											

NA Not Applicable Please see inserted comments in cells for additional references, details

, including cattle on native pasture

data check

data check

au.qc.ca/bovinsboucherie/documents/00105%20p.pdf au.qc.ca/bovinsboucherie/documents/00105%20p.pdf au.qc.ca/bovinsboucherie/documents/00105%20p.pdf au.qc.ca/bovinsboucherie/documents/00105%20p.pdf au.qc.ca/bovinsboucherie/documents/00105%20p.pdf au.qc.ca/bovinsboucherie/documents/00105%20p.pdf

Change in gas, diesel, and electricity usage on feedlots for reduced feed time, replaced by extended grazing (swath grazing)

Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Energy requirements to feed cattle in the feed	1785 Mcal/anii	nal	ACRES USA. From Mid-East Oil to London Broil: A Comparison of Energy Inputs in Feedlot versus Grass-Fed Beef. November 2005. Available at: http://www.acresusa.com/magazines/archives
Days on winter feed in feedlot (in reference)	255 days of fe	ed in feedlot	
Days on winter feed in feedlot (in model)	0 days of fe	ed in farm	
Mass of feed per day in feedlot during the wi Energy requirements to feed 1 lb of feed in	0 lbs feed p	er cow per day	
the feedlot	1 lb feed =	0.28 Mcal	
	0.28 Mcal	=	1111.13 Btu
		=	1.1723 MJ
Note: Assume that diesel is the fuel used to operate the machin	iery to feed cattle (as per refe	rence)	

Change in gas and diesel for manure handling on feedlot for reduced time, replaced by swath grazing on the pasture

Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Manure collection and handling			
Diesel consumption for a tractor	16.6 L/hr		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
Number of feedlot cattle in reference	50,000 cattle		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
Pens with 250 head/pen in reference	200 pens		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
times per year	2		Ghafoori, Emad, Flynn, Peter C, and Checkel, M. David (2006). Global Warming Potential of
heads per pen	250		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
Time to pile up manure in pen in reference	60 min/pen two times per year		Ghafoori, Emad, Flynn, Peter C, and Checkel, M. David (2006). Global Warming Potential of
···· · · · · · · · · · · · · · · · · ·	400 hrs/vr		Ghafoori, Emad, Flynn, Peter C, and Checkel, M. David (2006). Global Warming Potential of
Diesel required per year	6.640 L/vr		Ghafoori, Emad, Flynn, Peter C, and Checkel, M. David (2006). Global Warming Potential of
CO ₂ emission factor for truck diesel	$2.569 \text{ g } \text{CO}_2/\text{L}$		
consumption	2,000 6 0027 12		Chafoori Emad Elvnn Pater C and Chackel M David (2006). Clobal Warming Potential o
CH amission factor for truck discal	0.21 g CH /I		Ghaloon, Emaa, Hynn, Feler C. and Eneckel, W. David (2000). Global Walning Folendar C
consumption	0.21 g CH4/ L		Chafaarii Emad Elvan Batar C and Chaskal M David (2006). Clahal Warming Patantial
Tatal antiaciana farma manuna arllastian	17.00 have a CO a /am		Gnaroori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global warming Potential C
l otal emissions from manure collection	17.09 tonnes CO_2e/yr		
(calculated based on data)	1152		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential C
l otal emissions from manure collection	1,172 tonnes CO2e/year		
(total provided in reference)			
(Total emissions calculated using data from			
reference different than total emissions provided			
in reference.			
Only raw data from reference will be used to			
calculate emissions in model.)			
Quantity of manure (in reference)	58,700 tonne dry manure/year		Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
(Alberta Beef LCA model used same reference to			····· , ··· , · · · · · · · · · · · · ·
auantify manure)			
1 33 7			
Emission factor for the combustion of diesel	3.28 kg COve/kg diesel		
in agricultural equipment - Alberta Beef	0.20 kg 0020 kg dieber		
I CA model			Intergovernmental Panel on Climate Change (IPCC) 2006 IPCC Guidelines for National G
Density of diesel	0.885 kg/I		Simetric Specific Cravity of Liquide Available at: http://www.simetric.co.uk/si_liquide
Density of dieser	3.71 kg CO.e/I		Sincure. Specific Gravity of Elquids. Available at. http://www.sincure.co.uk/si_nquids.
Total antionican form measure callestica	3.71 kg CO ₂ e/ L		
Total emissions from manure collection	24.61 tonnes/yr		
using the LCA model emission factor			
(comparable to emissions calculated using			
reference data)			
Total emissions from manure collection per	0.00135 kg/animal/day		
animal per dav		Calculated	
animals in feedlot for reduced time,			
replaced by extended swath grazing on the			
pasture			
Note: Enerou required to provide hadding in the			
haseline is included in the total energy used on			
had forms in Alberta Changes to more			
requirements to be calculated			
	100 070 1		
Bedding required for feedlot in Alberta Beef	422,073 tonnes		
LCA model			

of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G

of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of G

ireenhouse Gas Inventories. Volume 2. Chapter 3: Mobile Combustion. Available at: http://www.ipcc-nggip.htm

Stockpiling Data

Total mass of barley and barley silage (feedlot diet) % of bedding mass compared to total feed mass Bedding mass negligible compared to feed.

Change in quantity of agricultural plastics for reduced winter feed, replaced by extended swath grazing on the pasture

Current agricultural plastics disposal methods - Burning is still the most prominent method of getting rid of agricultural plastics - There is little industry capacity to handle agricultural plastics in Alberta - Pilot recycling program conducted in Alberta in 2008 to understand the amount, type, and quality of used agricultural plastics and the capacity of industry to use it - Alberta Beef LCA baseline model assumed the same as the current situation for the handling of agricultural plastics (burning and burying)

- No change in the disposal of plastics - Total change in plastics will be calculated based on percentage of total change in feed

Average reduction in days on feedlot

Average labor time per day cattle on farm

Change in labour

12,061,530 tonnes

3.5 %

> Recycling Council of Alberta. Agricultural Plastics Recycling Pilot Project. Summary

Assumption

Average labor time per day cattle on grazing versus traditional extended grazing 1 hrs/day feeding. Total time saved 72,012,896 hrs Calculated, based on cattle days Price Information 16.22 \$/hr Average farm hand wage 161.38 \$/tonne Purchase of barley 0.16 \$/kg Purchase of barley silage 40 \$/tonne 0.04 \$/kg Purchase of bedding (model assumes 100% straw bedding used) (Straw estimate for 24.2 \$/ton Wheat straw (fertilizer costs) 26.7 \$/tonne 32 \$/ton Barley and oat straw (fertilizer costs) 35.3 \$/tonne Pea straw (fertilizer costs) 30 \$/ton 33.1 \$/tonne Canola straw (fertilizer costs) 22.6 \$/ton 24.9 \$/tonne 450 kg 9.00 - 11.50 \$/large round bale Average weight of straw bale Baling costs 10.25 \$/large round bale Average Hauling and stacking 2.00 - 3.00 \$/large round bale 2.5 \$/large round bale Average Average price (wheat straw) 26.68 \$/tonne Average price (barley and oat straw) 35.27 \$/tonne 33.07 \$/tonne Average price (pea straw) Average price (canola straw) 24.91 \$/tonne Average price for straw 29.98 \$ / tonne

0.030 \$ / kg 124.44 \$/ton

137.17 \$/tonne 0.14 \$ / kg

35.0 days 2 hrs/day References

The WFBG showed 44% less labor for swath

YEAR ROUND GRAZING = 365 DAYS http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf

WAGEinfo, Alberta Wage and Salary Survey, 2009 data. Available at: http://alis.alberta.ca/wageinfo/Content/RequestAction.asp?aspAction=GetWageDetail&format=html&RegionID=20&NOC=84: Lethbridge Barley Price, Alberta Grains Council, Alberta Canola Producers Commission. Weekly Average from 2005 to 2010

Based on a conversation with a local dairy farmer on January 3, 2011.

What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

Internet Hay Exchange. Hay Price Calculator. Available at: http://www.hayexchange.com/tools/ave_price_calc.php.

Purchase of alfalfa/grass hay (alfalfa per ton
Stockpiling Data

References

Purchase of alfalfa seeds	0.55 \$/lb 1.21 \$/kg		Source: Historical Turf and Forage Seed Prices in Alberta to 2009. At: http://www1.agric
Purchase of meadow brome	2.71 \$/lb 5.97 \$/kg		http://www.utahseed.com/page12.html
Purchase of Russian wild rye	6.34 \$/lb 13.98 \$/kg		http://www.utahseed.com/page12.html
Purchase of Pubescent wheat grass	2.71 \$/lb 5.97 \$/kg		http://www.utahseed.com/page12.html
Purchase of mix of meadow brome, russian wild rye and pubescen wheat grass	8.64 \$/kg		
Purchase of chemical fertilizer Urea, as N, at regional storehouse Ammonia, liquid, at regional storehouse Monoammonium phosphate, as P2O5, at regi Monoammonium phosphate, as N, at regiona Ammonium sulphate, as N, at regional storeh Purchase of pesticide	0.45 \$/kg 0.88 \$/kg 0.62 \$/kg 0.62 \$/kg 0.44 \$/kg 88.74 \$/kg		http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sdd11027 http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf http://www.agr.gc.ca/pol/mad-dam/pubs/rmar/pdf/rmar_02_07_2010-11-26_eng.pdf insert reference http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/sdd11027
calculated	1500.00 \$/acre foot 1.22 \$/m3		http://www.saaep.ca/Irrigation_In_Alberta_2004.pdf
Custom rates for agricultural operations Tillage No till			
Heavy harrow	8 \$/ac 19.77 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Reduced till Chisel plow (3 inch)	75 \$/ac 185.33 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Heavy harrow	8 \$/ac 19.77 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Full till Chisel plow (3 inch)	75 \$/ac 185.33 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Field cultivator	10 \$/ac 24.71 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Heavy off-set disk	40 \$/ac 98.84 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Apply fertilizer			
Broadcasting Sprayer	6 \$/ac 14.83 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Injected or knifed in Anhydrous applicator	17.5 \$/ac 43.24 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Plant crop Air drill	24 \$/ac 59.30 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Apply chemical treatment Sprayer	6 \$/ac 14.83 \$/ha	http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/inf12992	
Swath crop Windrower	6 \$/ac 14.83 \$/ha		

c.gov.ab.ca/\$department/deptdocs.nsf/all/sis6720

Stockpiling Data

Purchase of min., trc min., cobalt, protein suppl., vit., antibiotic for feedlot			
32% Feedlot Supplement (pellets with monensin)	11.89 \$/25 kg		UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January
	0.48 \$/kg		
Vitamins (A-D-E Premix) for feedlot	24.00 # (201		
Mash Crumphia	24.99 \$/20 kg		UFA Limited. Available at: http://uta.com/products/product.html. Accessed on January
Average	50.00 \$/20 kg		OFA Limited. Available at: http://ura.com/products/product.html. Accessed on January
Avelage	1.37 \$/kg		
Purchase of manure	0 \$/kg		Government of Alberta. Agriculture and Rural Development. Manure and Compost Direct
Sale price for beef to slaughterhouse (reduction due to younger age)	0 \$/kg	Assumed value - only approximately 5 day difference and therefore price shouldn't be affected.	
Fuel consumed to feed livestock (on-farm			
Fuel consumed to collect manure (on-farm			
diesel)			
Ultra Low Sulphur Diesel (ULSD)			
Calgary, AB	80.7 cents/L (excluding taxes)		UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.
Edmonton, AB	77.5 cents/L (excluding taxes)		UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.uta.
Calgary, AB	84.2 cents/L (excluding taxes)		LIFA Petroleum, Rack Prices, December 18 to December 20, 2010, Available at: www.ufa
Edmonton, AB	81.0 cents/L (excluding taxes)		UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.
Average	80.85 cents/L (excluding taxes)		
Fuel tax rates (diesel - all grades) (April 1,	9 cents/L		
2007 to current)			Alberta Tax and Revenue Administration - Current and Historic Tax Rates. Available at: v
Alberta Farm Fuel Benefit Program and	-15 cents/L		
Farm Fuel Distribution Allowance (taxes) Fuel tax is exempted for diesel used on farms and a subsidy of 6 cents per L of diesel is provided			Alberta Tax and Kevenue Administration - Current and Flistoric Tax Kates. Available at: v
Average diesel price minus Alberta	0.75 \$/L		
Electric Fencing			
energizer	799.00 \$/unit		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011.
High tensile wire - 14 gauge	24.99 \$/ 400 m		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011.
Connectors - wire tensioners	22.49 \$/5 units		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011.
Grounding rod -	62.24 ¢/aash		at http://www.factoral.com/wah/coards/meduate/plumbing/ning_ping_according/ni
insulators for wooden posts (for permanent	62.54 \$/ each		at. http://www.iastenai.com/web/search/products/pruntoing/pipe-pipe-accessories/pi
fences)	9.79 \$/25		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011.
Posts - wood	6.69 \$/each		at: http://www.ufa.net/products/Building-Supply/38/Lumber.html
Posts fiberglass - proxy step-in temporary			
post (poly) voltage meter - Gallagher Smart Fix Fault Fin	3.59 \$/each n 148.99 \$/each		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011. at: http://www.ufa.net/products/Animal-Care/Livestock/Fencing/196/Electric-Fence-S
Barbwire Fencing			
Barbed wire	62.99 \$/400m		UFA Co-operative Limited. Available at www.ufa.net. Accessed Jan 18, 2011.
Windbreaker	5.00 \$/foot		AT: http://www.mindfulservices.ca/pbe/files/AgriPark03/Final%20Document%20final.
	16.40 \$/m		
Summary of data gaps			
Yield dry matter	barley: Selection of the most appropriate data. The availab	le yield value encompass a wide range of variation.	Agri-Facts, September 2008. Agronomic Management of Swath Grazed Pastures. At: http:/

References

Yield dry matter

barley-oat Very little research done in Western Canada on swath grazing perennial forage crops perennial forage crops for grazing

Overall, selection of the most appropriate species for swath grazing crops. The selection should cover an average range, to support the available data and structure of the model. yield, dry matter, for most of the species selected in the current model, such as: winter wheat, green needlegrass, western wheatgrass

DM yields adjusted for second/multiple pass

What % of cattle stockpile grazing on cultivated crops/native species?

How much grazing (%) on grass out of the total grazing (grass and legumes)?

How much grazing (%) on annual/perennial grass and legumes?

Notes:

А	Applicable
NA	Not Applicable
Please see inserted comments	s in cells for additional references, details

y 3, 2011.

y 3, 2011. y 3, 2011.

ctory. Available at: http://www.agric.gov.ab.ca/app68/manure. Accessed on January 3, 2011.

net/petroleum/rack_pricing.html net/petroleum/rack_pricing.html

net/petroleum/rack_pricing.html net/petroleum/rack_pricing.html

vww.finance.alberta.ca/publications/tax_rebates/rates/hist1.html#fuel

vww.finance.alberta.ca/publications/tax_rebates/rates/hist1.html#fuel

pe-lengths/_/N-gj4z0iZjudqgqZjucbwsZjudwhl&Nty=0

Supplies.html

.doc

Agri-Facts, September 2008. Agronomic Management of Swath Grazed Pastures:

 $A gri-Facts, September 2008. \ A gronomic \ Management \ of \ Swath \ Grazed \ Pastures. \ At: \ http://www1.agric.gov.ab.ca/\ department/deptdocs.nsf/all/agdex12419/\ file/420_56-3.pdf? OpenElement \ Agrieve \ Swath \ Grazed \ Pastures. \ At: \ http://www1.agric.gov.ab.ca/\ department/deptdocs.nsf/all/agdex12419/\ file/420_56-3.pdf? OpenElement \ Agrieve \ Agri$

Stockpiling Data

Additional resources

Agri-Facts, October 2008. Agronomic management of stockpiled pastures: Depth of snow cover frequently limits winter grazing of standing forage in the Parkland and Boreal forest regions. However, the grazing season may be extended by several weeks by using stockpiled forage in late fall and early spring. Winter grazing on the prairie works best with little or no snow cover. Supplemental feed is needed if snow cover is too deep and forage yields are low.

seeding native grass

http://www.gov.mb.ca/agriculture/crops/forages/pdf/sodseeding.pdf

native grass mixes

http://www.viterra.ca/static/agri products/MasterBlendsSection.pdf

seeding rate winter wheat <u>http://www.gov.mb.ca/agriculture/crops/forages/bjb00s40.html</u> Winter feeding Beef Cows on Pasture with Bale Grazing and Bale Processing versus Drylot <u>http://www.angelfire.com/trek/mytravels/nutrientmanagement.html</u>

Estimated manure nutrients. Feedlot management http://www.extension.iastate.edu/Publications/PM1867.pdf

Winter feeding Beef Cows on Pasture with Bale Grazing and Bale Processing versus Drylot

Stockpile Grazing Management Data

Total area394,820haTotal no of cattle2,569,958head

Grazing management: Fences, including electric fencing, gates, windbreakers. Source: ARECA, November 2006. Year Round Grazing 365 Days, At: http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf

Items	Composition			Materials used	Materials requirements	Process	Ecoinvent		
	polywire			wire		Production of poly wire	wire drawing, steel		
		energizers (battery powered o	or plug-in)	miscellaneous	calculated				
		minimum of three ground	galvanized large surface area ground rods that are 6-7 feet in length, to extend below the frost line (e.g. galvanized pipe + 1 ¼" tubing used to frame link fence gates)	galvanized pipe and tubing	calculated	Production of galvanized pipe	drawing of pipes, steel		
Electric fencing (1)	grounding system	rods (http://www.extension.umn. edu/beef/components/hom estudy/plesson3.PDF)	One half-inch diameter galvanized steel rods or 3/4" galvanized pipe make the best ground rods. They should be at least 6 feet long and driven 5-1/2 feet into the soil (http://www.extension.umn .edu/beef/components/ho mestudy/plesson3.PDF))	galvanized pipe	calculated	Production of galvanized pipe	drawing of pipes, steel		
		ground rod clamps	• • • • •		calculated	Production of ground rod clamps	connector, clamp connection, at plant		
		electric posts (ground rods) se	ee above	-	-				
	barb wire			metal	calculated	Production of barb wire	wire drawing, steel		
Fence (1)	posts	3/8" diameter fiberglass posts	;	fiberglass	calculated	Production of fiberglass	fiberglass, at plant		
	posts	wooden		wood	calculated	Production of wood for poles	round wood, hardwood, under bark, u=70%, at forest road		
	barb wire			metal	calculated	Production of barb wire	wire drawing, steel		
Gates (1)	posts	3/8" diameter fiberglass posts	· · · · · · · · · · · · · · · · · · ·	fiberglass	calculated	Production of fiberglass	fiberglass, at plant		
	posts	wooden		wood	calculated	Production of wood for poles	round wood, hardwood, under bark, u=70%, at forest road		

Electricity

Drill (1)	cordless drill with a n	nasonary bit, 24 volt power pack drill with a long masonry di	calculated		
Windbrookore (nor	frame	steel tubing	steel	calculated	Production of galvanized pipe
windereakers (por	planks	wooden	wood	calculated	Production of wood for planks

Barbed wire

Barbed wire for agriculture use is typically double-strand 12^{1/2}-gauge, zinc-coated (galvanized) steel and comes in rolls of 1,320 ft (400 m) length. http://en.wikipedia.org/wiki/Barbed_wire#Agricultural_fencing

Windbreakers

a variety of models http://www.agriculture.gov.sk.ca/Default.aspx?DN=adb8ecee-7d31-4f72-8d83-c71ac97baba4

as a general rule, one foot of fence (windbreaker) protects enough area for one cow http://www.agriculture.gov.sk.ca/Default.aspx?DN=adb8ecee-7d31-4f72-8d83-c71ac97baba4

Portable Windbreak Fencing - Sustainable Livestock Wintering: How Can It Work for You? <u>http://www.gov.mb.ca/agriculture/crops/forages/pdf/bjb05s17.pdf</u> Calculations of material requirements are based on the total grazing area and the grazing management strategy

Grazing management strategies Strip grazing

057586-BMP 2.2 - Extended Grazing_Stockpile

drawing of pipes, steel

plywood, outdoor use, at plant

Stockpile Grazing Management Data

leave 10 to 20 % crop residue each year source: YEAR ROUND GRAZING = 365 DAYS http://www.agrireseau.qc.ca/bovinsboucherie/documents/00105%20p.pdf

watering: Solar-powered systems. cost of water per cow ranged from \$0.03 to \$0.15 per day. The cost per gallon of pumped water ranged from \$0.002 to \$0.007 per gallon. http://attra.ncat.org/attra-pub/solarlswater.html

http://www.thebeefsite.com/articles/20	078/livestock-fencing-systems-	for-pasture-management	
	2001	2006	
Total cattle and calves number	6,615,201	6,369,116	
Farms reporting	31,774	28,751	
Average number of cattle per farm	208	222	
Source: Table 1.3 Selected agricultural da	ta, selected livestock data, Can	ada and provinces, census yea	rs 1921 to 2006. At: http://www.statcan.gc.ca/pub/95-632-x/2007000/t/4129740-eng.htm#48
Tame or seeded pasture	Average area in acres per farm reporting	2001	2006
	acres	229	267

Source: Table 2.5 Total land area and use of farm land, Canada and provinces, census years 1976 to 2006. At: http://www.statcan.gc.ca/pub/95-632-x/2007000/t/4185579-eng.htm#48

Stockpiling Calculations

Grass

Grass

Grass

Grass

Grass

			Cultivated Crops	Yield dry matter cultivated species (kg/ha)	Number of cattle on cultivated species - cows	Number of cattle on cultivated species - bulls	Total cow days (# cows * # days)	Total bull days (# bulls * # days)	Available forage coefficient	Weight of cattle - cows (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq cows	AU eq bulls	Days on pasture	Months on pasture	Total cultivated area ha (calculated) (1)
P	erennial	DP	grass mix	2800	16,733	711	519,481	21,970	0.8	454	544	0.75	1	1.2	30	1.00	5,083
P	erennial	DP	grass mix	2800	16,733	711	519,481	21,970	0.8	454	544	0.75	1	1.2	30	1.00	5,083
P	erennial	DP	grass mix	2800	16,733	711	519,481	21,970	0.8	454	544	0.75	1	1.2	30	1.00	5,083
Pe	erennial	Р	meadow brome	3360	1,130,810	45,608	35,105,519	1,409,066	0.8	454	544	0.75	1	1.2	30	1.00	286,232
Pe	erennial	NR	meadow brome	3920	430,218	15,677	13,355,940	484,357	0.8	454	544	0.75	1	1.2	30	1.00	93,340
				Total cattle	1,674,647		50,019,902	1,959,332								Total area Area Grass DP	394,820 15,248

Area Grass P 286,232 Area Grass NR 93,340

Sources

(1) Pratt, M., and Rasmussen, A., 2001. Determining your stocking rate, Range Management Fact Sheet. At: http://extension.usu.edu/files/publication/NR_RM_04.pdf

Notes

- DP P NR
- Dry Prairie Parkland Northern Regions

484,357

Stockpiling Grazing Management Calculations

CALCULATE THE AREA REQUIRED BY ONE DAY OF GRAZING/ONE CATTLE

days on pasture

		Crops	Yield dry matter (kg/ha)	Number of cattle - cows	Number of cattle - bulls	Available forage coefficient	Weight of cattle - cows (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq cows	AU eq bulls	Days on pasture
Grass	Perennial DP	grass mix	2800	50,200	2,133	0.8	454	544	0.75	1	1.2	1
				52,333								

			Crops	Yield dry matter (kg/ha)	Number of cattle - cows	Number of cattle - bulls	Available forage coefficient	Weight of cattle - cows (kg)	Weight of cattle - bulls (kg)	Food intake coefficient	AU eq	AU eq bulls	Days on pasture
Grass	Perennial	Р	meadow brome	3360	1,130,810	45,608	0.8	454	544	0.75	1	1.2	1
Grass	Perennial	NR	meadow brome	3920	430,218	15,677	0.8	454	544	0.75	1	1.2	1
					1,622,314								

		number of cattle	1,	52,333 622,314	heads heads	
		total area 1 day/1 hea	ad 1	674647 0.004	heads ha	
CALCULATE THE GRAZ	ZING AREA PER HERD					
Pasture area for stockpile	grazing on cultivated species			394,82	0 ha	
Average number of cattle,	/ farm			20	8 head	
Number of cattle on winte	er diet, as per the initial model	total		2,230,36 89,73 2,320,09	4 cows 0 bulls 3 heads	96.1 % of total cattle 3.9 % of total cattle 100.0 % of total cattle
Note: calculations for wind Assumption: the area 1/d	ter grazing logistics apply for all cattle, both on native and cultivated species. ay/1 head is the same for native/cultivated species.					
Average number of cattle	per herd and composition of herd			20 192.2 7.7	0 heads 6 cows 4 bulls	192 cows 8 bulls
Number of herds, per tota	l, based on average heads/herd and total number of cattle			11,60	0 herds	
Daily requirement of forag	ge/herd			217 10	7 kg 9 kg	cows bulls
Average number of herds,	/farm				1	based on average number of cattle/farm and average cattle in a here
average area/head/day area/ 200 heads herd/day			0.00 0.8 2.0	4 ha 3 ha 5 acres		
average area of farm used	for grazing/ 30 days, based on area/herd and number of herds per farm			6	2 acres	
Tame or seeded pasture	Average area in acres per farm reporting	:	2001 2006	22 26	9 acres 7 acres	

1

Conclusion: for one farm, the available area for grazing is larger than the minimum grazing area requirements, calculated based on number of heads and individual grazing area needs

Tame or seeded pasture (as per Statistics Canada)

Conclusion: the area currently cultivated with these species can support more cattle than in the model

Conclusion: the area currently cultivated with these species can support more cattle than in the model

total area for 1 day, all catt

6,955

Stockpiling Grazing Management Calculations

FENCING

Elements of	portable electric fence

Charger (energizer)		1 unit/line
Power source	outlets	1 unit/energizer
	12 or 6 volt wet cell DC batteries	1 unit/energizer
	9 volt dry cell batteries	1 unit/energizer
Wire	high tensile wire	2 wire lines
Connecting wire	connectors	3 units/charger
Grounding rods		3 units/charger
		1 extra unit/1500 feet of fence 500m
Insulators		1 unit/grounding rod
Fence posts	wood	1 every 50 feet of fence 15m
	fiber glass	1 every 50 feet of fence 15m
	metal	1 every 50 feet of fence 15m
Gate for portable fen	ce	1 unit/line
Voltage meter		1 unit/line

Elements of barbed wire fence for perimeter enclosure

Barbed wire		3 strand lines
Fence posts	wood	1 unit/5 m of fence
	fiber glass	1 unit/5 m of fence
	metal	1 unit/5 m of fence
Gate for fence		2 units/enclosure

CALCULATE FENCING PER FARM

1 quarter section = 160 acres 1 quarter section = 0.5 mile long and 0.5 mile wide

Assumed the total grazing perimeter for a herd for 90 days enclosed with barbed wire. The entire area to be enclosed	62 acres	249172 m2
Length	0.50 miles	805 m
Width	0.19 miles	310 m
Total perimeter of the enclosure	1.38 miles	2229 m

Within the perimeter, portable electric fence is used to delineate grazing of the heard (grazing cell). Assumed lines of portable fence delineating strips 0.5 mile long, moved every 3 days. 2 lines of portable fence The cell is moved every 3 days, for 10 times, to cover all winter grazing period of 30 days

Summary fencing for one herd and farm	
Lines of electric fence	2 units
Length of electric fence	1609 m
Gates for electric fence	2 units
Length of barbed wire fence	2229 m
Gates for harbed wire fence	2 units

Summary /one herd and farm

Charger (energizer)				2	unit	
Power source					unit	
	outlets	0% use of outlets	0.00	0	unit	
	12 or 6 volt wet cell DC batteries	100% use of 12 or 6 volt wet cell DC batteries	1.00	2	unit	
	9 volt dry cell batteries	0% use of 9 volt dry cell batteries	0.00	0	unit	
Wire	high tensile wire			3219	m	
Connecting wire	connectors			6	unit	
Grounding rods				6	unit	
				4	extra unit	
Insulators				10	unit	
Electric fence posts	wood post	0% use of wood posts	0.00	0	unit	
	fiber glass post	100% use of fiber glass post	1.00	107	unit	
	metal post	0% use of metal posts	0.00	0	unit	
Gate for portable electric	fence					
	wood post	100% use of wood posts	1.00	2	unit	
	fiber glass post	assuming 0% use of fiber glass post	0.00	0	unit	
	metal post	0% use of metal posts	0.00	0	unit	
Voltage meter				1	unit	
Barbed wire				6686	m	
Barbed wire fence posts	wood post	100% use of wood posts	1.00	446	unit	
	metal post	0% use of metal posts	0.00	0	unit	
Gate for barbed wire fen	ce wood post	100% use of wood posts	1.00	2	unit	
	metal post	0% use of metal posts	0.00	0	unit	

Summary all farms	31,774 (Census data 2001)			
Number of farms	11,600			
		material quantit	y	Ecoinvent process
Charger	23,201 unit	misc	data gap	data gap
Power source 12 or 6 volt wet cell DC batteries	23,201 unit	misc	data gap	data gap
High tensile wire	37,338,284 m	steel wire	5,091,469	kg wire drawing, steel
connectors	69,603 unit	connectors	3,480	kg connector, clamp connection, at plant
Grounding rods	116,005 unit	galvanized pi	75,403	kg drawing of pipes, steel
Insulators	116,005 unit	misc	data gap	data gap
Posts - wood	5,217,094 unit	wood	297,374	m3 round wood, hardwood, under bark, u=70%, at forest road
Posts fiberglass	1,244,609 unit	fiber glass	108,205	kg fiberglass, at plant
Posts metal	0 unit	metal	0	kg drawing of pipes, steel
Voltage meter	11,600 unit	misc	data gap	data gap
Barbed wire	77,560,378 m	steel wire	10,576,175	kg wire drawing, steel

Page 2 of 3

Stockpiling Grazing Management Calculations

WINDBREAKERS

WINDDREAKERS					
as a general rule, one foot of fence (windbreaker) protects enough area for	1 foot of windbreaker				
Number of cattle on winter grazing	tota	al	2,320,093 head		
	30 days	DP	697,779		
	30 days	Р	1,176,418		
	30 days	NR	445,896		
7.5% of the cattle are protected by artificial windbreakers in the DP		0.075			
1% of the cattle are protected by artificial windbreakers in the P and NR		0.01			
ж. Р			68,557 feet of windbreaker		

With 25% porosity, an 8' long section of fence 8' tall would require 12 1x6" boards and 3 2x6" boards

1 feet windbreaker	
1x6" wood board, 8 feet high	1.5 unit
	0.24 ft3
	0.006706042 m2

	0.24 ft3				
	0.006796043 m3	wood	466 m3	plywood, outdoor use, at plant	
2x6" wood board, 8 feet h	high 0.375 unit				
	0.48 ft3				
	0.013592087 m3	wood	932 m3	plywood, outdoor use, at plant	
steel pipe	metal components (frame, support, axel, etc), tyres, or wooden bracing is sourced from old machinery or surplus materials already on-farm (old combines, ir	rrigation piping, old tractors, spare fence	posts, etc.)		

material quantity

75,403 10,576,175 5,091,469 1398 297,374 3,480 108,205

TOTALS

kg drawing of pipes, steel	use this number for AG1-a
kg wire drawing, steel	use this number for AG1-b
kg wire drawing, steel	use this number for AG1-c
m3 plywood, outdoor use, at plant	use this number for AG1-d
m3 round wood, hardwood, under bark, u=70%, at forest road	use this number for AG1-e
kg connector, clamp connection, at plant	use this number for AG1-f
kg fiberglass, at plant	use this number for AG1-g

Ecoinvent process

Page 3 of 3

BMP 2 (BMP 2.2 - Stockpile Grazing) Approach 2: Extended grazing during winter - swath grazing Assumed Percent Adoption of BMP 2 100 % (% adoption can be adjusted for the entire model in the source cell) Number of cattle affected by this BMP 2,568,007 (cow/calf operation only) Weight of affected cattle (slaughtered cows and bulls) 130,388,870 kg live shrunk weight Density of diesel 0.885

				COW	//CALF OPERA	TIONS				FEEDLOT OPERATIONS				BEEF INDUSTRY				
				Per			Per Unit	Per Unit			Per Unit							
	В	MP 2		Baselin	e		Change	Market Value Total Impact	BMP 2	Baseline	Change	Market Value	Total Impact	BMP 2	Baseline	Change	Market Value	Total Impact
	(amount)	(unit)		(amount)	(unit)	(change)	(unit)	(\$/unit) (\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)
Inputs with Change																		
Purchase of seed for alfalfa/grass	7.053.313	kø		8.190.019	kø 0	-1.136.706	kø											
Purchase of seed for Grass DP	92,220	kg		0	kg 0	92,220	kg											
Purchase of seed for Grass P	1,731,128	kg		0	kg 0	1,731,128	kg											
Purchase of seed for Grass NR	1,045,413	kg		0	kg	1,045,413	kg											
Purchase of alfalfa/grass hay	5,675,173,575	kg		6,589,779,580	kg	-914,606,005	kg											
Production of chemical fertilizer																		
Total urea, as N	19,166,611	kg		0	kg 0	19,166,611	kg							118,449,660 kg	120,290,430 kg	-1,840,770 kg		
Total ammonia, liquid	55,950,352	kg		0	kg 0	55,950,352	kg							92,802,440 kg	94,244,639 kg	-1,442,199 kg		
Total monoammonium phosphate as P2O5	48,482,123	kg			kg 0	45,379,737	kg							45,220,344 kg	46,773,950 kg	-1,553,606 kg		
Total monoammonium phosphate as N	11,372,350	kg			kg 0	10,644,630	kg							10,607,241 kg	10,971,667 kg	-364,426 kg		
Total ammonium sulphate as N	0	kg		0	kg ()	0	kg							11,979,163 kg	11,979,163 kg	0 kg		
Purchase of chemical fertilizer															100 000 100 1	1 0 10 220 1		
Urea, as N, at regional storehouse	19,166,611	kg		0	kg 0	19,166,611	kg							118,449,660 kg	120,290,430 kg	-1,840,770 kg		
Ammonia, liquid, at regional storehouse	55,950,352	kg		0	kg 0	55,950,352	kg							92,802,440 kg	94,244,639 kg	-1,442,199 kg		
Monoammonium phosphate, as N at regional storehouse	48,482,123	kg		0	kg 0	46,462,125	кg							45,220,544 Kg	46,775,950 kg	-1,555,606 Kg		
Ammonium sulphate, as N, at regional storehouse	11,572,550	kg		0	kg 0	11,372,330	kg							11,007,241 Kg	10,971,007 Kg	-304,420 Kg		
Fuel consumed to transport fertilizer	858.087	кg I	2 070 232	0	kg 0	858.087	Kg I							2 148 894 I	2 185 894 I	-36 999 64 I		
Fuel consumed to transport retuined	1 686 961	L	2,070,252	0	kg	1 686 961	L							11 179 009 L	11 179 009 L	0 L		
Production of pesticide/herbicide	322,744	kg	0	0	kg 0	322,744	kg							3.660.568 L	3.660.568 L	0 L		
Purchase of pesticide/herbicide	322,744	kg	0	0	kg 0	322,744	kg							3,660,568 L	3,660,568 L	0 L		
Fuel consumed to transport pesticide	581	Ľ		0	kg	581	Ľ							6,586 L	6,586 L	0 L		
Fuel consumed for forage activities					0													
Fuel consumed to cultivate soil	528,033	L		0	L	528,033	kg							5,920,675 L	5,920,675 L	0 kg		
Fuel consumed to apply fertilizer	1,090,040	L		0	L	1,090,040	kg							2,037,050 L	2,037,050 L	0 kg		
Fuel consumed to plant crop	268,418	L		0	L	268,418	kg							3,009,693 L	3,009,693 L	0 kg		
Fuel consumed to irrigate crop	84,803	L		0	L	84,803	kg							50,310,552 L	50,310,552 L	0 kg		
Fuel consumed to apply chemical treatment to crop	356,899	L		0	L	356,899	kg							666,968 L	666,968 L	0 kg		
Fuel consumed to harvest crop	0	L		0	L	0	kg							1,160,473 L	1,160,473 L	0 kg		
Fuel consumed to transport forage	0	L		0	L	0	kg							1,160,473 L	1,160,473 L	0 kg		
Purchase of water to irrigate crop	11,912,784	m3			m3	11,912,784	m3							44,524,839 kg	44,524,839 kg	0 kg		
Fuel consumed to collect manure during winter feeding	49/ 1/1 225	1		E00 44E 174	1	-18,912	L							400.072.70/ 1	422.072.70/ 1	0		
Froduction of bedding	486,161,325	кg		309,443,174	кg	-23,283,848	кg							422,073,796 Kg	422,075,796 Kg	0 kg		
Fuel consumed to transport bedding	344,982,274	L		361,304,398	L	-16,522,524	кg							299,505,475 L	299,505,475 L	0 kg		
Fuel consumed to reed livestock (change)						-10,380,276	L											
Fuel consumed to bed livestock (no change)																		
Production of min., trc min., cobait, protein suppl., vit., antibiotic (no change)																		
Purchase of min_treemin_cohalt_protein suppl_antibiotic (no change)																		
Purchase of nine, the nine, coolar, protein suppl., antibiotic (no change)																		
Fuel same to transminis (no change)																		
Fuel consumed for transport of vitemin (no change)																		
Purchase of forging elements																		
Charger (energizer)	23 201	unit		0		23 201												
Boruor course, included in the price of energian	25,201	unit		0		25,201	unit 0											
Tigh targile wing 14 gauge	27 228 284			0		27 228 284	0											
righ tensile wire - 14 gauge	37,338,284	m 		0		37,338,284	m 											
Connectors - wire tensioners	69,603	unit		0		69,603	unit											
Grounding rod	116,005	unit		U		116,005	unit											
Insulators	116,005	unit		0		116,005	unit											
Posts - wood	5,217,094	unit		0		5,217,094	unit											
Posts fiberglass	1,244,609	unit		0		1,244,609	unit											
Voltage meter	11,600	unit		0		11,600	unit											
Barbed wire	77,560,378	m		0		77,560,378	m											
Windbreakers	68,557	feet of windbreak	er	0		68,557	feet of windbreaker											
Labour (change)	11,600	hr		23,201	hr	-11,600	hr											
Cropping activities								32.01										
Working capital interest																		
Total Input Value Change																		

Outputs with Change

Manure sold for land application
Compost sold for land application
Total Output Value Change

BMP 2 - STOCKPILE GRAZING - BENEFITS AND COS	TS

BMP

1.44E+08 kg CO₂e 3.56E+09 kg CO₂e

 3.27E+08
 kg CO₂e

 3.06E+08
 kg CO₂e

5.69E+09 Feedlot

FEEDLOT OPERATIONS

Baseline

0.00E+00 kg CO₂e 0.00E+00 kg CO₂e 0.00E+00 kg CO₂e

 1.04E+09
 kg CO2e
 1.04E+09
 kg CO2e
 0.00E+00
 kg CO2e

 0.00E+00
 kg CO2e
 0.00E+00
 kg CO2e
 0.00E+00
 kg CO2e

1.40E+08 kg CO₂e 1.40E+08 kg CO₂e 0.00E+00 kg CO₂e

 1.08E+08
 kg CO₂e
 1.08E+08
 kg CO₂e
 0.00E+00
 kg CO₂e

 6.59E+07
 kg CO₂e
 6.59E+07
 kg CO₂e
 0.00E+00
 kg CO₂e

(unit) (amount)

Change

(change

0.00E+00

 1.44E+08
 kg CO2e
 0.00E+00
 kg CO2e

 3.56E+09
 kg CO2e
 0.00E+00
 kg CO2e
 kg CO₂e 0.00E+00 kg CO₂e

 3.300+009
 kg CO2e
 0.000+000
 kg CO2e

 3.27E+08
 kg CO2e
 0.00E+00
 kg CO2e

 3.06E+08
 kg CO2e
 0.00E+00
 kg CO2e

unit)

CHANGE IN OVERALL GHG EMISSIONS	COW/CALF OPERATIONS								
	BM	IP 2		Baseli	Ch	ange			
		(amount)	(unit)	_	(amount)	(unit)	(change)	(unit)	
BEEF ACTIVITIES - SOIL AND CROP									
Methane emissions from stored manure		1.49E+08	kg CO ₂ e		1.49E+08	kg CO2e	0.00E+00	kg CO ₂ e	
Enteric fermentation emissions		7.03E+09	kg CO ₂ e		7.03E+09	kg CO ₂ e	0.00E+00	kg CO ₂ e	
√2O emissions from stored manure (direct)		1.83E+09	kg CO ₂ e		1.83E+09	kg CO2e	0.00E+00	kg CO ₂ e	
J2O emissions from stored manure (indirect)		4.04E+08	kg CO ₂ e		4.04E+08	kg CO ₂ e	0.00E+00	kg CO ₂ e	
J ₂ O emissions from cropping and land use		6.60E+08	kg CO ₂ e		0.00E+00	kg CO ₂ e	6.60E+08	kg CO ₂ e	
otal P emissions from run-off		6.42E+05	kg PO ₄ -eq		0.00E+00	kg PO ₄ -eq	6.42E+05	kg PO ₄ -eq	
oil Carbon Change in Soil From Land Use		-5.48E+06	kg CO ₂ e		0.00E+00	kg CO ₂ e	-5.48E+06	kg CO ₂ e	
Pirect CO2 emissions from managed soils		3.01E+07	kg CO ₂ e		0.00E+00	kg CO ₂ e	3.01E+07	kg CO ₂ e	
OVERALL SUMMARY									
Construction		1.18E+07	kg CO ₂ e		0.00E+00	kg CO ₂ e	1.18E+07	kg CO ₂ e	
orage and cereal sub-activities		3.29E+08	kg CO ₂ e		0.00E+00	kg CO ₂ e	3.29E+08	kg CO ₂ e	
nergy generation and consumption activities		2.76E+09	kg CO ₂ e		2.81E+09	kg CO ₂ e	-5.01E+07	kg CO ₂ e	
0&M activities		0.00E+00	kg CO ₂ e		0.00E+00	kg CO ₂ e	0.00E+00	kg CO ₂ e	
Cereal activities			_			-		-	
orage activities		1.72E+07	kg CO ₂ e		0.00E+00	kg CO ₂ e	1.72E+07	kg CO ₂ e	
eedlot and pasture activities		3.05E+06	kg CO ₂ e		3.20E+06	kg CO ₂ e	-1.47E+05	kg CO ₂ e	
ow activities (transportation)		2.49E+07	kg CO₂e		2.49E+07	kg CO ₂ e	0.00E+00	kg CO ₂ e	
all activities (transportation)		3.14E+06	kg CO ₂ e		3.14E+06	kg CO ₂ e	0.00E+00	kg CO ₂ e	
earling-fed system activities (transportation)			0 -			0 -		0 -	
alf-fed system activities (transportation)									
otal GWP for BMP									
	kg CO ₂ e	1.32E+10	Cow/Calf						
otal Change in GWP for BMP									
	kg CO ₂ e						9.92E+08		
Overall Baseline GWP (2001)									
	kg CO2e/kg live weight	14.705							
verall BMP GWP		15 004							
	kg CO ₂ e/kg live weight	15.324							
hange in overall GWP from 2001									
	kg CO ₂ e/kg live weight	0.619	4.2%	change from 2001					
hange in GWP per kg of beef affected from 20	01 ka CO o <i>lka</i> ikuo waishi	0.007							
	kg CO2e/kg live weight	0.007		(to	tai change in G	HG emissions div	aea by total weigh	t of cattle affected)	
Notes:									

Energy generation emissions divided by the number of cattle on cow/calf vs feedlot Feedlot and pasture activities are divided appropriately.

BEEF INDUSTRY												
BM	P 2	Base	line	Cha	nge							
(amount)	(unit)	(amount)	(unit)	(change)	(unit)							
9.07E+08	kg CO ₂ e	9.57E+08	kg CO ₂ e	-5.06E+07	kg CO ₂ e							
4.00E+06	kg PO₄-eq	4.15E+06	kg PO₄-eq	-1.43E+05	kg PO₄-eq							
-2.34E+08	kg CO ₂ e	-2.36E+08	kg CO ₂ e	2.53E+06	kg CO ₂ e							
1.86E+08	kg CO ₂ e	1.89E+08	kg CO ₂ e	-2.89E+06	kg CO ₂ e							
	0 1		0 1		0 1							
1.17E+09	kg CO ₂ e	1.20E+09	kg CO ₂ e	-3.19E+07	kg CO ₂ e							
3.38E+08	kg CO ₂ e	3.38E+08	kg CO ₂ e	0.00E+00	kg CO ₂ e							
2.62E+08	kg CO ₂ e	2.86E+08	kg CO ₂ e	-2.40E+07	kg CO ₂ e							
3.02E+08	kg CO ₂ e	3.04E+08	kg CO ₂ e	-2.40E+06	kg CO ₂ e							

2.93E+09 Beef Industry

-1.09E+08

APPENDIX G

BMP 3 – USE OF IONOPHORES IN COW AND HEIFER DIETS

ACTIVITY MAPS AND DATA COLLECTION

Legend:	
	Activity

	New Activity for BMP Implementation
	Activity - Affected by BMP Implementation
	Activity - Not Included
	Functional Unit
	FIGURE BMP 3a
BMP #3 - USE OF IONOPHORES IN COW DIETS TO IMPROVE I	ACTIVITY MAP FEED EFFICIENCY SESSMENT - BEEF
ALBERTA AGRICULTURE AND RURA	L DEVELOPMENT Edmonton, Alberta
S	

New Activity for BMP Implementation
Activity - Affected by BMP Implementation
Activity - Not Included
Functional Unit

FIGURE BMP 3b

ACTIVITY MAP BMP #3 - USE OF IONOPHORES IN COW DIETS TO IMPROVE FEED EFFICIENCY LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

BMP 3 - USE OF IONOPHORES IN ROUGHAGE DIETS

Cows: 9.9% reduction in DMI intake during late gestation and early lactation (Sprott et al., 1988) Late gestation: during 60 days of Winter Feeding, from January 1 to February 28 Early lactation: first 60 days of the Calving period, starting March 1

Bulls

Bulls Winter feeding, last 60 days	Jan.1-Feb.28	109,428 head
Calving, first 60 days	Mar.1-April 30	109,428 head
Cows		
Winter Feeding, last 60 days	Jan.1-Feb.28	2,458,579 head
Calving, first 60 days	Mar.1-April 30	2,458,579 head
Calves	May 1-Jul 31	2,113,345 head
Assumed gestating cows equal to numl	per of born calves + 4.5% calf n	nortality

Source:http://www.ncbi.nlm.nih.gov/pubmed/8407482

Assumed ionophores will be given unselectively, to all cows and bulls on pasture. An increase on feed efficiency will be applied only to gestating/early lactating cows. The model will be adjusted accordingly.

gestating/lactating	cows
0 0 0 0	

gestating/lactating cows		2,208,4	446 head							
Reduction in DMI intake during late gestation and early lactation		9.9	0%							
Weight of cattle	cow bull	454 544	kg kg	1000 1200	lbs lbs	606 998	kg kg	1335 2200	lbs lbs	Beef LCA - Phase 1 Beef LCA - Phase 2
Total cattle and calves number Farms reporting Average number of cattle per farm		2001 6,615,201 31,774 208	2006 6,369,116 28,751 222					Source	: Table 1.3	Selected agricultural data, selected livestock data, Canada and provinces, census years 1921 to 2006. At: http://www.statcan.gc.ca/pub/95-632-x/2007000/t/412974

Change in gas and diesel for manure handling Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Image: Consumption for a tractor 16.6 L/hr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Number of feedlot cattle in reference 50,000 cattle Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Pens with 250 head/pen in reference 200 pens Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As times per year 2 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As heads per pen 250 Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Time to pile up manure in pen in reference 60 min/pen two times per year Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Time to pile up manure in pen in reference 60 min/pen two times per year Cand Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As	sessment Study. Internation sessment Study. Internation sessment Study. Internation sessment Study. Internation sessment Study. Internation sessment Study. Internation
400 hrs/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Diesel queried per year 6,640 L/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Co2, emission factor for truck diesel Commption Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Ch4, emission factor for truck diesel 0.21 g CH4/L Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Total emissions from manure collection 0.21 g CH4/L Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Total emissions from manure collection 1.709 tonnes CO2e/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Total emissions from manure collection (total a) 1.709 tonnes CO2e/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As Total emissions from manure collection (total a) 1.72 tonnes CO2e/yr Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming P	ssessment Study. Internation ssessment Study. Internatior ssessment Study. Internatior
reference different than total emissions provided in reference. Only rate data from reference will be used to calculate emissions in model.)	
Quantity of manure (in reference) 58,700 tonne dry manure/year Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle As (Alberta Beef LCA model used same reference to quantify manure)	ssessment Study. Internation
Emission factor for the combustion of diesel 3.28 kg CO_ge/kg diesel Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2. Chapter 3: Mobile Combusts mode Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2. Chapter 3: Mobile Combusts Density of diesel 0.885 kg/L Simetric. Specific Gravity of Liquids. Available at: http://www.simetric.co.uk/si_liquids.htm Total emissions form manure collection using the LCA model emission factor 24.61 tonnes/yr Former Comparable to emission factor (comparable to emission factor Former Control of the USANG Contro	stion. Available at: http://ww
Total emissions from manure collection per animal per day Change in gas, diesel, and electricity usage on feedlots for reduced feed time, replaced by extended grazing (swath grazing)	
Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated. Energy requirements to feed cattle in the feed 1 Days on winter feed in feedlot (in reference) Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed 0.28 Mcal The feedlot Days on winter feed in Days on winter feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed in Energy requirements to feed 1 lb of feed 0.28 Mcal I lb feed = 0.28 Mcal I lb feed = 0.111.13 Btu	vww.acresusa.com/magazin
= 1.1723 MJ Note: Assume that diesel is the fuel used to operate the machinery to feed cattle (as per reference)	
Labour during winter diet 9.62E-03 hours/head/day Reduced labour due to reduced feeding 9.42E-03 hours/head/day	
Purchase of alfalfa/grass hay (alfalfa per ton) 124.44 \$/ton Internet Hay Exchange. Hay Price Calculator. Available at: http://www.hayexchange.com/tools/ave_price_calc.php. 112.89 \$/tonne 0.11 \$/kg	
Consumption of mineral supplement without ionophores 0.06 kg/100 kg animal 0.27 kg/head/day assuming 1AU 0.60 lbs/head/day assuming 1AU	
Price of mineral supplement for animals on pasture without ionophore 128 \$/102 kg 8:4 beef mineral tub, Meant to be consumed at a rate of 0.06kg/100 kg (of animal wUFA 1.25 \$/kg	
Consumption mineral with Image: Consumption mineral with is nonphores/head/day Image: Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumed at a rate of 100g per head per day Consumption mineral with and the consumptin mineral with and the consumption mineral with and t	

- onal Journal of Green Energy, 3: 3, 257-270. onal Journal of Green Energy, 3: 3, 257-270.
- nal Journal of Green Energy, 3: 3, 257-270.
- nal Journal of Green Energy, 3: 3, 257-270.
- nal Journal of Green Energy, 3: 3, 257-270.

nal Journal of Green Energy, 3: 3, 257-270.

www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_3_Ch3_Mobile_Combustio

nes/archives/1105Inputs.htm

BMP 3 - IONOPHORES					
			Total GHG emissions	2.07E+10	kg CO2e
Assumed Adoption of BMP 3 (adoption can be adjusted for the entire model in the source cell)	100%	cattle on ionophores	Total acidification	3.06E+07	kg SO2-Eq
			Total eutrophication	5.47E+06	kg PO4-Eq
Density of diesel	0.885	kg/L	Total non-renewable energy	3.44E+11	MJ-Eq

	COW/CALF OPERA	TIONS						FEEDLOT OPERATIONS								SLAUGHTERHOU				
							Per Unit	Per Unit												
	BMP 3	(Baseline	(:t)	Change	(Market Value Total Impact	BMP 3	(Bas	eline	C	hange	Market Value	Total Impact	BMP 3	Baseline (2001)	Change		
Insulta with Change	(amount)	(unit)	(amount)	(unit)	(cnange)	(unit)	(Sunit) (S Million)	(amount)	(unit)	(amount)	(unit)	(cnange	e) (unit)	(5/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(cnange) (unit)		
Purchase of seed for alfalfa/grass hay	7,724,118	kg	8,190,019	kg	-465,901	kg														
Purchase of alfalfa/ grass hay	6,214,910,655	kg	6,589,779,580	kg	-374,868,925	kg														
Total urga as N																				
Total ammonia liquid																				
Total monoammonium phosphate as P2O5																				
Total monoammonium phosphate as N																				
Total ammonium sulphate as N																				
Purchase of chemical fertilizer																				
Urea, as N, at regional storehouse																				
Ammonia, liquid, at regional storehouse																				
Monoammonium phosphate, as P2O5, at regional storehouse																				
Monoammonium phosphate, as N, at regional storehouse																				
Ammonium sulphate, as N, at regional storehouse	1(0.00) 7(5	1	252.022.09/	1	82 106 220	1														
Purchase of supplement without ionophores	20 560 415	кg	253,033,086	kg	-83,196,320	кg														
Fuel consumed to transport fertilizer	50,509,415	ĸg	0	ĸg	30,309,413	ĸg														
Fuel consumed to transport nanure																				
Production of pesticide/herbicide																				
Purchase of pesticide / herbicide																				
Fuel consumed to transport pesticide																				
Fuel consumed for forage activities																				
Fuel consumed to cultivate soil																				
Fuel consumed to apply fertilizer																				
Fuel consumed to alant crop																				
Fuel consumed to irrigate crop																				
Fuel consumed to apply chemical treatment to grap																				
Fuel consumed to apply chemical treatment to crop																				
Fuel consumed to transport harvest grap																				
Purchase of water to irrigate crop																				
Fuel consumed to collect manure during winter feeding																				
Fuel consumed to conect manufe during writter reduing																				
Fuel consumed to transfer manure off site (no shange)																				
site																				
Production of hedding (no change)																				
Fuel consumed to bed livestock (no change)																				
Fuel consumed to transport bedding (no change)																				
Fuel consumed to feed livestock (change)	184 605 290	L.	185 668 985	L.	-1.063.695	L														
Production of min_trc min_cobalt_protein suppl_vit_antibiotic (no change)	101,000,270	Ц	100,000,000	Е	1,003,090	Е														
Production of vitamins (no change)																				
Purchase of min., trc min., cobalt, protein suppl., antibiotic (no change)																				
Purchase of vitamins (no change)																				
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic (no chang	e)																			
Fuel consumed for transport of vitamin (no change)					0	kg														
Purchase of manure for land application																				
Fuel consumed to transport barley and barley silage (no change)																				
Fuel consumed to transport alfalfa																				
*																				
Labour (change)	8,888,567	hr	8,939,783	hr	-51,216	hr														
Working capital interest	0	\$	0	\$	0	\$														
1 otal Input Value Change																				
Outputs with Change																				

Manure sold for land application Compost sold for land application **Total Output Value Change**

CHANGE IN OVERALL GHG EMISSIONS				COW/CALF OPER	ATIONS]	FEEDLOT OPE	RATIONS		
		BMP 3		Baseline		Change			BMP	3	Baseli	ne	Chan	ge
REEF ACTIVITIES SOIL AND CROR		(amount)	(unit)	(amount)	(unit)	(change)	(unit)		(amount)	(unit)	(amount)	(unit)	(change)	(unit)
Manure generation		3.35E+10	kg	3.45E+10	kg	-9.66E+08	kg		1.89E+10	kg	1.89E+10	kg	0.00E+00	kg
Methane emissions from stored manure Enteric fermentation emissions N2O emissions from stored manure (direct) N2O emissions from stored manure (indirect) N2O emissions from cropping and land use Total P emissions from run-off Soil Carbon Change in Soil From Land Use	1	1.45E+08 6.85E+09 1.77E+09 3.93E+08	kg CO2eq kg CO2eq kg CO2eq kg CO2eq	1.49E+08 7.03E+09 1.83E+09 4.04E+08	kg CO₂eq kg CO₂eq kg CO₂eq kg CO₂eq	-3.85E+06 -1.82E+08 -5.10E+07 -1.13E+07	kg CO₂eq kg CO₂eq kg CO₂eq kg CO₂eq		1.44E+08 3.56E+09 3.27E+08 3.06E+08	kg CO2eq kg CO2eq kg CO2eq kg CO2eq	1.44E+08 3.56E+09 3.27E+08 3.06E+08	kg CO₂eq kg CO₂eq kg CO₂eq kg CO₂eq	0.00E+00 0.00E+00 0.00E+00 0.00E+00	kg CO₂eq kg CO₂eq kg CO₂eq kg CO₂eq
Direct CO2 emissions from managed soils														
OVERALL SUMMARY Construction Forage and cereal sub-activities		0	kg CO ₂ e	0	kg CO ₂ e	0	kg CO ₂ e		0	kg CO ₂ e	0	kg CO ₂ e	0	kg CO ₂ e
Energy generation and consumption activities O&M activities Cereal activities Forage activities		2.80E+09 0.00E+00	kg CO2eq kg CO2eq	2.81E+09 0.00E+00	kg CO2eq kg CO2eq	-5.14E+06 0.00E+00	kg CO2eq kg CO2eq		1.04E+09 0.00E+00	kg CO ₂ eq kg CO2eq	1.04E+09 0.00E+00	kg CO₂eq kg CO2eq	0.00E+00 0.00E+00	kg CO₂eq kg CO2eq
Feedlot and pasture activities Cow activities (transportation)		3.19E+06 2.49E+07	kg CO₂eq kg CO₂eq	3.20E+06 2.49E+07	kg CO2eq kg CO2eq	-1.18E+04 0.00E+00	kg CO2eq kg CO2eq		1.40E+08	kg CO₂eq	1.40E+08	kg CO ₂ eq	0.00E+00	kg CO ₂ eq
Bull activities (transportation) Yearling-fed system activities (transportation) Calf-fed system activities (transportation)		3.14E+06	kg CO₂eq	3.14E+06	kg CO₂eq	0.00E+00	kg CO2eq		1.08E+08 6.59E+07	kg CO₂eq kg CO₂eq	1.08E+08 6.59E+07	kg CO₂eq kg CO₂eq	0.00E+00 0.00E+00	kg CO2eq kg CO2eq
Total GWP for BMP	kg CO ₂ e	1.20E+10	Cow/Calf						5.69E+09	Feedlot				
Total Change in GWP for BMP	kg CO ₂ e					-2.53E+08							0.00E+00	
Total change in emissions		-292,611	tonnes											
Overall Baseline GWP (2001)	kg CO ₂ e/kg live weight	14.705												
Overall BMP GWP	kg CO ₂ e/kg live weight	14.500												
Change in overall GWP from 2001	kg CO₂e/kg live weight	-0.205	•											
Change in GWP per kg of beef affected from 3	2001 kg CO ₂ e/kg live weight	-2.244		(total change in (GHG emissions	divided by total	weight of cattle a	affected)						
Notes: Energy generation emissions divided by the nun Feedlot and pasture activities are divided approp	nber of cattle on cow/calf vs fee oriately.	edlot												

BMP 3 - IONOPHORES - BENEFITS AND COSTS

BEEF INDUSTRY													
BM	P 3	Base	line	Cha	nge								
(amount)	(unit)	(amount)	(unit)	(change)	(unit)								
9.41E+08	kg CO ₂ eq	9.57E+08	kg CO2eq	-1.66E+07	kg CO ₂ eq								
4.09E+06	kg PO ₄ -eq	4.15E+06	kg PO ₄ -eq	-5.85E+04	kg PO ₄ -eq								
-2.35E+08	kg CO ₂ eq	-2.36E+08	kg CO ₂ eq	1.04E+06	kg CO ₂ eq								
1.88E+08	kg CO2eq	1.89E+08	kg CO2eq	-1.16E+06	kg CO ₂ eq								
1.19E+09	kg CO2eq	1.20E+09	kg CO2eq	-1.30E+07	kg CO2eq								
	÷ .												
3.38E+08	kg CO2eq	3.38E+08	kg CO2eq	0.00E+00	kg CO2eq								
2.76E+08	kg CO2eq	2.86E+08	kg CO ₂ eq	-9.84E+06	kg CO2eq								
3.04E+08	kg CO2eq	3.04E+08	kg CO ₂ eq	-1.68E+04	kg CO2eq								
3.00E+09	Beef Indus	try											

-3.96E+07

APPENDIX H

BMP 4 – REDUCED AGE TO SLAUGHTER

ACTIVITY MAPS AND DATA COLLECTION

Legend:

	Activity
	New Activity for BMP Implementation
	Activity - Affected by BMP Implementation
	Activity - Not Included
	Functional Unit
	FIGURE BMP 4a
BMP #4 - REDUCING AGE LIFE CYCLE ASS ALBERTA AGRICULTURE AND RURA	ACTIVITY MAP E AT SLAUGHTER ESSMENT - BEEF L DEVELOPMENT Edmonton, Alberta

	New Activity for BMP Implementation Activity - Affected by BMP Implementation
	Activity - Not Included
	FIGURE BMP 4b
BMP #4 - REDUCING AGE LIFE CYCLE ASSE ALBERTA AGRICULTURE AND RURAL <i>E</i>	ACTIVITY MAP AT SLAUGHTER SSMENT - BEEF DEVELOPMENT dmonton, Alberta

Notes: Approach 1: Reduce the number of days on feed in feedlot during the final stages of growth

Approach 2: Reduce age at harvest by adjusting the diet to introduce feeder diets sooner

Approach 1: Reduce the number of days on feed in feedlot during the final stages of growth Approach 2: Reduce age at harvest by adjusting the diet to introduce feeder diets sooner

Activity

Legend:

ACTIVITY MAP BMP #4 - REDUCING AGE AT SLAUGHTER LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

Dosage

Dosage, weight gain and other effects with RAC (ractopamine) addition in the feedlot

200 mg/hd/day for 28 days typical dosage. No significant affect shown by the addition of

ractopamine.		to Steers During the Final 28 Days of Feeding. 2009 Florida Beef Report. Available at: http://www.animal.ufl.edu/extension/beef/2009-beef-report/pdf/k-EffectOptaflex.pdf
FDA approved Type C medicated feed - Feeding Directions. Feed minimum of 1.0 lb per head per day of Ractopamine Finishing Cattle Feed Concentrate TD - Type C Medicated Top Dress Feed continuously to cattle fed in confinement for slaughter to provide 70 to 400 mg/head/day for the last 28 to 42 days on feed. Elanco and Optaflexx are brands and trademarks of Eli Lilly.	70-400 mg/head/day	N-141221-C-0022 Ractopamine Finishing Cattle Feed Concentrate - TD, Type B Medicated Feed. September 29, 2009. Available at: http://www.fda.gov/downloads/AnimalVeterinary/Products/AnimalFoodFeeds/MedicatedFeed/BlueBirdLabels /UCM203119.pdf
Additional Weight Gain		
The additional weight gain is about 14.2 lbs when fed with 200 mg per head per day. Feed efficiency is also said to improve by up to 15.9 percent.	14.2 lbs/28 days	TheCattleSite.com. The Codex Perspective on Ractopamine. August 2009. Available at: http://www.thecattlesite.com/articles/2082/the-codex-perspective-on-ractopamine
When Optaflexx is fed to steers during the last 28-42 days of the feeding period, there was an increase in weight gain of 10 to 20 lbs and improved feed efficiency between 14 and 21 percent.	10-20 lbs/28 days	Texas Cooperative Extension. The Texas A&M University System. The Facts about Optaflexx: Ractopamine for Cattle. ASWeb-116 6-04. Available at: http://animalscience.tamu.edu/images/pdf/beef/beef-optaflexx.pdf
ADG increased by 0.24 kg/day for calf-fed steers fed 200 mg/day for final 28 to 38 days. Feed efficiency improved by 14.4% Carcasses were 4.7% heavier.	0.24 kg/day	Vogel, G. J. et al. Effect of Ractopamine Hydrochloride on Growth Performance and Carcass Traits in Calf-Fed and Yearling Holstein Steers Fed to Slaughter. The Professional Animal Scientist. 2009. Available at: http://pas.fass.org/content/25/1/26.full.pdf+html
	0.48 lbs/28 days	
The feeding of RAC during the last 28 to 42 days before slaughter has been shown to improve ADG and G:F ratio by 20%, final slaughter weight by 1.2-2.1% carcass weight by 1.9-2.8%	1.2-2.1 % greater final weight	Draft Guidance Document for Reducing the Number of Days in Feed of Beef Cattle. June 2010. Version 7. Government of Alberta. Alberta Agriculture and Rural Development. Emailed to CRA from Emmanuel Laate on

The ADG and G:F ratio by 20%, final slaughter weight by 1.2-2.1% carcass weight by 1.9-2.8% with no effect on DMI. Reduce total number of days required to bring cattle to market. Case study used baseline of 178 days for final finishing period and project of 172.4 days to reach desired final weight for slaughter.

1.65 % greater final weight (average) 20 % increase in ADG

200 mg/head/day for 28 days

References

October 20, 2010.

Notes

RAC is typically added to increase weight to slaughterhouse, not reduce time on feedlots.

Guidance Document weight gain is high compared to other literature but not unrealistic (See Table 4.1b for diet and weight gain calculations - 22 to 24 lbs additional weight gain over 28 days).

Reduction in number of days on feedlot is similar for the Alberta Beef LCA model assuming 28 days of RAC and the weight gain estimated in the case study in the Guidance Document

(4.9 to 5.4 days compared to 5.6 days in the Guidance Document).

Alberta data used from the Guidance Document for the Alberta Beef LCA model, assuming 200 mg/hd/day for the last 28 days in the feedlot.

Other Effects

RAC supplementation slightly decreases LM tenderness

Red meat yield is increased with no effect on marbling

Growth performance and HCW improved in both calf-fed and yearling-fed Holstein steers having minimal impact on quality grade (i.e. minimal change in yield grade and marbling score, but no effect on yield grade grouping and quality grade grouping - still in Canada 2 yield group and Canada AAA grade) (200 mg/day for 28 to 38 d).

Decrease of 7% Choice and Prime Quality Grade, decrease of 0.8% Prime Quality Grade, decrease of 0.9% Average-High Choice Quality Grade, decrease of 5.3% Low Choice Quality Grade, increase of 6.4% Select Quality Grade, increase of 0.7% Standard Quality Grade.

Increase of 1.5% Yield Grade 1, increase of 5.6% Yield Grade 2, decrease of 6.7% Yield Grade 3, decrease of 0.5% Yield Grade 4.

Gruber, S.L. et al. Effects of ractopamine supplementation and postmortem aging on longissimus muscle palatability of beef steers differing in biological type. Journal of Animal Science. 2008. 86:2005-201. Available at: http://jas.fass.org/cgi/reprint/86/1/205

Gonzalez, John Michael et al. Effect of Optaflexx 45 (Ractopamine-HCl) on Live and Carcass Performance when Fed

TheCattleSite.com. The Codex Perspective on Ractopamine. August 2009. Available at: http://www.thecattlesite.com/articles/2082/the-codex-perspective-on-ractopamine

Vogel, G. J. et al. Effect of Ractopamine Hydrochloride on Growth Performance and Carcass Traits in Calf-Fed and Yearling Holstein Steers Fed to Slaughter. The Professional Animal Scientist. 2009. Available at: http://pas.fass.org/content/25/1/26.full.pdf+html

Differences by sex in response to ractopamine may exist.

Exp. 1: Marbling score with Optaflexx slightly lower than control with 200 mg/day for 28 days (heifers) but does not affect quality grade (still slight 300-399). Slight increase in USDA Choice or greater (4.4%), slight decrease in USDA Select (1.8%) and Standard (2.6%). Slight decrease in Yield Grade 1 (5.2%) and 4 (2.8%), and slight increase in Yield Grade 2 (6.7%) and 3 (2%). Minimal differences in colouring.

Exp 2: 200 mg/day for 28 days - similar dresing percentage, slight decrease in marbling score but does not affect quality grade (still small 400 to 499), increase in USDA Choice or greater by 10%, decrease in USDA Select by 11%, and increase in USDA Standard by 1.6%.

Both experiments support to conclusion that USDA Choice or greater grade is anticipated with feeding 200 mg/day for last 28 days before slaughter, with a slight change in Select and Standard grades. Slight change in yield grade was observed in experiment 1.

Results of both studies above may reveal the differences in impact of Optaflexx on sex.

Typ. % in	Difference from contro	l with optaflexx fo	or 28 days before	slaughter (%
-----------	------------------------	---------------------	-------------------	--------------

	Canadian beef	Heifers	Steers
Prime (Assumed similar to Canada Prime)	2	4.4	7.0
Choice (Assumed similar to Canada AAA)	50	4.4	-7.0
Select (Assumed similar to Canada AA)	45	-1.8	6.4
Standard (Assumed similar to Canada A)	3	-2.6	0.7
	Reference to the		
	right		

Approximately 40 to 50% of feedlots in Alberta are currently using Optaflexx on their cattle for the last X days to slaughter.

Since the Draft Guidance Document for Reducing the Number of Days in Feed of Beef Cattle was released in June 2010, it is assumed that Optaflexx is currently in use to reduce the number of days on feedlot (assume that the BMP is implemented at 45% in 2010).

This is not showing an impact currently, but if the usage increased to 100%, there would be a significant decrease in quality of beef at the slaughterhouse.

Financially, there is no impact with the current practices.

Assume that the decreases in quality if the majority of the Alberta beef production were to implement the usage of Optaflexx (more than 50%) will reflect the results of the two studies above for steers and heifers fed 200 mg/day for the last 28 days in the feedlot.

Heifers

Shrunk live weight	588 kg	From Slaughterhouse tab
Average warm carcass weight	359 kg	From Beef Data tab
% reduction in weight from shrunk live weight to warm carcass weight	39.0 %	
Dressing percentage	61.0 %	
Total warm carcass weight at slaughterhouse	412,397 tonnes	
Total Canada AAA and better beef from heifers	214,446 tonnes	
% adoption of BMP	45%	From Summary Tab
Total revised Canada AAA and better beef from heifers with BMP implementation	218,692 tonnes	
Change in Canada AAA and better beef from heifers	4,246 tonnes	
Total Canada AA/A beef from heifers	197,950 tonnes	
% adoption of BMP	45%	
Total revised Canada AA/A beef from heifers with BMP implementation	194,031 tonnes	
Change in Canada AA/A beef from heifers	-3,919 tonnes	
Steers		
Shrunk live weight	631 kg	From Slaughterhouse tab
Average warm carcass weight	378 kg	From Beef Data tab
% reduction in weight from shrunk live weight to warm carcass weight	40.2 %	
Dressing percentage	59.8 %	
Total warm carcass weight at slaughterhouse - steers	371,221 tonnes	
Total Canada AAA and better beef from steers	193.035 tonnes	

Quinn, M.J. et al. The effects of ractopamine-hydrogen chloride (Optaflexx) on performance, carcass characteristics, and meat quality on finishing feedlot heifers. Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600. J. Anim. Sci. 2008. 86:902-908.

From above studies

Beef Quality. The Canadian Beef Industry is devoted to producing Beef Products which deliver on our Customers Expectations for Outstanding Eating Quality. Available at: http://www.cbef.com/beefquality.html. Accessed January 10, 2011.

Phone conversation with Scott Entz from Cargill High River regarding Optaflexx and reduced age to slaughter. January 18, 2011 (M. Murphy).

% adoption of BMP	45%
Total revised Canada AAA and better beef from steers with BMP implementation	186,954 tonnes
Change in Canada AAA and better beef from steers	-6,081 tonnes
Total Canada AA/A beef from steers	178,186 tonnes
% adoption of BMP	45%
Total revised Canada AA/A beef from steers with BMP implementation	183,879 tonnes
Change in Canada AA/A beef from steers	5,693 tonnes
Total change in Canada AAA beef	-1,835 tonnes
Total change in Canada AA/A beef	1,774 tonnes

Optaflexx increased ribeye area by up to 1/2 inch, but didn't affect backfat thickness, marbling score or quality grade.

Texas Cooperative Extension. The Texas A&M University System. The Facts about Optaflexx: Ractopamine for Cattle. ASWeb-116 6-04. Available at: http://animalscience.tamu.edu/images/pdf/beef/beef-optaflexx.pdf

Change in gas, diesel, and electricity usage on feedlots for reduced feed time

Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Total diesel used on all beef farms (cow/calf and feedlot)	8,361 TJ	From Beef Data tab
Total reduction in feed requirements (Cow/calf and feedlot)	0.39%	From Diets tab
Assumesame reduction in diesel fuel used on feedlots	32.2 TJ reduced	
Revised diesel energy requirements	8,329 TJ used	

Note: Assume that diesel is the fuel used to operate the machinery to feed cattle and this will be the main source of energy that is reduced

Change in gas and diesel for manure handling on feedlot for reduced time

Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Manure collection and handling		
Diesel consumption for a tractor	16.6 L/hr	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
Number of feedlot cattle in reference	50,000 cattle	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
Pens with 250 head/pen in reference	200 pens	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
Time to pile up manure in pen in reference	60 min/pen two times per year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
	400 hrs/yr	
Diesel required per year	6,640 L/yr	
CO ₂ emission factor for truck diesel consumption	2,569 g CO ₂ /L	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
CH ₄ emission factor for truck diesel consumption	0.21 g CH ₄ /L	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
Total emissions from manure collection (calculated based on data)	17.09 tonnes CO2e/yr	
Total emissions from manure collection (total provided in reference)	1,172 tonnes CO2e/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
(Total emissions calculated using data from reference different than total emissions provided in reference.		
Only raw data from reference will be used to calculate emissions in model.)		
Quantity of manure (in reference)	58,700 tonne dry manure/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3, 257-270.
(Alberta Beef LCA model used same reference to quantify manure)		
Emission factor for the combustion of diesel in agricultural equipment - Alberta Beef LCA model	3.28 kg CO ₂ e/kg diesel	Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 2. Chapter 3: Mobile Combustion. Available at: http://www.ipcc-
Density of diesel	0.885 kg/L 3.71 kg CO ₂ e/L	nggp.jges.or.jp/ public/ 2006gi/ pdr/ 2_volume2/ V2_3_ch3_Mobile_Combustion.pdr Simetric. Specific Gravity of Liquids. Available at: http://www.simetric.co.uk/si_liquids.htm
Total emissions from manure collection using the LCA model emission factor	24.61 tonnes/yr	

References

		References
(comparable to emissions calculated using reference data)		
Total emissions from manure collection per animal per day	0.00135 kg/animal/day	Calculated

Change in gas and diesel for bedding animals in feedlot for reduced time

Note: Energy required to provide bedding in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Bedding required for feedlot in Alberta Beef LCA model	422,073 tonnes	
Total mass of barley and barley silage (feedlot diet)	12,061,530 tonnes	
% of bedding mass compared to total feed mass	3.5 %	
Bedding mass negligible compared to feed. Will still be included in the analysis as th	is will calculate through with the change in anim	nal* days for the feed, but actual change in bedding of the livestock is a data gap.

Change in quantity of agricultural plastics for reduced feed

Current agricultural plastics disposal methods

- Burning is still the most prominent method of getting rid of agricultural plastics (2008)

Recycling Council of Alberta. Agricultural Plastics Recycling Pilot Project. Summary Report, September 2009. Available at: http://www.recycleyourplastic.ca/pdf/Ag_Plastics_Pilot_Report.pdf

- There is little industry capacity to handle agricultural plastics in Alberta

- Pilot recycling program conducted in Alberta in 2008 to understand the amount, type, and quality of used agricultural plastics and the capacity of industry to use it
- Alberta Beef LCA baseline model assumed the same as the current situation for the handling of agricultural plastics (burning and burying)

- No change in the disposal of plastics

- Total change in plastics will be calculated based on percentage of total change in feed

Change in labour

Calculate average reduction in days on feedlot Average time per day to feed cattle Total number of feedlots in Alberta (2008 data) Total time saved from reducing days to slaughter across Alberta	5.1 days 4 hrs/day 85 feedlots 1.724 01 brs/all feedlots	Calculated Assumption Summed from Beef Data tab Calculated
	1,72101 110,7 all recellots	Carcanica
Price Information		
Average farm hand wage	16.22 \$/hr	WAGEinfo, Alberta Wage and Salary Survey, 2009 data. Available at: http://alis.alberta.ca/wageinfo/Content/RequestAction.asp?aspAction=GetWageDetail&format=html&RegionID= 20&NOC=8431
Purchase of barley	161.38 \$/tonne	Lethbridge Barley Price, Alberta Grains Council, Alberta Canola Producers Commission. Weekly Average from 2005 to 2010
	0.16 \$/kg	
Purchase of barley silage	40 \$/tonne 0.04 \$/kg	Based on a conversation with a local dairy farmer on January 3, 2011.
Purchase of bedding (model assumes 100% straw bedding used) (Straw estimate for 2010)		
Wheat straw (fertilizer costs)	24.2 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	26.7 \$/tonne	
Barley and oat straw (fertilizer costs)	32 \$/ ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	35.3 \$/tonne	
Pea straw (fertilizer costs)	30 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	33.1 \$/tonne	
Canola straw (fertilizer costs)	22.6 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	24.9 \$/tonne	
Average weight of straw bale	450 kg	Microsoft Word document provided by Alberta Agriculture and Rural Development in an email from Emmanuel Laate to Stephen Ball on November 20, 2009

		References
Baling costs	9.00 - 11.50 \$/large round bale	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	10.25 \$/large round bale	Average
	0.023 \$/kg	
	22.78 \$/tonne	
Hauling and stacking	2.00 - 3.00 \$/large round bale	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	2.5 \$/large round bale	Average
	0.0056 \$/kg	
	5.56 \$/tonne	
Average price (wheat straw)	55.01 \$/tonne	
Average price (barley and oat straw)	63.61 \$/tonne	
Average price (pea straw)	61.40 \$/tonne	
Average price (canola straw)	53.25 \$/tonne	
Average price for straw	58.32 \$/ tonne 0.058 \$/ kg	
Purchase of RAC 2011 Distributor Price (bulk price)	13.85 ¢/25.1b	Call with Elance on January 4, 2011
2011 Distributor Frice (burk price)	0.55 \$/1b	Can with Elanco on January 4, 2011.
	1.22 \$/kg	
2011 Distributor Price (non-bulk price)	55.40 \$/lb	Call with Elanco on January 4, 2011.
	122.14 \$/kg	
Used the bulk price as it is much cheaper and would most likely be the choice of farmer	s 1.22 \$/kg	
Purchase of min., trc min., cobalt, protein suppl., vit., antibiotic for feedlot		
32% Feedlot Supplement (pellets with monensin)	11.89 \$/25 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011 and phone call with UFA on January 4, 2011
	0.48 \$/kg	······ ·······························
Vitamins (A-D-E Premix) for feedlot		
Mash	24.99 \$/20 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
Crumble	30.00 \$/20 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
Average	27.50 \$/20 kg 1.37 \$/kg	
	10, 4,46	
Purchase of manure	0 \$/kg	Government of Alberta. Agriculture and Rural Development. Manure and Compost Directory. Available at: http://www.agric.gov.ab.ca/app68/manure. Accessed on January 3, 2011.
Sale price for beef to slaughterhouse		
Baseline - steers (lbs at slaughterhouse)	1,392 lbs	from model
	631 kg	
Baseline - heifers (lbs at slaughterhouse)	1,296 lbs	from model
	588 kg	
Central Alberta 850 lb steer monthly averages (2005-2010)	weight not applicable for model	Canfax. Central Alberta 850 pound Steer - Monthly Averages. 2005 - 2010.
Central Alberta 550 lb steer monthly averages (2005-2010)	weight not applicable for model	Canfax. Central Alberta 550 pound Steer - Monthly Averages. 2005 - 2010.
Alberta weekly fed steer prices (2005-2010)		Canfax. Alberta Weekly Fed Steer Prices. 2005-2010
Average - Entire Year (2005-2010) (no weight given)	87.52 \$/100 lb	·
Average - September to November (2005-2010) (no weight given)	86.85 \$/100 lb	
(calf-fed cattle sent to slaughterhouse end of October) - baseline		
Average - May to July (2005-2010) (no weight given) (calf-fed cattle sent to slaughterhouse in June) - BMP	87.73 \$/100 lb	
Change in price of fed steers from Sept-Nov to May-Jul	0.88 \$/100 lb	
<u> </u>	0.0040 \$/kg	
	2.52 \$/steer	

References

Canfax. Alberta Weekly Fed Heifer Prices. 2005-2010

Alberta fed heifer monthly averages (2005-2010)	
Average - Entire Year (2005-2010) (no weight given)	87.22 \$/100 lb
Average - September to November (2005-2010) (no weight given)	86.53 \$/100 lb
(calf-fed cattle sent to slaughterhouse end of October) - baseline	
Average - May to July (2005-2010) (no weight given)	87.45 \$/100 lb
(calf-fed cattle sent to slaughterhouse in June) - BMP	
Change in price of heifers from Sept-Nov to May-Jul	0.92 \$/100 lb
	0.0042 \$/kg
	2.45 \$/heifer

Assume that the decrease in revenue for the slaughterhouse to the market is directly proportional to the decrease in revenue for the feedlots from the slaughterhouse with the usage of RAC above 50% of entire Alberta beef production system (based on discussions with Scott Entz from Cargill High River). Assuming the beef demand stays the same.

Sale price for beef from slaughterhouse to market		
Average 2008 price for Canada AAA beef	3.110 \$/lb	CanFax. Boxed beef pricing, 2008. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
	6.856 \$/kg	
Average 2008 price for Canada AA/A beef	2.850 \$/1b	CanFax. Boxed beef pricing, 2008. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
	6.283 \$/kg	
Average 2009 price for Canada AAA beef	3.030 \$/1b	CanFax. Boxed beef pricing, 2009. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
	6.680 \$/kg	
Average 2009 price for Canada AA/A beef	2.770 \$/1b	CanFax. Boxed beef pricing, 2009. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
	6.107 \$/kg	
Average 2010 price for Canada AAA beef	2.860 \$/1b	CanFax. Boxed beef pricing, 2010. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
	6.305 \$/kg	
Average 2010 price for Canada AA/A beef	2.730 \$/1b	CanFax, Boxed beef pricing, 2010, Available at; http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown.aspx
0 1 ,	6.019 \$/kg	
Average price for Canada AAA beef (2008-2010)	6.614 \$/kg	
Average price for Canada AA/A beef (2008-2010)	6.136 \$/kg	
Fuel consumed to feed livestock (on-farm diesel) - and -		
Fuel consumed to collect manure (on farm diese)		
Illtra Low Sulphur Diesel (III SD)		
Calgary AB	80.7 cents/L (excluding taxes)	UEA Patroleum Rack Prices December 18 to December 20, 2010 Available at
cuigury, rib	ool, cents/ E (excluding taxes)	www.ufs.pat/pat/actim/rack_pricing_thml
Edmonton AB	77.5 cents/L (excluding taxes)	WW analy perform Rack_prices_premising
Editoriol, HD	11.5 cents/ E (excluding taxes)	www.ufs.pat/pat/actim/rack_pricing_thml
Liltra Low Sulphur Diesel Lite (LILSD-LT)		www.munct/peroteun/rack_preng.mun
Calgary AB	84.2 cents/L (excluding taxes)	LIFA Petroleum Rack Prices December 18 to December 20, 2010. Available at
cuigury, rib	04.2 cents/ E (excluding taxes)	www.ufs.pat/pat/actim/rack_pricing_thml
Edmonton AB	81.0 cents/L (excluding taxes)	www.una.net/perioreun/rack_pricing.num
Editoriol, HD	orio centoj E (excluding taxes)	www.ufs.pat/pat/activ/rack_pricing_thml
Δνατασο	80.85 cents/I (excluding taxes)	www.munct/peroteun/rack_preng.mun
Fuel tax rates (discel all grades) (April 1, 2007 to current)	9 conts/L (excluding taxes)	Alberta Tay and Rayonua Administration - Current and Historic Tay Rates - Available at
ruer (ax rates (uleser - an grades) (April 1, 2007 to current)	> cents/ L	Anderta Tax and accenter Automnistration - Current and risbolic Tax Redes, Available at
Alberta Form Fuel Repolit Drogram and Form Fuel Distribution Allervance (taxes)	1E conto/I	www.iniance.aberta.ca/publications/itaz_rebates/itac
Alberta Farm Fuel benefit Frogram and Farm Fuel Distribution Allowance (taxes)	-15 tents/ L	www.finance.alberta.ca/publications/tax_rebates/fuel/overview.html

Fuel tax is exempted for diesel used on farms and a subsidy of 6 cents per L of diesel is provided

Average diesel price minus Alberta programs

Calculation changes to the model

- Reduce time for last feedlot diet based on "BMP 4 Approach 1-Day Reduction" tab, which will reduce feed and supplement requirements assuming all of Alberta will implement this BMP

0.75 \$/L

- Calculate less garbage for less feed used

- Reduce time in feedlot for enteric fermentation emissions and manure emissions

- Reduce time in feedlot for total manure generation
- Reduce energy requirements for feeding cattle and manure collection
- Emissions associated with the production and transportation of RAC
- Include RAC in the Diet Supplements tab

BMP 4 APPROACH 1 - REDUCTION IN DAYS IN FEEDLOT BEFORE SLAUGHTER

Average increase in weight gain with the addition of RAC (from tab "BMP 4 Approach 1-Data) Improvement in Average Daily Gain (ADG) 1.2-2.1 % greater final weight1.65 % greater final weight (average)20 % increase in ADG

Last Diet in Feedlot before (from ruminant nı	Slaughter tritionist) Units	Steer Yearlings Diet 7	Heifer Yearlings Diet 7	Steer Calf-Fed Diet 7	Heifer Calf-Fed Diet 7
RATION (DRY MATTER BASIS)					
Barley	%	86.0	86.0	86.0	86.0
Barley Silage	%	10.0	10.0	10.0	10.0
Barley Straw	%	0	0	0	0
Supplement	%	4.0	4.0	4.0	4.0
Total	%	100	100	100	100
RATION (AS FED BASIS)					
Barley	%	75.3	75.3	75.3	75.3
Barley Silage	%	21.3	21.3	21.3	21.3
Barley Straw	%	0.0	0	0	0
Supplement	%	3.4	3.4	3.4	3.4
Total	%	100	100	100	100
Barley	lbs	2977.8	3036.1	3760.7	3552.7
Barley Silage	lbs	842.2	858.7	1063.7	1004.8
Supplement	lbs	135.5	138.1	171.1	161.6
ANALYSIS					
Date In	-	9-Oct	9-Oct	25-Oct	25-Oct
Date Out	-	11-Feb	27-Feb	22-Apr	19-Apr
Days on feed	d	126	142	180	176
Start Weight	lbs	935	820	790	710
End Weight	lbs	1450	1350	1450	1350
Gain	lbs	515	530	660	640
ADG	lbs/d	4.10	3.73	3.67	3.64
DMI	lbs/d	24.76	22.33	21.86	21.12
Increased Final Weight with RAC	lbs	1474	1372	1474	1372
Improved ADG	lbs/d	4.92	4.48	4.40	4.36
Additional Final Weight Gain	lbs	24	22	24	22
Reduction in days on feedlot	d	<u>4.9</u>	<u>5.0</u>	<u>5.4</u>	<u>5.1</u>
(assuming same weight to slaughterh	iouse as in	baseline model - r	educed number of d	lays on feed)	

Notes:

%	- percent
ADG	- Average daily gain
DMI	- Dry matter intake
lbs	- pounds
lbs/d	- pounds per day
d	- day

BMP 4 - Reducing Age to Slaughter (Approach 1) (2010 Baseline Approach 1: Add RAC (ractopamine - growth promotant) to diet					
Assumed Percent Adoption of BMP 4 (feedlot only)	45% (% adopti YEAR 201	on can be adjusted here for the entire model) 0		Scenario BMP 4.1	
Total number of animals affected by BMP (calf-fed steers and heifers, yearling-fed steers and heifers)	959,612 animals to slaughter (2002)		Total GHG emissions	2.09E+10 kg CO2e
Reduction in days on feedlot				Total acidification	3.07E+07 kg SO2-Eq
Calf-fed steers	5.4 days	Yearling-fed steers	4.9 days		
Calf-fed heifers	5.1 days	Yearling-fed heifers	5.0 days	Total eutrophication	5.50E+06 kg PO4-Eq
Total weight affected to slaughter	583,376 tonnes			Total non-renewable energy	3.44E+11 MJ-Eq
(calt-ted steers and heiters, yearling-fed steers and heifers -li	ive weight)				

		COW/CALF OPE	RATIONS			FEEDLOT OPERATIONS						SLAUGHTERHOUSE						
	Per Unit					Per Unit										Per Unit		
	BMP 4	Baseline (2001)	Change	Market Value	Total Impact	BMP 4	Baseline (2001)	Change	Market Value	Total Impact	BMP 4		Baseline	(2001)	Char	nge	Market Value	Total Impact
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount)	(unit)	(change)	(unit)	(\$/unit)	(\$ Million)
Inputs with Change	-																	
Production of pesticide/herbicide																		
Production of chemical fertilizer																		
Production of bedding																		
Production of min., trc min., cobalt, protein suppl., vit., antibiotic																		
Purchase of chemical fertilizer																		
Urea, as N, at regional storehouse																		
Ammonia, liquid, at regional storehouse																		
Monoammonium phosphate, as P2O5, at regional storehouse																		
Monoammonium phosphate, as N, at regional storehouse																		
Ammonium sulphate, as N, at regional storehouse																		
Purchase of manure for land application																		
Purchase of pesticide/ herbicide																		
Purchase of seed for barley sile se																		
Purchase of seed for alfalfa / grass hav																		
Purchase of water to irrigate crops																		
Purchase of amendment materials						0 kg	0 kg	0 kg	-	-								
Purchase of composting equipment (Windrow turner)						0 turners	0 turners	0 turners	-	-								
Purchase of construction supplies for composting (clay for pad)						0 units	0 units	0 units	-	-								
Purchase of alfalfa / grass hav	6 59E+09 kg	6 59E+09 kg	0 kg	-	_	0 units	0 units	0 units	_	_								
Purchase of barlow	0.39E+09 Kg	0.59E+09 Kg	0 Kg	-	-	4.43E±00 kg	4.49E±09.1cg	5.60E±07.kg	\$0.16	\$9.04								
Purchase of barley						7.56E±09 kg	7.58E±09.kg	1 58E±07 kg	\$0.10	\$0.63								
Purchase of badding	5.00E+08.1cm	5.00E±08.1cg	0.1/2			1.30E+09 kg	1.30E+09 Kg	-1.56E+07 Kg	\$0.04	-\$0.03 ¢0.14								
Purchase of animal chalters, wind breakers, foncing, atc.	0.09E+08 Kg	0.09E+00 Kg	0 kg	-	-	4.20E+08 Kg	4.22E+08 Kg	-2.41E+00 Kg	\$0.08	-\$0.14								
Purchase of animal shelters, wind breakers, rencing, etc.	0 units	0 units	0 units	-	-													
Purchase of Dopphores	0 kg	0 kg	0 kg	-	-	(22E+02 hr	0.1	(222 1	¢1.00	¢0.01								
Purchase of KAC	7.01E+07.1-	7.01E+07.1-	0.1			0.55E+05 Kg	0 Kg	0.44E+0E-1+=	\$1.22 ¢0.49	\$0.01 ¢0.45								
Purchase of min., trc min., cobait, protein suppl., antibiotic	7.91E+07 kg	7.91E+07 kg	0 kg	-	-	1.44E+08 Kg	1.45E+08 Kg	-9.44E+05 Kg	\$U.48	-\$0.45								
Purchase of vitamins	1,664 Kg	1,664 kg	0 kg	-	-	1.74E+05 Kg	1.76E+05 Kg	-1.40E+05 Kg	\$1.57	-\$0.0019								
Fuel (approximate to approximate compositing acquirment	0 tests	0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-					_			
Fuel concurred to transport barlow and barlow silogo						0 KVVII OF L	0 KWII OI L	0 KWII OF L	-	-								
Fuel consumed to transport partey and partey shage																		
Fuel consumed to transport analia/ grass hay																		
Fuel consumed for cropping activities	0.1	0.1	0.1			0.1	0.1	0.1										
Fuel consumed to transport garbage (change)	0 L 0 I	0 L	0 L	-	-	0 L	0 L	0 L	-	-								
Fuel consumed to transport badding (change)	0 E	0 L	0 L	-	-	0 L	UL	0 L	-	_								
Fuel consumed to fraitsport bedding (change)	0.1	0.1	0.1			0.10E+05 I	0.1	0.10E+05.1	¢0.75	\$0.60								
Fuel consumed to collect menure (change)	UL	UL	UL	-	-	-9.19ETU3 L		-9.19ETUS L	ΦU.75 ¢0.75	-JU.07								
Fuel consumed to conect manufe (change)						-9,009 L	UL	-7,009 L	a0.75	-\$0.01								
Fuel constitutions to transport livesto -1, for to -time.	0.1	0.1	0.1			0.1	0.1	0.1										
Lebour (demon)	0 L	0 L	0 L	-	-	U L	0 L	U L 1 724 has	- #1())	-								
Labour (change)	U nrs	0 nrs	0 nrs	-	-	-1./2E+03 nrs	U nrs	-1,/24 nrs	\$16.22	-\$0.03								
working capital interest	0\$	0\$	0\$	-	- ¢0.00	0\$	0 \$	0\$	-	-								
10141 Input value Change					\$0.00					-\$10.98								

Outputs with Change

Manure sold for land application				2.50E+10 kg	2.51E+10 kg	-6.82E+07 kg	\$0.00	\$0.00					
Compost sold for land application				0 kg	0 kg	0 kg	-	-					
Sold beef on RAC to slaughterhouse (live weight)				5.83E+05 kg	0 kg	583,376 kg	not available	\$0.00					
Sold meat from slaughterhouse as Canada AAA or better (carcass)									4.06E+08 kg	4.07E+08 kg	-1.83E+06 kg	\$6.614	-\$12.13
Sold meat from slaughterhouse as Canada AA/A (carcass)									3.78E+08 kg	3.76E+08 kg	1.77E+06 kg	\$6.136	\$10.88
Total Output Value Change			\$0.00					\$0.00					-\$1.25

CHANGE IN OVERALL GHG EMISSIONS			C	OW/CALF OI	LF OPERATIONS				
		BMF	24	Baseline	(2001)	Cha	nge		
		(amount)	(unit)	(amount)	(unit)	(change)	(unit)		
BEEF ACTIVITIES - SOIL AND CROP									
Manure generation		3.45E+10) kg	3.45E+10) kg		0 kg		
Methane emissions from stored manure		1.49E+08	3 kg CO₂e	1.49E+08	8 kg CO₂e		0 kg CO ₂ e		
Enteric fermentation emissions		7.03E+09	∂ kg CO₂e	7.03E+09	kg CO ₂ e		0 kg CO ₂ e		
N2O emissions from stored manure (direct)		1.83E+09	∂ kg CO₂e	1.83E+09	kg CO ₂ e		0 kg CO ₂ e		
N ₂ O emissions from stored manure (indirect)		4.04E+08	3 kg CO ₂ e	4.04E+08	kg CO ₂ e		0 kg CO ₂ e		
N ₂ O emissions from cropping and land use					Ű		Ű		
Total P emissions from run-off									
Soil Carbon Change in Soil From Land Use									
Direct CO2 emissions from managed soils									
OVERALL SUMMARY									
Construction		() kg CO ₂ e	() kg CO ₂ e		0 kg CO ₂ e		
Forage and cereal sub-activities					- 0		0 -		
Energy generation and consumption activities		2.81E+09	∂ kg CO₂e	2.81E+09	kg CO₂e		0 kg CO ₂ e		
O&M activities		() kg CO ₂ e	C) kg CO ₂ e		0 kg CO ₂ e		
Cereal activities			0 -2		0 -		0 -		
Forage activities									
Feedlot and pasture activities		3.20E+06	i kg COae	3.20E+06	i kg CO ₂ e		0 kg CO2e		
Cow activities (transportation)		2.49E+07	7 kg CO ₂ e	2.49E+07	kg CO ₂ e		0 kg CO ₂ e		
Bull activities (transportation)		3.14E+06	kg COve	3.14E+06	kg CO ₂ e		0 kg CO2e		
Yearling-fed system activities (transportation)		0.1111-00	, ng co ₂ c	0.1111-00	, ng eo <u>2</u> e		0 16 00 20		
Calf-fed system activities (transportation)									
Total GWP for BMP									
	kg CO₂e	1.22E+10	Cow/Calf						
Total Change in GWP for BMP	• -								
	kg CO₂e					0.00			
Overall Baseline GWP (2001)									
	kg CO ₂ e/kg live weight	14.705							
Overall Baseline GWP (2010)									
	kg CO₂e/kg live weight	14.671							

14.671

-0.034

0.000

-0.084

(total change in GHG emissions divided by total weight of cattle affected)

BMP 4 - APPROACH 1 - BENEFITS AND COSTS

FEEDLOT OPERATIONS									
BMP	4	Baseline	(2001)	Ch	ange				
(amount)	(unit)	(amount)	(unit)	(change)	(unit)				
1.88E+10	kg	1.89E+10	kg	-1.45E+	08 kg				
1.43E+08	kg CO ₂ e	1.44E+08	kg CO ₂ e	-7.89E+	05 kg CO ₂ e				
3.55E+09	kg CO ₂ e	3.56E+09	kg CO ₂ e	-1.46E+	07 kg CO ₂ e				
3.24E+08	kg CO ₂ e	3.27E+08	kg CO ₂ e	-2.54E+	06 kg CO ₂ e				
3.04E+08	kg CO ₂ e	3.06E+08	kg CO ₂ e	-2.38E+	06 kg CO ₂ e				
0	kg CO ₂ e	0	kg CO ₂ e	_	0 kg CO ₂ e				
1.03E+09	kg COve	1 04E+09	kg COae	-8 96E+	06 kg COve				
0	kg CO ₂ e	0	kg CO ₂ e		0 kg CO ₂ e				
·	0		8		0 2				
1.39E+08	kg CO ₂ e	1.40E+08	kg CO ₂ e	-1.52E+	06 kg CO ₂ e				
1.08E+08	kg CO ₂ e	1.08E+08	kg CO ₂ e		0 kg CO ₂ e				
6.59E+07	kg CO ₂ e	6.59E+07	kg CO ₂ e		0 kg CO ₂ e				

5.66E+09 Feedlot

-3.08E+07

Energy generation emissions divided by the number of cattle on cow/calf vs feedlo Feedlot and pasture activities are divided as per below.

kg CO₂e/kg live weight

kg CO2e/kg live weight

kg CO2e/kg live weight

kg CO2e/kg live weight

Overall BMP GWP

Notes:

Change in overall GWP from 2001

Change in overall GWP from 2010

Change in GWP per kg of beef affected from 2001

BEEF INDUSTRY												
BMP 4	Baseline	(2001)	Char	ıge								
(amount) (unit)	(amount)	(unit)	(change)	(unit)								
9.52E+08 kg CO2e	9.57E+08	kg CO ₂ e	-4.87E+06	kg CO ₂ e								
4.12E+06 kg PO ₄ -eq	4.15E+06	kg PO ₄ -eq	-2.97E+04	kg PO ₄ -eq								
-2.34E+08 kg CO2e	-2.36E+08	kg CO ₂ e	2.07E+06	kg CO ₂ e								
1.87E+08 kg CO ₂ e	1.89E+08	kg CO ₂ e	-1.52E+06	kg CO ₂ e								
1.20E+09 kg CO ₂ e	1.20E+09	kg CO ₂ e	-8.89E+06	kg CO ₂ e								
		-										
3.34E+08 kg CO2e	3.38E+08	kg CO ₂ e	-4.22E+06	kg CO ₂ e								
2.86E+08 kg CO2e	2.86E+08	kg CO ₂ e	-2.36E+05	kg CO ₂ e								
3.04E+08 kg CO2e	3.04E+08	kg CO ₂ e	-3.74E+05	kg CO ₂ e								
		-		-								

3.03E+09 Beef Industry

-1.80E+07

															0
BMP 4 - Reducing Age to Slaughter (Approach 1) (2011 and after) Approach 1: Add RAC (ractopamine - growth promotant) to diet of ste	eers and heifers for the last 2	28 days in the feedlot to in	crease weight gain quicke	er and reduce age	e at slaughter.										
Assumed Percent Adoption of BMP 4 (feedlot only)	100%	(% adoption can be adju AFTER 2010	sted here for the entire m	odel)		Scenario BMP 4.1									
Total number of animals affected by BMP (calf-fed steers and heifers, yearling-fed steers and heifers)	2,132,470 animals to	slaughter (2002)				Total GHG emissions		2.09E+10 kg CO2e	•	l					
Paduction in days on foodlat						Total acidification		2.05E±07.1cg.6O2.1	Ea						
Calf-fed steers	5.4 days		Yearling-fed steers	4.9	davs			5.05E+07 kg 5O2-	Eq						
Calf-fed heifers	5.1 days		Yearling-fed heifers	5.0	days	Total eutrophication		5.46E+06 kg PO4-	Eq						
Total weight affected to slaughter	1,296,392 tonnes					Total non-renewable en	nergy	3.43E+11 MJ-Eq							
(calf-fed steers and heifers, yearling-fed steers and heifers -live we	eight)														
		COW/CALF OPE	ERATIONS				FEEDLOT	FOPERATIONS				SLAUG	HTERHOUSE		
				Per Unit					Per Unit					Per Unit	
	BMP 4	Baseline (2010)	Change	Market Value	Total Impact	BMP 4	Baseline (2010)	Change	Market Value	Total Impact	BMP 4	Baseline (2010)	Change	Market Value	Total Impact
	(umount) (unit)	(umount) (unit)	(chunge) (unit)	(ə) unit)	(\$ Million)	(umount) (unit)	(umount) (untt)	(chunge) (unit)	(Şı unit)	(\$ 141111011)	(umount) (unit)	(umount) (unit)	(chunge) (unit)	(<i>ş</i> / <i>unit</i>)	(\$ 141111011)
Production of pesticide/herbicide Production of chemical fertilizer															
Production of bedding															
Production of min., trc min., cobalt, protein suppl., vit., antibiotic															
Purchase of chemical fertilizer															
Urea, as N, at regional storehouse															
Monoammonium phosphate, as P2O5, at regional storehouse															
Monoammonium phosphate, as N, at regional storehouse															
Ammonium sulphate, as N, at regional storehouse															
Purchase of manure for land application															
Purchase of pesticide/herbicide															
Purchase of seed for barley															
Purchase of seed for alfalfa / grass bay															
Purchase of water to irrigate crops															
Purchase of amendment materials						0 kg	0 kg	0 kg	-	-					
Purchase of composting equipment (Windrow turner)						0 turners	0 turners	0 turners	-	-					
Purchase of construction supplies for composting (clay for pad)						0 units	0 units	0 units	-	-					
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	0 kg	-	-										
Purchase of barley						4.36E+09 kg	4.43E+09 kg	-6.84E+07 kg	\$0.16	-\$11.05					
Purchase of barley silage						7.54E+09 kg	7.56E+09 kg	-1.94E+07 kg	\$0.04	-\$0.77					
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0 kg	-	-	4.17E+08 kg	4.20E+08 kg	-2.94E+06 kg	\$0.06	-\$0.17					
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-										
Purchase of ionophores	0 kg	0 kg	0 kg	-	-		6.007.00.1	55 101		<u> </u>					
Purchase of RAC	7.01E+07.1-	7.01E+07.1.	0.1			1.41E+04 kg	6.33E+03 kg	7,740 kg	\$1.22	\$0.009					
Purchase of min., tre min., cobait, protein suppl., antibiotic	1.91E+07 Kg	1.91E+07 Kg	0 kg	-	-	1.45E+06 Kg	1.44E+08 kg	-1.26E+06 Kg	\$0.46 ¢1.27	-\$0.61 \$0.0024					
Purchase of RFI testing (includes transportation)	1,004 Kg O tests	1,004 Kg	0 kg 0 tests	-	-	0 tests	0 tests	-1.71E+03 Kg	\$1.57 -	-\$0.0024					
Fuel/energy required to operate composting equipment	0 10313	0 16313	0 10313	_	-	0 kWh or L	0 kWh or L	0 kWh or I		-					
Fuel consumed to transport barley and barley silage						0 RUITOT 2	0 killioi 2								
Fuel consumed to transport alfalfa/grass hay															
Fuel consumed for cropping activities															
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-					
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-					
Fuel consumed to transport bedding (change)															
Fuel consumed to feed livestock (change)	0 L	0 L	0 L	-	-	-2.04E+06 L	-9.19E+05 L	-1.12E+06 L	\$0.75	-\$0.84					
Fuel consumed to collect manure (change)						-20,132 L	-9.06E+03 L	-1.11E+04 L	\$0.75	-\$0.008					
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic															
Fuel consumed to transport livestock for testing	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-					
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	-3.83E+03 hrs	-1.72E+03 hrs	-2,107 hrs	\$16.22	-\$0.03					
Total Innut Value Change	0 \$	05	0 \$	-	- \$0.00	U \$	U \$	UΦ	-	-\$13.49					
Tour input value Change					φυ.υυ					-410.10					
Outputs with Change															
	-								A	Ac					
Manure sold for land application						2.49E+10 kg	2.50E+10 kg	-8.33E+07 kg	\$0.00	\$0.00					

Compost sold for land applicationImage: sold for land

E+08 kg	4.06E+08 kg	-2.24E+06 kg	\$6.614	-\$14.83
E+08 kg	3.78E+08 kg	2.17E+06 kg	\$6.136	\$13.30
				-\$1.53

CHANGE IN OVERALL GHG EMISSIONS			COW/CALF OPERATIONS				
		BM	P 4	Baseline (2010)	Change		
		(amount)	(unit)	(amount) (unit)	(change) (unit)		
BEEF ACTIVITIES - SOIL AND CROP Manure generation		3.45E+1	0 kg	3.45E+10 kg	0 kg		
Methane emissions from stored manure		1.49E+0	8 kg CO ₂ e	1.49E+08 kg CO ₂ e	0 kg CO ₂ e		
Enteric fermentation emissions		7.03E+0	9 kg CO ₂ e	7.03E+09 kg CO2e	0 kg COre		
N ₂ O emissions from stored manure (direct)		1.83E+0	9 kg CO.e	1 83E+09 kg COve	0 kg CO ₂ e		
N-O emissions from stored manure (indirect)		4.04E+0	8 kg CO-e	4.04E+08 kg CO-e	0 kg CO-e		
N O emissions from gropping and land use		1.012.0	0 Kg CO2C	1.0111.00 kg CO2C	0 Kg CO2C		
Total R emissions from run off							
Cail Carbon Changes in Cail From Lond Line							
Soll Carbon Change in Soll From Land Use							
Direct CO2 emissions from managed soils							
OVERALL SUMMARY							
Construction			0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		
Forage and cereal sub-activities			<u> </u>	0 2	0 2		
Energy generation and consumption activities	3	2.81E+0	9 kg CO ₂ e	2.81E+09 kg CO_e	0 kg COve		
O&M activities			0 kg CO2e	0 kg CO~e	0 kg (Ove		
Cereal activities			0 NG 00 <u>7</u> 0	0 116 00 20	0 116 0020		
Forage activities							
Foodlot and pasture activities		3 20E+0	6 kg CO a	3 20E±06 kg CO o	0 kg CO a		
Convectivities (transportation)		3.20E+0	$7 kg CO_2 e$	3.20 ± 00 kg CO ₂ e	$0 \text{ kg CO}_2 e$		
P 11 att it a (transportation)		2.49E+0	$7 \text{ kg CO}_2 \text{e}$	$2.49E+07 \text{ kg CO}_2 e$	$0 \text{ kg CO}_2 e$		
Buil activities (transportation)		3.14E+0	6 кg CO ₂ е	3.14E+06 kg CO ₂ e	0 kg CO ₂ e		
Yearling-fed system activities (transportation)							
Calf-fed system activities (transportation)							
Total GWP for BMP							
	kg CO₂e	1.22E+10	Cow/Calf				
Total Change in GWP for BMP	ka CO. o				0.00		
	kg 002e				0.00		
Total change in emissions		-59,659	tonnes				
Overall Baseline GWP (2001)							
	kg CO2e/kg live weight	14.705					
Overall Passeline GWP (2010)							
Overall Dasellile GWF (2010)	ka CO₂e/ka live weiaht	14.671					
		110/1					
Overall BMP GWP							
	kg CO2e/kg live weight	14.629					
Change in overall GWP from 2001	he CO e/lee l'es	0.074					
	kg CO ₂ e/kg live weight	-0.076					
Change in overall GWP from 2010							
Change in Overan OVER Holin 2010	ka CO₂e/ka live weiaht	-0.042					
Change in GWP per kg of beef affected from	m 2010		_				

BMP 4 - APPROACH 1 - BENEFITS AND COSTS

FEEDLOT OPERATIONS						
BMP 4	Change					
(amount) (unit)	(amount) (unit)	(change) (unit)				
1.86E+10 kg	1.88E+10 kg	-1.77E+08 kg				
1.42E+08 kg CO ₂ e	1.43E+08 kg CO ₂ e	-9.65E+05 kg CO ₂ e				
3.53E+09 kg CO ₂ e	3.55E+09 kg CO ₂ e	-1.78E+07 kg CO ₂ e				
3.21E+08 kg CO ₂ e	3.24E+08 kg CO ₂ e	-3.11E+06 kg CO ₂ e				
3.01E+08 kg CO2e	3.04E+08 kg CO2e	-2.91E+06 kg CO ₂ e				

0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
1.02E+09 kg CO ₂ e	1.03E+09 kg CO ₂ e	-1.10E+07 kg CO ₂ e
0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
1.37E+08 kg CO ₂ e	1.39E+08 kg CO ₂ e	-1.86E+06 kg CO ₂ e
1.08E+08 kg CO2e	1.08E+08 kg CO ₂ e	0 kg CO ₂ e
6.59E+07 kg CO ₂ e	6.59E+07 kg CO ₂ e	0 kg CO ₂ e

-3.76E+07

5.62E+09 Feedlot

057586-BMP 4.1 - 2011 and after

(total change in GHG emissions divided by total weight of cattle affected)

Notes:

Energy generation emissions divided by the number of cattle on cow/calf vs feedlot Feedlot and pasture activities are divided as per below.

kg CO₂e/kg live weight -0.046

BEEF INDUSTRY						
BMP 4	Baseline (2010)	Change				
(amount) (unit)	(amount) (unit)	(change) (unit)				
9.47E+08 kg CO2e	9.52E+08 kg CO2e	-5.95E+06 kg CO ₂ e				
4.08E+06 kg PO ₄ -eq	4.12E+06 kg PO ₄ -eq	-3.63E+04 kg PO ₄ -eq				
-2.31E+08 kg CO ₂ e	-2.34E+08 kg CO ₂ e	2.53E+06 kg CO2e				
1.86E+08 kg CO ₂ e	1.87E+08 kg CO ₂ e	-1.86E+06 kg CO ₂ e				
0 -	0 -	0 -				
1.19E+09 kg CO ₂ e	1.20E+09 kg CO ₂ e	-1.09E+07 kg CO ₂ e				
0 -						
3.29E+08 kg CO ₂ e	3.34E+08 kg CO ₂ e	-5.16E+06 kg CO ₂ e				
2.85E+08 kg CO ₂ e	2.86E+08 kg CO ₂ e	-2.89E+05 kg CO ₂ e				
3.03E+08 kg CO ₂ e	3.04E+08 kg CO ₂ e	-4.57E+05 kg CO ₂ e				
0 -		0 -				

3.00E+09 Beef Industry

-2.21E+07

References

Diet changes

See BMP 4 App2-Diet tab for changes to diet

Effects on Beef Quality and Market

If 100% of the Alberta beef system were to implement this BMP, it would be catastrophic to the industry.

The slaughterhouses would have to try and process all cattle (or at least the calf-fed cattle because that is what is considered in the model here) in 2 to 3 months, which couldn't be done.

The customers also want access to beef all year round and it is important to have non-frozen beef to fill the orders.

As for quality, as long as the cattle are the same weight at the slaughterhouse, the prices are not likely to change. Reduced marbling is likely which may be offset by increased tenderness, which in turn may result in a reduction in quality grade.

It is also likely that there will be a reduction in carcass yield (smaller animals).

It is anticipated that the quality grade will be reduced, but there is no literature indicating that this is the case, only discussions with people in the industry.

Therefore, a **reduction in carcass weight** will be assumed to account for the reduced age at harvest and a **slight decrease in AAA beef and a slight increase in AA/A** will be assumed.

Reduction in weight for reduced age at harvest cattle (3% decrease) 20 kg Total weight reduced from feedlot to slaughterhouse and slaughterhouse to market (calf-fed) 19,192,230 kg

	Typ. % in Canadian beef	Assumed change in quality from calf-fed cattle (%)
Prime (Assumed similar to Canada Prime)	2	5%
Choice (Assumed similar to Canada AAA)	50	-5 /0
Select (Assumed similar to Canada AA)	45	5% (from (AAA)
Standard (Assumed similar to Canada A)	3	5% (nom AAA)
Calf-fed Heifers		
Shrunk live weight	568	kg
Average warm carcass weight	341	kg
% reduction in weight from shrunk live weight to warm carcass weight	40.0	%
Dressing percentage	60.0	%
Total warm carcass weight at slaughterhouse from calf-fed heifers	176,228	tonnes
Total Canada AAA and better beef from calf-fed heifers	91,638	tonnes
% adoption of BMP	100%	
Total revised Canada AAA and better beef from calf-fed heifers with BMP	87,057	tonnes
Change in Canada AAA and better beef from calf-fed heifers	-4,582	tonnes
Total Canada AA/A beef from calf-fed heifers	84,589	tonnes
% adoption of BMP	100%	
Total revised Canada AA/A beef from calf-fed heifers with BMP implementation	89,171	tonnes
Change in Canada AA/A beef from calf-fed heifers	4,582	tonnes
Calf-fed Steers		
Shrunk live weight	611	kg
Average warm carcass weight	367	kg
% reduction in weight from shrunk live weight to warm carcass weight	40.0	%
Dressing percentage	60.0	%
Total warm carcass weight at slaughterhouse from calf-fed steers	162,283	tonnes
Total Canada AAA and better beef from calf-fed steers	84,387	tonnes
% adoption of BMP	100%	
Total revised Canada AAA and better beef from calf-fed steers with BMP	80,168	tonnes
Change in Canada AAA and better beef from calf-fed steers	-4,219	tonnes
Total Canada AA/A beef from calf-fed steers	77,896	tonnes
% adoption of BMP 057586-BMP 4.2 -2011 and after	100%	

Phone conversation with Scott Entz from Cargill High River regarding reduced age to slaughter. January 18, 2011 (M. Murphy)

Assumption

Beef Quality. The Canadian Beef Industry is devoted to producing Beef Products which deliver on our Customers Expectations for Outstanding Eating Quality. Available at: http://www.cbef.com/beefquality.html. Accessed January 10, 2011. Quality change % is assumption only

From Slaughterhouse tab From Beef Data tab Assumed (from data in Beef data tab) Assumed (from data in Beef data tab)

From Summary Tab

From Slaughterhouse tab From Beef Data tab Assumed (from data in Beef data tab) Assumed (from data in Beef data tab)

Total revised Canada AA/A beef from calf-fed steers with BMP implementation Change in Canada AA/A beef from calf-fed steers	82,115 tonnes 4,219 tonnes	
Total change in Canada AAA beef Total change in Canada AA/A beef	-8,801 tonnes 8,801 tonnes	

Change in gas, diesel, and electricity usage on feedlots for reduced feed time

Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated.

Total diesel used on all beef farms (cow/calf and feedlot)	8,361 TJ	From Beef Data tab
Total reduction in feed requirements (Cow/calf and feedlot)	9.62%	From Diets tab
Assume same reduction in diesel fuel used on feedlots	804.2 TJ reduced	
Revised diesel energy requirements	7,557 TJ used	

Note: Assume that diesel is the fuel used to operate the machinery to feed cattle and this will be the main source of energy that is reduced

Change in gas and diesel for manure handling on feedlot for reduced time

Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alberta. Changes to energy requirements to be calculated. Assume same for backgrounding feedlots.

Manure collection and handling		
Diesel consumption for a tractor	16.6 L/hr	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
		Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3,
Number of feedlot cattle in reference	50,000 cattle	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
		Generation from Beet Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3,
Pens with 250 head/pen in reference	200 pens	Ghatoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
Time to allo on manual in solution of	(0 min / non true times non more	Generation from beer Cattle Manure: A Life Cycle Assessment Study. International journal of Green Energy, 3: 5, Challengi Energi Energi Cattle Manure: A Life Cycle Assessment Study. International journal of Green Energy, 5: 5,
Time to pile up manure in peri in reference	60 min/ pen two times per year	Gnatoon, Entad, Flyini, Feter C, and Checkel, M. David (2006). Global warming Fotential of Electricity
	400 brs/ur	Generation noin beer Cattle Manure. A Life Cycle Assessment Study. International Journal of Green Energy, 5.5,
Diesel required per year	6 640 L /vr	
CO ₂ emission factor for truck diesel consumption	$2.569 \sigma CO_2/L$	Ghafoori, Emad. Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
	-, 8 <u>2</u> /	Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3,
CH ₄ emission factor for truck diesel consumption	0.21 g CH ₄ /L	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
		Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3,
Total emissions from manure collection (calculated based on data)	17.09 tonnes CO ₂ e/yr	
Total emissions from manure collection (total provided in reference)	1,172 tonnes CO ₂ e/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
		Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3:3,
(Total emissions calculated using data from reference different than total emissions provided in reference.		
Only raw data from reference will be used to calculate emissions in model.)		
Ouantity of manure (in reference)	58,700 tonne dry manure/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity
	···, ··· ·· · · · · · · · · · · · · · ·	Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, 3: 3,
(Alberta Beef LCA model used same reference to quantify manure)		
Emission factor for the combustion of diesel in agricultural equipment - Alberta Beef LCA	3.28 kg COve/kg diesel	Intergovernmental Panel on Climate Change (IPCC) 2006 IPCC Guidelines for National Greenhouse Gas
model	0120 NG C0207 NG Closer	Inventories. Volume 2. Chapter 3: Mobile Combustion. Available at: http://www.incc-
		nggip.iges.or.jp/public/2006gl/pdf/2 Volume2/V2 3 Ch3 Mobile Combustion.pdf
Density of diesel	0.885 kg/L	Simetric. Specific Gravity of Liquids. Available at: http://www.simetric.co.uk/si_liquids.htm
	3.71 kg CO ₂ e/L	
Total emissions from manure collection using the LCA model emission factor	24.61 tonnes/yr	
(comparable to emissions calculated using reference data)		
Total emissions from manure collection per animal per day	0.00135 kg/animal/day	

References

		Kererences		
Change in gas and diesel for bedding animals in feedlot for reduced time Note: Energy required to provide bedding in the baseline is included in the total energy use Assume same for backgrounding feedlots.	d on beef farms in Alberta. Changes to ener	y requirements to be calculated.		
Bedding required for feedlot in Alberta Beef LCA model	422,073 tonnes			
Total mass of barley and barley silage (feedlot diet)	12,061,530 tonnes			
% of bedding mass compared to total feed mass	3.5 %			
Bedding mass negligible compared to feed. Will still be included in the analysis as this will calculate through with the change in animal* days for the feed, but actual change in bedding of the livestock is a data gap.				

Change in quantity of agricultural plastics for change in feed

Current agricultural plastics disposal methods

BMP 4 APPROACH 2 - DATA

- Burning is still the most prominent method of getting rid of agricultural plastics (2008)

Recycling Council of Alberta. Agricultural Plastics Recycling Pilot Project. Summary Report, September 2009. Available at: http://www.recycleyourplastic.ca/pdf/Ag_Plastics_Pilot_Report.pdf

- There is little industry capacity to handle agricultural plastics in Alberta

- Pilot recycling program conducted in Alberta in 2008 to understand the amount, type, and quality of used agricultural plastics and the capacity of industry to use it

- Alberta Beef LCA baseline model assumed the same as the current situation for the handling of agricultural plastics (burning and burying)
- No change in the disposal of plastics

- Total change in plastics will be calculated based on percentage of total change in feed

Change in labour

Calculate average reduction in days on feedlot (calf-fed) Average time per day to feed cattle Total number of feedlots in Alberta (2008 data) Total time saved from reducing days to slaughter across Alberta	106.9 days 4 hrs/day 188 feedlots 80,357.24 hrs/all feedlots	Calculated (see BMP 4 App2-Diet tab - average reduction in days for calf-fed steers and heifers) Assumption Summed from Beef Data tab Calculated
Price Information		
Average farm hand wage	16.22 \$/hr	WAGEinfo, Alberta Wage and Salary Survey, 2009 data. Available at: http://alis.alberta.ca/wageinfo/Content/RequestAction.asp?aspAction=GetWageDetail&format=html&RegionI D=20&NOC=8431
Purchase of barley	161.38 \$/tonne	Lethbridge Barley Price, Alberta Grains Council, Alberta Canola Producers Commission. Weekly Average from
	0.16 \$/kg	2005 to 2010
Purchase of barley silage	40 \$/tonne 0.04 \$/kg	Based on a conversation with a local dairy farmer on January 3, 2011.
Purchase of bedding (model assumes 100% straw bedding used) (Straw estimate for 2010)		
Wheat straw (fertilizer costs)	24.2 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/fag7514
	26.7 \$/tonne	
Barley and oat straw (fertilizer costs)	32 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural
	35.3 \$/tonne	Development. Available at. www1.agirt.gov.ab.ca/ suepartment/ deprocestist/ aii/ iaq/514
Pea straw (fertilizer costs)	30 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural
	33.1 \$/tonne	Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nst/all/taq/514
Canola straw (fertilizer costs)	22.6 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural
	24.9 \$/tonne	Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nst/all/taq/514
Average weight of straw bale	450 kg	Microsoft Word document provided by Alberta Agriculture and Rural Development in an email from Emmanuel
Baling costs	9.00 - 11.50 \$/large round bale	Ladie to Stephen barr on November 20, 2009 What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural
	10.25 \$/large round bale	Development. Avanable at: www1.agric.gov.ab.ca/ suepartment/ deptdocs.nst/ all/ faq/514 Average

References
BMP 4 APPROACH 2 - DATA

	0.023 \$/kg 22.78 \$/tonne	References
Hauling and stacking	2.00 - 3.00 \$/large round bale 2.5 \$/large round bale 0.0056 \$/kg 5.56 \$/tonne	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514 Average
Average price (wheat straw) Average price (barley and oat straw) Average price (pea straw) Average price (canola straw) Average price for straw	55.01 \$/tonne 63.61 \$/tonne 61.40 \$/tonne 53.25 \$/tonne 58.32 \$/tonne 0.058 \$/kg	
Purchase of min., trc min., cobalt, protein suppl., vit., antibiotic for feedlot		
32% Feedlot Supplement (pellets with monensin)	11.89 \$/25 kg 0.48 \$/kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011 and phone call with UFA on January 4, 2011.
Vitamins (A-D-E Premix) for feedlot Mash Crumble Average	24.99 \$/20 kg 30.00 \$/20 kg 27.50 \$/20 kg 1.37 \$/kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011. UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011.
Purchase of manure	0 \$/kg	Government of Alberta. Agriculture and Rural Development. Manure and Compost Directory. Available at: http://www.agric.gov.ab.ca/app68/manure. Accessed on January 3, 2011.
Sale price for beef to slaughterhouse		
Baseline - steers (lbs at slaughterhouse)	1,392 lbs 631 kg	from model
Baseline - heifers (lbs at slaughterhouse)	1,296 lbs 588 kg	from model
Central Alberta 850 lb steer monthly averages (2005-2010) Central Alberta 550 lb steer monthly averages (2005-2010)	weight not applicable for model weight not applicable for model	Canfax. Central Alberta 850 pound Steer - Monthly Averages. 2005 - 2010. Canfax. Central Alberta 550 pound Steer - Monthly Averages. 2005 - 2010.
Alberta weekly fed steer prices (2005-2010) Average - Entire Year (2005-2010) (no weight given) Average - September to November (2005-2010) (no weight given) (calf-fed cattle sent to slaughterhouse end of October) - baseline	87.52 \$/100 lb 86.85 \$/100 lb	Canfax. Alberta Weekly Fed Steer Prices. 2005-2010
(calf-fed cattle sent to slaughterhouse in June) - BMP Change in price of fed steers from Sept-Nov to May-Jul	0.88 \$/100 lb 0.80 \$/100 lb 0.0040 \$/kg 2.52 \$/steer	
Alberta fed heifer monthly averages (2005-2010) Average - Entire Year (2005-2010) (no weight given) Average - September to November (2005-2010) (no weight given) (calf-fed cattle sent to slaughterhouse end of October) - baseline Average - May to July (2005-2010) (no weight given) (calf-fed cattle sent to slaughterhouse in June) - BMP Change in price of heifers from Sept-Nov to May-Jul	87.22 \$/100 lb 86.53 \$/100 lb 87.45 \$/100 lb 0.92 \$/100 lb 0.0042 \$/kg 2.45 \$/heifer	Canfax. Alberta Weekly Fed Heifer Prices. 2005-2010
Sale price for beef from slaughterhouse to market Average 2008 price for Canada AAA beef	3.110 \$/lb	CanFax. Boxed beef pricing. 2008. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown
Average 2008 price for Canada AA/A beef 057586-BMP 4.2 -2011 and after	6.856 \$/kg 2.850 \$/lb	CanFax. Boxed beef pricing, 2008. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdown

BMP 4 APPROACH 2 - DATA

	6.283 \$/ Kg
Average 2009 price for Canada AAA beef	3.030 \$/lb
	6.680 \$/kg
Average 2009 price for Canada AA/A beef	2.770 \$/lb
	6.107 \$/kg
Average 2010 price for Canada AAA beef	2.860 \$/lb
	6.305 \$/kg
Average 2010 price for Canada AA/A beef	2.730 \$/lb
	6.019 \$/kg
Average price for Canada AAA beef (2008-2010)	6.614 \$/kg
Average price for Canada AA/A beef (2008-2010)	6.136 \$/kg
Prime, AAA, AA, A represent 98% of all youthful graded Canadian beef carcasses.	
Prime/AAA represent 52% of that total, and AA/A represent 48%.	
Average price for youthful graded Canadian beef carcasses (2008-2010)	6.385 \$/kg

Assume that the decrease in revenue for the slaughterhouse to the market is directly proportional to the decrease in revenue for the feedlots from the slaughterhouse with the implementation of reduced days to harvest for calf-fed cattle (reduction in quality based on discussions with Scott Entz from Cargill High River). Assuming the beef demand stays the same.

Fuel consumed to feed livestock (on-farm diesel) - and -

Fuel consumed to collect manure (on-farm diesel)
Ultra Low Sulphur Diesel (ULSD)

Ultra Low Sulphur Diesel (ULSD)		
Calgary, AB	80.7 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Edmonton, AB	77.5 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Ultra Low Sulphur Diesel Lite (ULSD-LT)		
Calgary, AB	84.2 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Edmonton, AB	81.0 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Average	80.85 cents/L (excluding taxes)	
Fuel tax rates (diesel - all grades) (April 1, 2007 to current)	9 cents/L	Alberta Tax and Revenue Administration - Current and Historic Tax Rates. Available at:

-15 cents/L

< 000 ¢ /1

Fuel tax is exempted for diesel used on farms and a subsidy of 6 cents per L of diesel is provided

Average diesel price minus Alberta programs

Alberta Farm Fuel Benefit Program and Farm Fuel Distribution Allowance (taxes)

Calculation changes to the model

- Reduce time to harvest by reducing backgrounding in calf-fed cattle based on BMP 4- App2-Diet tab, which will change feed and supplement requirements assuming all of Alberta will implement this BMP

0.75 \$/L

- Adjust energy requirements for feeding cattle and manure collection

- Calculate change in garbage for change in feed used

- Adjust total enteric fermentation emissions and manure emissions for calf-fed feedlot cattle. Time on each diet will change only; DMI, the energy density of feed, and methane conversion factor will remain consistent with the baseline (based on IPCC Tier 2 values).

- Adjust total manure generation for calf-fed feedlot cattle. Manure generated will be reduced by the number of days reduced on the feedlot.

References

CanFax. Boxed beef pricing. 2009. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdowr CanFax. Boxed beef pricing, 2009. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdowr CanFax. Boxed beef pricing. 2010. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdowr CanFax. Boxed beef pricing, 2010. Available at: http://www.canfax.ca/BoxedBeefReports/BeefCarcassBreakdowr

Beef Quality. The Canadian Beef Industry is devoted to producing Beef Products which deliver on our Customers Expectations for Outstanding Eating Quality. Available at: http://www.cbef.com/beefquality.html. Accessed January 10, 2011.

www.finance.alberta.ca/publications/tax_rebates/rates/hist1.html#fuel

www.finance.alberta.ca/publications/tax_rebates/fuel/overview.html

Alberta Finance and Enterprise. Taxes & Rebates - Fuel Tax Overview. November 23, 2010. Available at:

BMP 4 APPROACH 2 - COMPARISON OF QUANTIFICATION PROTOCOL TO BASELINE MODEL

Draft Guidance Document for the Quantification Protocol for Reducing Age at Harvest, June 2010, Version 7

Table 4: Typical Feeding Regimes for Beef	Cattle in Al	berta		
Feeding Regime		Age at Harv	est (months)	
	12	14	18	21
	Typical Du	ration of Da	ys on Feed fo	or Animals
1. 100% Milk - baby calf suckling cow,	91	91	91	91
2. Forage: milk - suckling calf on pasture				
with cow, days	31	92	92	92
Backgrounding on pasture and/or				
drylot - high roughage diet (e.g., 100%				
barley silage on a DM basis), days	0	0	212	212
4. Backgrounding on tame and/or native				
pasture, days	0	0	0	153
5. Step-up diet to final finishing diet, days	31	31	0	0
6. Finishing in a feedlot (>= 85%				
concentrate diet on a DM basis), days	212	212	153	92
Total Days	365	426	548	640
Total Months	12	14	18	21

Notes:

18 months of age at harvest corresponds to cattle in calf-fed system in Alberta.

BMP 4 Approach 2 will only apply to calf-fed cattle (as per guidance from ARD).

The 18 months of age at harvest for the calf-fed cattle will be reduced to 14 months for this BMP (ARD).

Alberta LCA Model (Baseline) for Calf-Fed System (18 months to harvest)

Cow/calf time	188 days	5 days more than table above
Backgrounding and feedlot time with	180 days	32 days less than table above
<85% concentrate diet		
Feedlot time with >85% concentrate diet	178 days	25 days more than table above
Total time	546 days	2 days less than table above
Total months	18.0 months	

Notes for altering diet to match 14 months to harvest diet:

- Remove backgrounding and feedlot diet with <85% concentrates as stated in table above.
- Increase feedlot time with >85% concentrates to match feedlot time in table above.
- Include a step-up diet for the time allotted in the table above.

Additional days required on feedlot diet with >85% concentrates to match time in table above 34 days

Step-up diet to be included for period stated in table above

31 days

Cow/calf time	188 days	no change
Backgrounding and feedlot time with	0 days	removed from diet
<85% concentrate diet	-	
Step-up diet to final finishing diet	31 days	not included in baseline
Feedlot time with >85% concentrate diet	212 days	adjusted to match table above
Total time	431 days	5 days more than table above
Total months	14.2 months	0.2 months longer than table above

Notes:

- Diet will be adjusted based on information above to reduce age at harvest in the Alberta Beet LCA baseline model for calf-fed cattle from 18.0 months to 14.2 months, using diet information in the baseline for each diet (i.e. ADG, ingredients).

- Final weight will remain the same as in the baseline.

BMP 4 APPROACH 2 - APPLICATION OF QUANTIFICATION PROTOCOL TO MODEL TO ADJUST DIET

Draft Guidance Document for the Quantification Protocol for Reducing Age at Harvest, June 2010, Version 7

Table 4: Typical Feeding Regimes for Beef Cattle in Alberta Feeding Regime Age at Harvest (mths) 18 1. 100% Milk - baby calf suckling cow, days 91 2. Forage: milk - suckling calf on pasture with 92 cow, days 3. Backgrounding on pasture and/or drylot high roughage diet (e.g., 100% barley silage on a 212 DM basis), days 4. Backgrounding on tame and/or native 0 pasture, days 5. Step-up diet to final finishing diet, days 6. Finishing in a feedlot (>= 85% concentrate diet 0 153 on a DM basis), days 548 Total Days Total Months 18.0

Table 4: Typical Feeding Regimes for Beef Cattle	e in Alberta
Feeding Regime	Age at Harvest (mths)
	14
1. 100% Milk - baby calf suckling cow, days	91
2. Forage: milk - suckling calf on pasture with cow, days	92
3. Backgrounding on pasture and/or drylot - high roughage diet (e.g., 100% barley silage on a DM basis), days	0
4. Backgrounding on tame and/or native pasture, days	0
5. Step-up diet to final finishing diet, days	31
6. Finishing in a feedlot (>= 85% concentrate diet on a DM basis), days	212
Total Days	426
Total Months	14.0

LCA Model Diet

		LCA Mode	el Baseline Di	et for Calf-Fe	ed Steers and Heifers	(% of diet on DM ba	sis)	
	Days on		Alfalfa-					Ĩ
	feed		meadow	Barley		Beef supplement		
	(days)	Milk	brome grass	silage	Barley grain	(Mineral / Vitamin)	Total	
	94	100	0	0	0	0	100	From Guidance
	94	43	57	0	0	0	100	From Guidance
Backgrounding	96	0	0	81.7	14.3	4	100	
Feedlot diet 3	14	0	0	67.3	28.7	4	100	Ĩ
Feedlot diet 4	14	0	0	53.0	43.0	4	100	Ī
Feedlot diet 5	28	0	0	38.7	57.3	4	100	
Feedlot diet 6	28	0	0	24.3	71.7	4	100	
	-	-	-	-	-	-	-	Not included in
	-	-	-	-	-	-	-	Not included in
Feedlot diet 7	178	0	0	10.0	86.0		96	
Total Days	546				•		•	•

Total Months 18.0

	Alt	ered Diet for E	MP 4 Implen	nentation for	Calf-Fed Steers and I	Heifers (% of diet on)	DM basis)	
	Days on		Alfalfa-					Ţ
	feed		meadow	Barley		Beef supplement		
	(days)	Milk	brome grass	silage	Barley grain	(Mineral / Vitamin)	Total	
	94	100	0	0	0	0	100	No change fro
	94	43	57	0	0	0	100	No change fro
	-	-	-	-	-	-	-	Removed from
	-	-	-	-	-	-	-	Not included
Adjusted diet			see belo	ow		4	-	I
Adjusted diet			see belo	ow		4	-	

Supplement unchanged for project as baseline

Document

Document

a baseline

a baseline

om baseline

om baseline

m baseline

in baseline

BMP 4 APPROACH 2 - APPLICATION OF QUANTIFICATION PROTOCOL TO MODEL TO ADJUST DIET

5. Step-up diet (calf-fed steer)				Baselin	e						Project				
					Barley	Barley silage	supplement	Baseline		Calculated End		Barley	Barley silage (%	supplemen	Assumed Project
		Start weight (lbs)	End weight (lbs)	ADG (lbs/d)	(% DM)	(% DM)	(% DM)	days	Start weight (lbs)	weight (lbs)	ADG (lbs/d)	(% DM)	DM)	t (% DM)	days
Ι	Backgrounding	500	600	1.04	14.3	81.7	4	96	500	503.12	1.04	14.3	81.7	4	3
	Feedlot diet 3	550	560	0.71	28.7	67.3	4	14	503.12	505.25	0.71	28.7	67.3	4	3
	Feedlot diet 4	560	600	2.86	43.0	53.0	4	14	505.25	516.69	2.86	43	53	4	4
	Feedlot diet 5	600	690	3.21	57.3	38.7	4	28	516.69	529.53	3.21	57.3	38.7	4	4
	Feedlot diet 6	690	790	3.57	71.7	24.3	4	28	529.53	590.22	3.57	71.7	24.3	4	17
		Step-up diet typically s From nutritionist for A	tarts at a high rougha lberta Beef LCA mode	ige level and mo el: steers are 55	oves to the 0 lbs after b	ackgrounding	and heifers are	y period (DN 500 lbs. Bac	1 basis), where a high kgrounding diet only	grain level is finally in used for diet and not	ncorporated (>85% start-end weights.	concentrat	æ)		
6. Finishing diet (calf-fed steer)	ſ	Step-up diet typically s From nutritionist for A	tarts at a high rougha Iberta Beef LCA mod	ige level and mo el: steers are 55 Baselin	oves to the s 0 lbs after b e	packgrounding	and heifers are	y period (DN 2500 lbs. Bac	1 basis), where a high kgrounding diet only	grain level is finally in used for diet and not	ncorporated (>85% start-end weights. Project	concentrat	re)		
6. Finishing diet (calf-fed steer)		Step-up diet typically s From nutritionist for A	itarts at a high rougha Iberta Beef LCA mod	ige level and mo el: steers are 55 Baselin	e Barley	Barley silage	supplement	9 period (DA 500 lbs. Bac Baseline	1 basis), where a high kgrounding diet only	grain level is finally in used for diet and not Calculated End	ncorporated (>85% start-end weights. Project	Barley	e) Barley silage (%	supplemen	Assumed Project
6. Finishing diet (calf-fed steer)		Step-up diet typically s From nutritionist for A Start weight (lbs)	tarts at a high rougha Iberta Beef LCA mod End weight (lbs)	ge level and mo el: steers are 55 Baselin ADG (lbs/d)	e Barley (% DM)	Barley silage (% DM)	supplement (% DM)	Baseline days	1 basis), where a high kgrounding diet only Start weight (lbs)	grain level is finally in used for diet and not Calculated End weight (lbs)	ADG (lbs/d)	Barley (% DM)	e) Barley silage (% DM)	supplemen t (% DM)	Assumed Project days
6. Finishing diet (calf-fed steer)	Feedlot diet 7	Step-up diet typically s From nutritionist for A Start weight (lbs) 790	tarts at a high rougha lberta Beef LCA mod End weight (lbs) 1450	Be level and mo el: steers are 55 Baselin ADG (lbs/d) 3.67	e Barley (% DM) 86	Barley silage (% DM) 10	supplement (% DM)	Baseline days 178	1 basis), where a high kgrounding diet only Start weight (lbs) 590.22	grain level is finally in used for diet and not Calculated End weight (lbs) 1449	ADG (lbs/d)	Barley (% DM) 86	Barley silage (% DM) 10	supplemen t (% DM) 4	Assumed Project days 234
6. Finishing diet (calf-fed steer)	Feedlot diet 7	Step-up diet typically s From nutritionist for A Start weight (lbs) 790	tarts at a high rougha Iberta Beef LCA mod End weight (lbs) 1450	Baselin Baselin ADG (lbs/d) 3.67	e Barley (% DM) 86	Barley silage (% DM)	supplement (% DM) 4	Baseline days 178	1 basis), where a high kgrounding diet only Start weight (lbs) 590.22 Required weight	grain level is finally in used for diet and not Calculated End weight (lbs) 1449 1450	ADG (lbs/d)	Barley (% DM) 86	Barley silage (% DM) 10	supplemen t (% DM) 4	Assumed Project days 234
6. Finishing diet (calf-fed steer)	Feedlot diet 7	Step-up diet typically s From nutritionist for A Start weight (lbs) 790	tarts at a high rougha Iberta Beef LCA mod End weight (lbs) 1450	Baselin Baselin ADG (lbs/d) 3.67	e Barley (% DM) 86	Barley silage (% DM)	supplement (% DM) 4	Baseline days 178	1 basis), where a high kgrounding diet only Start weight (lbs) 590.22 Required weight ** adjusted diet to rea	grain level is finally in used for diet and not Calculated End weight (lbs) 1449 1450 ch same end weight a	ADG (lbs/d) 3.67	Barley (% DM) 86	Barley silage (% DM) 10 Total da	supplemen t (% DM) 4 ys for steers	Assumed Project days 234 453
6. Finishing diet (calf-fed steer)	Feedlot diet 7	Step-up diet typically s From nutritionist for A Start weight (lbs) 790	tarts at a high rougha Iberta Beef LCA mod End weight (lbs) 1450	Baselin Baselin ADG (lbs/d) 3.67	e Barley (% DM) 86	Barley silage (% DM) 10	supplement (% DM) 4	Baseline days 178	1 basis), where a high kgrounding diet only Start weight (lbs) 590.22 Required weight ** adjusted diet to rea	grain level is finally in used for diet and not Calculated End weight (lbs) 1449 1450 ch same end weight a	ADG (lbs/d) 3.67	Barley (% DM) 86	Barley silage (% DM) 10 Total da Total mont	supplemen t (% DM) 4 ys for steers hs for steers	Assumed Project days 234 453 14.9
6. Finishing diet (calf-fed steer)	Feedlot diet 7	Step-up diet typically s From nutritionist for A Start weight (lbs) 790	tarts at a high rougha Iberta Beef LCA mod End weight (lbs) 1450	ge level and mo el: steers are 55 Baselin ADG (lbs/d) 3.67	e Barley (% DM) 86	Barley silage (% DM) 10	supplement (% DM) 4	Baseline days 178	1 basis), where a high kgrounding diet only Start weight (lbs) 590.22 Required weight ** adjusted diet to rea	grain level is finally in used for diet and not Calculated End weight (lbs) 1450 ch same end weight a	ADG (lbs/d) 3.67	Barley (% DM) 86	Barley silage (% DM) 10 Total da Total mont	supplemen t (% DM) 4 ys for steers hs for steers	Assumed Project days 234 453 14.9

5. Step up diet (calf-fed heifer)		Baseline							Project						
					Barley	Barley silage	supplement	Baseline		Calculated End		Barley	Barley silage (%	supplemen	Assumed Project
		Start weight (lbs)	End weight (lbs)	ADG (lbs/d)	(% DM)	(% DM)	(% DM)	days	Start weight (lbs)	weight (lbs)	ADG (lbs/d)	(% DM)	DM)	t (% DM)	days
Back	kgrounding	500	600	1.04	14.3	81.7	4	96	500	503.12	1.04	14.3	81.7	4	3
Fe	edlot diet 3	500	510	0.71	28.7	67.3	4	14	503.12	505.25	0.71	28.7	67.3	4	3
Fe	edlot diet 4	510	540	2.14	43.0	53.0	4	14	505.25	513.81	2.14	43	53	4	4
Fe	edlot diet 5	540	620	2.86	57.3	38.7	4	28	513.81	525.25	2.86	57.3	38.7	4	4
Fe	edlot diet 6	620	710	3.21	71.7	24.3	4	28	525.25	579.82	3.21	71.7	24.3	4	17
	_														31
]	From nutritionist for Al	berta Beef LCA mode	el: steers are 550) lbs after b	ackgrounding	and heifers are	500 lbs. Bac	kgrounding diet only t	used for diet and not	start-end weights.	concentrat	()		
6. Finishing diet (calf-fed heifer)				Baselin	e	-			Project						
		Start weight (lbs)	End weight (lbs)	ADG (lbs/d)	Barley (% DM)	Barley silage (% DM)	supplement (% DM)	Baseline days	Start weight (lbs)	Calculated End weight (lbs)	ADG (lbs/d)	Barley (% DM)	Barley silage (% DM)	supplemen t (% DM)	Assumed Project days
Fe	edlot diet 7	710	1350	3.64	86	10	4	178	579.82	1351.5	3.64	86	10	4	212
	-			•		•			Required weight	1350					
									** adjusted diet to read	ch same end weight a	s baseline		Total day	s for heifers	431
												То	tal month	s for heifers	14.2

Note: CRA does not promote the use and stages in the diets above.

95 day reduction

117 day reduction

BMP 4 - Reducing Age to Slaughter (Approach 2) Approach 2: Reduce the number of days to harvest by introducing feedlot diet sooner to a	each final weight to slaug	yhter sooner]					
Assumed Percent Adoption of BMP 4 (calf-fed cattle in feedlot only)	100%	(% adoption can be adjus (only adjusts calf-fed catt	sted here for the entire me tle) ted in Alberta)	odel)		Scenario BMP 4.2		2 01E+10 kg CO20		I	
		(not currently implement	led in Alberta)			Total GIIG emissions		2.01E+10 kg CO2e			
Reduction in days to slaughter	95 dave	21 months				Total acidification		3.03E+07 kg SO2-E	q		
Calf-fed heifers	117 days	3.8 months				Total eutrophication		5.23E+06 kg PO4-E	q		
Total number of animals affected by BMP (calf-fed steers and heifers)	959,612 animals to	o slaughter (2002)				Total non-renewable en	lergy	3.19E+11 MJ-Eq			
Total weight affected to slaughter (calf-fed steers and heifers - live weight)	564,184 tonnes										
		COW/CALE OPE	RATIONS				FEFDLOT	OPER ATIONS			
		CONTRACT OF L	ATIONS .	Per Unit			TEEDEOT	OTERATIONS	Per Unit		
	BMP 4	Baseline (2001/2010)	Change	Market Value	Total Impact	BMP 4	Baseline (2001/2010)	Change	Market Value	Total Impact	
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(a:
Inputs with Change											
Production of pesticide/herbicide											
Production of chemical fertilizer Production of bedding											
Production of min., trc min., cobalt, protein suppl., vit., antibiotic											
Purchase of chemical fertilizer											
Urea, as N, at regional storehouse											
Ammonia, inquia, at regional storenouse Monoammonium phosphate, as P2O5, at regional storehouse											
Monoammonium phosphate, as N, at regional storehouse											
Ammonium sulphate, as N, at regional storehouse											
Purchase of manure for land application Purchase of perticide /berbicide											
Purchase of seed for barley											
Purchase of seed for barley silage											
Purchase of seed for alfalfa/grass hay											
Purchase of water to irrigate crops						0 kg	0.1cz	0 ka			
Purchase of composting equipment (Windrow turner)						0 kg	0 kg 0 turners	0 kg 0 turners	-	-	
Purchase of construction supplies for composting (clay for pad)						0 units	0 units	0 units	-	-	
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	0 kg	-	-						
Purchase of barley						4.53E+09 kg	4.49E+09 kg	4.16E+07 kg	\$0.16	\$6.71	
Purchase of barley silage						5.74E+09 kg	7.58E+09 kg	-1.84E+09 kg	\$0.04	-\$73.43	
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0 kg	-	-	3.71E+08 kg	4.22E+08 kg	-5.07E+07 kg	\$0.06	-\$2.96	
Purchase of animal shelters, wind breakers, tencing, etc.	0 units	0 units	0 units	-	-						
Purchase of RAC	0 Kg	0 Kg	0 Kg	-	-	0 kg	0 kg	0 kg	-	-	
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.91E+07 kg	7.91E+07 kg	0 kg	-	-	1.31E+08 kg	1.45E+08 kg	-1.34E+07 kg	\$0.48	-\$6.37	
Purchase of vitamins	1,684 kg	1,684 kg	0 kg	-	-	1.58E+05 kg	1.76E+05 kg	-1.80E+04 kg	\$1.37	-\$0.025	
Purchase of RFI testing (includes transportation)	0 tests	0 tests	0 tests	-	-	0 tests	0 tests	0 tests	-	-	
Fuel / energy required to operate composting equipment						0 kWh or L	0 kWh or L	0 kWh or L	-	-	
Fuel consumed to transport alfalfa/grass hav											
Fuel consumed for cropping activities											
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-	
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-	
Fuel consumed to transport bedding (change)	0.1	0.1	0.1			2 20E + 07 I	0.1	2 20E + 07 I	#0.75	¢10.10	
Fuel consumed to collect manufer (change)	0 L	0 L	0 L	-	-	-2.29E+07 L	0 L 0 I	-2.29E+07 L	\$0.75	-\$17.17	
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic						101,111 E	υE	101,111 E	<i>\$</i> 0.75	φ0.11	
Fuel consumed to transport livestock for testing	0 L	0 L	0 L	-	-	0 L	0 L	0 L	-	-	
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	-8.04E+04 hrs	0 hrs	-80,357 hrs	\$16.22	-\$1.30	
Working capital interest	0\$	0 \$	0 \$	-	-	<mark>0</mark> \$	<mark>0</mark> \$	0\$	-	-	
Total Input Value Change					\$0.00					-\$94.69	
Outputs with Change											
Outputs with Change											_
Manure sold for land application						2.43E+10 kg	2.51E+10 kg	-7.51E+08 kg	\$0.00	\$0.00	
Compost sold for land application						0 kg	0 kg	0 kg	-	-	
Sold beef to slaughterhouse (changed slaughter month - Sept./Nov. to May/Jul.) (live wt)						5.64E+08 kg	0 kg	5.64E+08 kg	\$0.004	\$2.31	
Sold beef to slaughterhouse (reduction in circless weight-Sept./ Nov.) (live wt)						-1.92ETU/ Kg 5.64E+08 kg	U Kg O ka	-1.92E+07 Kg 5.64E+08 kg	91.911 not available	-#30.07 _\$4.20	
Sold beef from slaughterhouse to market (reduction in carcass weight) (carcass)						0.011.00 Kg	UKg	0.011 · 00 Kg	not available	ψ1.20	
Sold meat from slaughterhouse as Canada AAA or better (carcass) (calf-fed only)											
2000 meat from slaughternouse as Canada AA/A (carcass) (calt-ted only)											

\$0.00

Total Output Value Change

			SLAUGI	HIERHOUSE			
						Per Unit	
BMP	4	Baseline (20	01/2010)	Char	nge	Market Value	Total Impact
amount)	(unit)	(amount)	(unit)	(change)	(unit)	(\$/unit)	(\$ Million)
				, i i i i i i i i i i i i i i i i i i i			
_							

-1.92E+07 kg	0 kg	-1.92E+07 kg	\$6.385	-\$122.53
1.67E+08 kg	1.76E+08 kg	-8.80E+06 kg	\$6.614	-\$58.21
1.71E+08 kg	1.62E+08 kg	8.80E+06 kg	\$6.136	\$54.01
				-\$126.74

-\$38.57

-1.56E+00

CHANGE IN OVERALL GHG EMISSIONS			C	OW/CALF OPERATION	S		1	FEEDLOT OPERAT
		BMF	°4	Baseline (2001/2010)	Change		BMP 4	Baseline (2001/20
		(amount)	(unit)	(amount) (unit)	(change) (unit)		(amount) (unit)	(amount) (un
BEEF ACTIVITIES - SOIL AND CROP Manure generation		3 45E+1() ka	3.45E+10 kg	0 kg		1 73E+10 kα	1 89E+10 kg
Manure generation		5.4511	, Kg	5.45E+10 Kg	0 Kg		1.75E+10 Kg	1.09E+10 Kg
Methane emissions from stored manure		1.49E+08	8 kg CO₂e	1.49E+08 kg CO ₂ e	0 kg CO ₂ e		1.31E+08 kg CO ₂ e	1.44E+08 kg C
Enteric fermentation emissions		7.03E+09	$kg CO_2 e$	7.03E+09 kg CO ₂ e	0 kg CO ₂ e		3.06E+09 kg CO ₂ e	3.56E+09 kg C
N2O emissions from stored manure (direct)		1.83E+09	9 kg CO ₂ e	1.83E+09 kg CO ₂ e	0 kg CO ₂ e		3.01E+08 kg CO ₂ e	3.27E+08 kg C
N2O emissions from stored manure (indirect)		4.04E+08	8 kg CO ₂ e	4.04E+08 kg CO ₂ e	0 kg CO ₂ e		2.82E+08 kg CO ₂ e	3.06E+08 kg C
N ₂ O emissions from cropping and land use								
Total P emissions from run-off								
Soil Carbon Change in Soil From Land Use								
Direct CO2 emissions from managed soils								
OVERALL SUMMARY								
Construction		() kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		0 kg CO ₂ e	0 kg C0
Forage and cereal sub-activities			<u> </u>					
Energy generation and consumption activities		2.81E+09	9 kg CO ₂ e	2.81E+09 kg CO ₂ e	0 kg CO ₂ e		8.15E+08 kg CO ₂ e	1.04E+09 kg C
O&M activities) kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		0 kg CO ₂ e	0 kg C
Cereal activities								
Forage activities								
Feedlot and pasture activities		3.20E+06	5 kg CO ₂ e	3.20E+06 kg CO ₂ e	0 kg CO ₂ e		1.40E+08 kg CO ₂ e	1.40E+08 kg C0
Cow activities (transportation)		2.49E+07	$kg CO_2 e$	2.49E+07 kg CO ₂ e	$0 \text{ kg CO}_2 \text{e}$			
Bull activities (transportation)		3.14E+06	s kg CO₂e	3.14E+06 kg CO ₂ e	0 kg CO ₂ e		1.09E+08-b= CO =	1.09E+09.1++.00
Calf-fed system activities (transportation)							1.08E+08 kg CO ₂ e	6 59E+07 kg CC
can-ice system activities (transportation)							0.551 107 kg CO ₂ e	0.551 W Kg CC
Total GWP for BMP								
	kg CO₂e	1.22E+10	Cow/Calf				4.90E+09 Feedlot	
Total Change in GWP for BMP	ka 60 a				0.00			
	kg CO ₂ e				0.00			
Total change in emissions		-853,667	tonnes					
Overall Baseline GWP (2001)	her CO aller live weight	14 505						
	kg CO ₂ e/kg live weight	14.705						
Overall Baseline GWP (2010)								
	ka CO₂e/ka live weiaht	14,705	This BMP	not currently adopted				
				,,,				
Overall BMP GWP								
	kg CO₂e/kg live weight	14.299						
Change in overall GWP from 2001								
	kg CO₂e/kg live weight	-0.406						
Change in everall CM/D from 2010								
Change in overall GWP from 2010	ka CO o/ka livo woiabt	0.406						
	kg CO2e/kg live weight	-0.406						
Change in GWP per kg of beef affected from 2010								
	kg CO₂e/kg live weight	-1.513		(total change in GHG en	nissions divided by total v	weight of cattle affected)		

Notes:

Energy generation emissions divided by the number of cattle on cow/calf vs feedlot Feedlot and pasture activities are divided as per below.

BMP 4 - APPROACH 1 - BENEFITS AND COSTS

1.31E+08 kg CO ₂ e 3.06E+09 kg CO ₂ e 3.01E+08 kg CO ₂ e 2.82E+08 kg CO ₂ e	1.44E+08 kg CO ₂ e 3.56E+09 kg CO ₂ e 3.27E+08 kg CO ₂ e 3.06E+08 kg CO ₂ e	-1.30E+07 kg CO ₂ e -5.02E+08 kg CO ₂ e -2.56E+07 kg CO ₂ e -2.40E+07 kg CO ₂ e
0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
8.15E+08 kg CO ₂ e	1.04E+09 kg CO ₂ e	-2.23E+08 kg CO ₂ e
0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
1.40E+08 kg CO2e	1.40E+08 kg CO2e	-4.66E+05 kg CO2e
Ŭ		
1.08E+08 kg CO2e	1.08E+08 kg CO ₂ e	0 kg CO ₂ e
6.59E+07 kg CO ₂ e	6.59E+07 kg CO ₂ e	0 kg CO ₂ e

-7.88E+08

Change (change)

-1.60E+09 kg

(unit)

BMP 4	Basel	. (0001/001		
		ine (2001/201	.0)	Change
(amount) (uni	t) (amo	unt) (uni	t) (chang	ge) (unit)
9.08E±08.kg.CO	0 95	7E±08 kg CC	1.08	E+07 kg CO a
3.03E+06 kg CO	2e 9.0	5E+06 kg CC	-4.90	$E+07$ kg CO_2e E+05 kg PO og
2.22E+08 kg CO	4-eq 4.1	6E+00 kg10	4 - eq -2.21	E+05 kg I O ₄ -eq
-2.22E+08 kg CO	20 -2.3	OE + 08 kg CC	¹ ₂ e 1.50	$E+07$ kg CO_2e
1.91E+08 kg CO	2e 1.8	9E+08 kg CC	² e 1.71	$E+06$ kg CO_2e
1 20E+09 kg CO	e 12	0E+09 kg CC	e _2 39	E+05 kg COve
1.20E+09 kg CO	20 1.2	oll of Kg CC	- <u>2</u> e <u>2</u> .55	1.00 kg co2c
3.41E+08 kg CO	he 3.3	8E+08 kg CC	be 3.13	E+06 kg CO2e
2.59E+08 kg CO	be 2.8	6E+08 kg CC	be -2.74	E+07 kg CO ₂ e
2 97E+08 kg CO	e 30	4E+08 kg CC	be -6.70	E+06 kg CO ₂ e
	20 0.0	ng ee	22 0010	

2.98E+09 Beef Industry

-6.54E+07

APPENDIX I

BMP 5 – USE OF BEEF ANIMALS POSSESSING SUPERIOR RESIDUAL FEED INTAKE GENETICS

ACTIVITY MAPS AND DATA COLLECTION

		Legend:
		Activity
		New Activity for BMP Implementation
		Activity - Affected by BMP Implementation
		Activity - Not Included
		Functional Unit
		FIGURE BMP 5a
DIVIF #3 - SUFERIOR RESI	LIFE CYCLE AS	SESSMENT - BEEF
	ALBERTA AGRICULTURE AND RURA	AL DEVELOPMENT Edmonton, Alberta

New Activity for BMP Implementation
Activity - Affected by BMP Implementation
Activity - Not Included
Functional Unit

FIGURE BMP 5b

ACTIVITY MAP BMP #5 - SUPERIOR RESIDUAL FEED INTAKE GENETICS IN BREEDING ANIMALS LIFE CYCLE ASSESSMENT - BEEF ALBERTA AGRICULTURE AND RURAL DEVELOPMENT Edmonton, Alberta

Cattle tested and capacity of existing testing facilities

References

Cattle tested for RFI from 2000 to end of 2008 in Alberta (steers, heifers, cows, bulls)	4,300			Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification protocol. Part B. Posciud from Emmanuel Laste via amail on October 20, 2010.
Potential breeding bulls tested for RFI in Alberta from 2000 to November 2008	1,220			Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification protocol Part B. Received from Emmanuel Laste via email on October 20, 2010
Yearly average (2000 - 2008)	136	avg potential b	preeding bulls tested/y	T
Tested animals from 2000 to 2010 (estimate):		01	0 ,,	
2000	111	Assumed avera	age for 2000-2008 for ye	ear 2004, and increased/decreased average to assume values for other years
2001	117			
2002	123			
2003	129			
2004	136			
2005	143			
2006	150			
2007	157			
2008	165			
	total 1,231	similar to abov	ve total	
2009	174	Assumed base	d on above increase	
2010	182	Assumed base	d on above increase	
	Primary	Number of	Annual	Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with
Existing Testing Facilities	Purpose	Nodes	Capacity	selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment
			(head of cattle)	and Alberta Agriculture and Rural Development.
Lacombe Research Centre, Lacombe (ARD)	Research	16	224	
Kinsella Ranch, Kinsella (University of Alberta)	Research	20	280	
Lethbridge Research Centre, Lethbridge (Agriculture and Agri-Food Canada)	Research	36	504	
Cattleland Feedyards, Strathmore	Commercial	40	560	
Namaka Farms, Strathmore	Commercial	28	392	
Olds College, Olds	Commercial	10	140	
Morrison's Feedlot, Airdrie	Commercial	29	406	
Notes: This is a conservative annual estimate.				
The Kinsella Ranch is expected to expand to 140 nodes with an annual capacity of	1,000 head of cattle (re	esearch testing	facility - won't affect th	ae model).
Estimated potential breeding animals tested in 2010/2011	110	bulls		
(numbers for Namaka Farms and Olds College only)	320	steers		
(numbers unknown for Cattleland Feedyards and Morrison's Feedlot)	180	heifers		
Percent of genetic improvement in a herd that comes from the sires	80-90	%		Agri-Facts. Residual Feed Intake (Net Feed Efficiency) in Beef Cattle. July 2006. Available at: http://www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/agdex10861/\$file/420 11-1.pdf
Assume all future cattle tested are potential breeding bulls as this is the majority.				Discussions with John Basarab (ARD, Industry Expert), November 19, 2010.
Estimated potential breeding bulls tested in 2010	430	potential bulls	to be tested in 2010	
(bulls and steers anticipated to be tested at Namaka Farms and Olds College, from above Assume that testing occurs before the breeding cycle in June/July every year (post-w	eaning)			
Test period length	21 70	days pre-condi days testing	itioning	
Cattle tested after weaning. Assume right before backgrounding. **cow/calf operation to pay for testing				

w/call operation to pay ng

Rate of Adoption of Practice

Currently no reliable available data on adoption levels and rates for the Alberta Beef Sector (for both the cow/calf and feedlot sectors) Calculations to be based on capacity of existing facilities, not anticipated rate of adoption.

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

References Annual capacity of commercial testing facilities 1,498 potential bulls (assuming 2 tests per year at each facility, and assumes this is the only testing being conducted at these facilities year round) 28.7 % % of capacity currently being tested for (2010) Assume that total capacity is being utilized as of 2010 1,498 potential breeding bulls tested/year (after 2009) Percentage of tested cattle with low RFI and low RFI values Every group of cattle tested will show 10-15% of cattle with good (low) RFI values Assumed percentage of cattle tested with low RFI 12.5 % Discussions with John Basarab (ARD, Industry Expert), November 19, 2010. Potential breeding bulls - assumed low RFI value (minimum) -0.5 kg DM/day Discussions with John Basarab (ARD, Industry Expert), November 19, 2010. Potential breeding bulls - assumed low RFI value (maximum) -1.0 kg DM/day Discussions with John Basarab (ARD, Industry Expert), November 19, 2010. Run 1 scenario assuming max value Herd et al. Reducing the cost of beef production through genetic improvement in residual feed Postweaned cattle - low RFI value (8-12 months of age) -0.54 kg DM/day intake: Opportunity and challenges to application. J. Anim. Sci. 2003, 81: E9-17. (actual values to be calculated) Herd et al. Reducing the cost of beef production through genetic improvement in residual feed Cows - consumed no more feed with low RFI - no change in model intake: Opportunity and challenges to application. J. Anim. Sci. 2003, 81: E9-17. Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with There are very few studies on RFI in cattle on pasture because it's difficult to measure. selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment In one study, low RFI females had lower DMI as pregnant heifers and as cows with calves, however the differences and Alberta Agriculture and Rural Development. were not significant relative to the high RFI females. Assume that the DMI of cows on pasture is not lower for low RFI cows than for high RFI cows. Steers on pasture - daily pasture intake the same but slightly higher daily gain - assume no change to model Herd et al. Reducing the cost of beef production through genetic improvement in residual feed intake: Opportunity and challenges to application. J. Anim. Sci. 2003, 81: E9-17. Steers in feedlot - low RFI value -0.2 kg DM/day Herd et al. Reducing the cost of beef production through genetic improvement in residual feed - no compromise in retail meat yield intake: Opportunity and challenges to application. J. Anim. Sci. 2003, 81: E9-17. (actual values to be calculated) Calculations for the model - Model to be run assuming -0.5 kg DM/day and -1.0 kg DM/day for bulls (min and max low RFI values) (2 scenarios) - Low RFI values for bulls assumed to be certified RFI EBV, as no actual data available for Alberta to date - Apply the low, medium and high heritability to the progeny of the low RFI sires (3 - Dam RFI EBV are not known, therefore to be assumed zero - Calculate the RFI EBV for the steers and heifers from the low RFI bulls assumed to have inherited the trait (add the sire RFI EBV with the dam RFI EBV and then divide by 2 to get the steer/heifer RFI EBV) (use the RFI EBV for the heifer/steer and apply it to the diet to calculate the reduction in feed required) - Calculate the reduction in feed intake by the bulls Effect on later generations

Number of bulls in 2001 model	109,428
Number of calves in 2001 model	2,113,345
Number of calves to one bull	19 calves from 1 bulls per calf crop

Methane abatement resulting from anticipated adoption of RFI in breeding programs within the Australian beef industry over the next 25 years (genetic-based simulation for Australia over the next 25 years):

- Rate of genetic improvement in the northern beef herd

Assume this will remain constant

Alford, A.R. et al. The impact of breeding to reduce residual feed intake on enteric methane emissions from the Australian beef industry. Australian Journal of Experimental Agriculture, 2006, 46, 813-820.

		References
- Rate of genetic improvement in the southern beef herd	0.76 % per year	
 Maximum adoption percentage achieved by year 11 Note: exponential increase from year 1 to year 11, then plateaus when adoption levels stop at 30% 	30 %	
 Reduction in RFI in commercial herd in southern Australia for various classes of beef cattle 11. Note: values are sensitive to the level of annual genetic gain and the pattern of adoption among Au 	22-21.48 % ıstralian beef producers	
 Cumulative decrease in enteric methane production over the 25 year simulation period Annual methane reduction over an unimproved herd for year 25 	7.4 % 15.9 %	
Calculations for the model: - cannot assume similar benefit over time for Alberta when selecting breeding animals based on supe	rior genetics as proven in this simulation model, b	ut anticipated to occur
Transportation to testing facility - assumed for all transportation distances involved with the testing of cattle	200 km (average, maximum)	Discussions with John Basarab (ARD, Industry Expert), November 19, 2010.
Heritability to include high, medium and low values		
Range of low RFI heritability	16 - 39 %	Notter, David R. Defining Biological Efficiency of Beef Production. Department of Animal and Poultry Sciences. Virginia Polytechnic Institute and State University; and, Arthur et al., Residual fed intake in beef cattle. R. Bras. Zootec. v 37. supplemento especial p269-279. 2008
Assumed low heritability	16 %	
Assumed medium heritability	27.5 %	
Assumed high heritability	39 %	
Assume high heritability only in model		
Change in gas, diesel, and electricity usage on feedlots for reduced feed time Note: Energy required to feed animals in the baseline is included in the total energy used on beef farms in Albert	a. Changes to energy requirements to be calculated.	
Total diesel used on all beef farms (cow/calf and feedlot)	8,361 TJ	From Beef Data tab
Total reduction in feed requirements (Cow/calf and feedlot) 0.0	000664%	From Diets tab
Assume same reduction in diesel fuel used on feedlots	0.1 TJ reduced	
Revised diesel energy requirements	8,361 TJ used	
Note: Assume that diesel is the fuel used to operate the machinery to feed cattle and this will be the main source	of energy that is reduced	
Change in gas and diesel for manure handling on feedlot Note: Energy required to collect manure in the baseline is included in the total energy used on beef farms in Alb Assume same for backgrounding feedlots.	erta. Changes to energy requirements to be calculated.	
Manure collection and handling		
Diesel consumption for a tractor	16.6 L/hr	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
Number of feedlot cattle in reference	50,000 cattle	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
Pens with 250 head/pen in reference	200 pens	Journal of Green Energy, <i>3</i> : <i>3</i> , <i>257-270</i> . Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International Journal of Green Energy, <i>3</i> : 3, 257-270.

		References
Time to pile up manure in pen in reference	60 min/pen two times per year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
		Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
		Journal of Green Energy, 3: 3, 257-270.
	400 hrs/yr	
Diesel required per year	6,640 L/yr	
CO ₂ emission factor for truck diesel consumption	2,569 g CO ₂ /L	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
		Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
		Journal of Green Energy, 3: 3, 257-270.
CH ₄ emission factor for truck diesel consumption	0.21 g CH ₄ /L	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
		Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
		Journal of Green Energy, 3: 3, 257-270.
Total emissions from manure collection (calculated based on data)	17.09 tonnes CO_2e/yr	
Total emissions from manure collection (total provided in reference)	1,172 tonnes CO ₂ e/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
		Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
		Journal of Green Energy, 3: 3, 257-270.
(Total emissions calculated using data from reference different than total emissions provided in reference.		
Only raw data from reference will be used to calculate emissions in model.)		
Quantity of manure (in reference)	58,700 tonne dry manure/year	Ghafoori, Emad, Flynn, Peter C. and Checkel, M. David (2006). Global Warming Potential of
		Electricity Generation from Beef Cattle Manure: A Life Cycle Assessment Study. International
(Alberta Darf I CA model word arms reference to another manual)		Journal of Green Energy, 3: 3, 257-270.
(Alberta beef LCA model used same reference to quantify manure)		
Emission faster for the combustion of discelin emissiburgheast Alberta Boof I CA	2.28 ha CO a (ha diasal	Internet out the Deniel on Climate Change (IDCC), 2006 (IDCC Could lines for National
Emission factor for the combustion of dieser in agricultural equipment - Alberta beer LCA	$5.28 \text{ kg CO}_2\text{e}/\text{ kg diesei}$	Intergovernmental Panel on Climate Change (IPCC). 2006 IPCC Guidelines for National
lliodel		http://www.inco
		nggin iges or in/nublic/2006gl/ndf/2 Volume2/V2 3 Ch3 Mobile Combustion ndf
Density of diesel	0.885 kg/I	Simetric Specific Gravity of Liquids Available at: http://www.simetric.co.uk/si_liquids.htm
	3.71 kg COse/L	onicule: openic on any of Equator Translet at http:// """"""
Total emissions from manure collection using the LCA model emission factor	24 61 toppes/vr	
(comparable to emissions calculated using reference data)		
Total amissions from manure collection per animal per day	0.00125 kg/animal/day	
rotal emissions from manure concerton per animal per day	0.00155 Kgammayuay	

Change in quantity of agricultural plastics for change in feed

Current agricultural plastics disposal methods

- Burning is still the most prominent method of getting rid of agricultural plastics (2008)

Recycling Council of Alberta. Agricultural Plastics Recycling Pilot Project. Summary Report, September 2009. Available at: http://www.recycleyourplastic.ca/pdf/Ag_Plastics_Pilot_Report.pdf

- There is little industry capacity to handle agricultural plastics in Alberta

- Pilot recycling program conducted in Alberta in 2008 to understand the amount, type, and quality of used agricultural plastics and the capacity of industry to use it

- Alberta Beef LCA baseline model assumed the same as the current situation for the handling of agricultural plastics (burning and burying)

- No change in the disposal of plastics

- Total change in plastics will be calculated based on percentage of total change in feed

Additional Assumptions

An animal assessed early in life to be efficient (low RFI) will be efficient throughout its life.

Linear responses up to 38 generations were reported for a mice experiment at the University of Nebraska with feed efficiency selection. It is expected that responses due to superior RFI genetics in beef cattle will be seen for a long time. Assume responses for selection during entire analysis time.

Cows that produced low RFI progeny calved 5-6 days later than cows that produced high RFI progeny. 57586-BMP 5-Years 2010-2011

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

Assumed to have minimal effect on the overall model. Not included.

It will be assumed that the sector in which raises the cattle will be able to obtain carbon credits for the time the cattle is spent at this location. This is not specified in the Draft RFI Selection Protocol.

Effects on Meat Yield and Market with BMP Implementation

Significant	differences in	body com	position	between	low RFI	and high	ι RFI	cattle

- 1. Internal organs (increase by approximately 0.5%)
- 2. Carcass fat (decrease by approximately 1.4%)
- 3. Bone (increase by approximately 0.4%)

Significant differences in meat attributes between low RFI and high RFI cattle

- 1. 12/13th rib fat depth (decrease by approximately 0.9mm)
- 2. Calpastatin (increase by approximately 0.6 units/g tissue)

Conclusion: there is a significant difference in percent carcass fat but not in percent retail beef.

Assume no change in final slaughter weight or market value.

Profitability is maximized when 10 to 20% of the potential breeding bulls are measured.

Change in labour

Average reduction in feed based on reduced feed intake by low RFI cattle		
barley	-0.00065 %	From Diets tab
barley silage	-0.00070 %	From Diets tab
alfalfa	-0.00063 %	From Diets tab
overall	-0.00066 %	From Diets tab
Reduction in feed overall is significantly less than 1%; therefore, assume that there	e would be minimal change in labour if any.	
Price Information		
Average farm hand wage	16.22 \$/hr	WAGEinfo, Alberta Wage and Salary Survey, 2009 data. Available at: http://alis.alberta.ca/wageinfo/Content/RequestAction.asp?aspAction=GetWageDetail&form at=html&RegionID=20&NOC=8431
Purchase of barley	161.38 \$/tonne	Lethbridge Barley Price, Alberta Grains Council, Alberta Canola Producers Commission. Weekly Average from 2005 to 2010
	0.16 \$/kg	
Purchase of barley silage	40 \$/tonne 0.04 \$/kg	Based on a conversation with a local dairy farmer on January 3, 2011.
Purchase of alfalfa/grass hay (alfalfa per ton)	124.44 \$/ton	Internet Hay Exchange. Hay Price Calculator. Available at: http://www.hayexchange.com/tools/ave_price_calc.php.
	137.17 \$/tonne	
	0.14 \$/kg	

24.2 \$/ton

Purchase of bedding (model assumes 100% straw bedding used) (Straw estimate for 2010) Wheat straw (fertilizer costs)

57586-BMP 5-Years 2010-2011

References

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

Arthur, Paul. Science Discussion Paper: Reduction in greenhouse gas emissions associated with selection for residual feed intake in beef cattle in Alberta. Submitted to: Alberta Environment and Alberta Agriculture and Rural Development.

Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514

What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and

		References
	26.7 \$/tonne	
Barley and oat straw (fertilizer costs)	32 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at:
	35.3 \$/tonne	www.iagic.gov.ab.ca/ sucparticler/ ucprocessis/ ai/ iag/ 514
Pea straw (fertilizer costs)	30 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www.l.agric.gov.ab.ca/\$department/deptdocs.psf/all/fag7514
	33.1 \$/tonne	······································
Canola straw (fertilizer costs)	22.6 \$/ton	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www.l.agric.gov.ab.ca/\$department/deptdocs.psf/all/fag7514
	24.9 \$/tonne	
Average weight of straw bale	450 kg	0
Baling costs	9.00 - 11.50 \$/large round bale	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	10.25 \$/large round bale	Average
	0.023 \$/kg	
	22.78 \$/tonne	
Hauling and stacking	2.00 - 3.00 \$/large round bale	What is Straw Worth? - Frequently Asked Questions. Ag-Info Centre, Alberta Agriculture and Rural Development. Available at: www1.agric.gov.ab.ca/\$department/deptdocs.nsf/all/faq7514
	2.5 \$/large round bale	Average
	0.0056 \$/kg	
	5.56 \$/tonne	
Average price (wheat straw)	55.01 \$/tonne	
Average price (barley and oat straw)	63.61 \$/ tonne	
Average price (pea straw)	61.40 \$/ tonne	
Average price (canola straw)	53.25 \$/ tonne	
Average price for straw	58.52 \$/ tonne	
	0.058 \$7 kg	
Purchase of min., trc min., cobalt, protein suppl., vit., antibiotic for feedlot		
32% Feedlot Supplement (pellets with monensin)	11.89 \$/25 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 2011 and phone call with UFA on January 4, 2011.
	0.48 \$/kg	
Vitamins (A-D-E Premix) for feedlot		
Mash	24.99 \$/20 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 201
Crumble	30.00 \$/20 kg	UFA Limited. Available at: http://ufa.com/products/product.html. Accessed on January 3, 201
Average	27.50 \$/20 kg	
	1.5/	
Purchase of manure	0 \$/kg	Government of Alberta. Agriculture and Rural Development. Manure and Compost Directory. Available at: http://www.agric.gov.ab.ca/app68/manure. Accessed on January 3, 2011.

Page 7 of 8

BMP 5 - DATA

			References
Calgary, AB		80.7 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Edmonton, AB		77.5 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at: www.ufa.net/petroleum/rack_pricing.html
Ultra Low Sulphur Diesel Lite (ULSD-LT)			······································
Calgary, AB		84.2 cents/L (excluding taxes)	UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at:
Edmonton, AB		81.0 cents/L (excluding taxes)	www.ufa.net/petroleum/rack_pricing.html UFA Petroleum. Rack Prices. December 18 to December 20, 2010. Available at:
Δυστοπο		20.25 cents/I (evoluting taxes)	www.ufa.net/petroleum/rack_pricing.html
Fuel tax rates (diesel - all grades) (April 1, 2007 to current)		9 cents/L	Alberta Tax and Revenue Administration - Current and Historic Tax Rates Available at:
ruer astrates (dieser an grades) (riphi 1, 200, to cartein)		y consy 2	www.finance.alberta.ca/publications/tax_rebates/rates/hist1.html#fuel
Alberta Farm Fuel Benefit Program and Farm Fuel Distribution Allow	vance (taxes)	-15 cents/L	Alberta Finance and Enterprise. Taxes & Rebates - Fuel Tax Overview. November 23, 2010. Available at: www.finance.alberta.ca/publications/tax_rebates/fuel/overview.html
Fuel tax is exempted for diesel used on farms and a subsidy of	6 cents per L of diesel is prov	vided	
Average diesel price minus Alberta programs		0.75 \$/L	
Fuel consumption (Lorry >32t EURO4)		244.00 g/km	Ecoinvent. Transport Services. Data v2.0. Report No. 14. December 2007.
Testing costs			
Alberta Environment. Selection for residual feed intake in beef cattle	quantification protocol. Draf	ft Version 2.0. September 2009.	
Conductor de la condition DET la condition d'according de la constant	(
- assuming no AI for this model as this is not	the most prevalent method fo	ns or breeding used in Alberta	
Cow/calf operation - purchase low RFI breeding stock and use - majority of progeny sold to backgrounding	es them in matings g/finishing feedlots for a prer	mium	
Model lumps cow/calf operations and seedstock producers to	gether as the number of bulls	is much lower than the number of cows in the A	Alberta beef system.
Cattle tested between 8 and 13 months of age. Assume all test	ed in January at 8 months of a	age - assume that all cattle sent and paid for by c	row/calf operation.
Carbon credits - available for first progeny only and for low RI	FI EBV bulls.		
- ownership/title to emission reduction offsets a	re established through contra	icts	
- if credits are included in this analysis, assume t	that the owner of the cattle at	the time where credits can be achieved will obta	ain those credits
RFI testing cost in Alberta (2009 cost)		1 \$ CAD/head/day	Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification
Testing period		91 days	protocol. Fart b. Received from Eminantiel Laate via email on October 20, 2010.
Total testing cost		91 \$ CAD/head	
Premiums for low RFI cattle			
Low RFI bull - premium price over standard bull		153 \$ AUD	Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification
(equivalent to recoup the cost of testing in 2-stage selection program	n and paving AUD	100 \$ 1100	protocol. Part B. Received from Emmanuel Laate via email on October 20, 2010.
300 for testing each bull for RFI)	170-		•
- ,	1 Australian dollar	= 0.982755387 Canadian dollars	Google website. January 17, 2011.
	1 Australian dollar	= 0.84 Canadian dollars	Australian Dollar. Exchange Rates. March 18, 2009. Available at:
2009 conversion		129 \$ CAD/head	http://aud.exchangerates24.com/cad/history/2009-03-18/
US Data:			

57586-BMP 5-Years 2010-2011

BMP 5 - DATA		
Premium paid for bulls with low RFI in the US (this includes the savings from all the potential calves born from this bull over his life)	124 \$ US/lb of improvement per day	References McDonald, Tyrel James. Searching for the ultimate cow: the economic value of RFI at bull sales. Masters Thesis for Montana State University, Bozeman, Montana. March 2010. Available at: http://etd.lib.montana.edu/etd/2010/mcdonald/McDonaldT0510.pdf.
Low RFI value for this model Premium for low RFI bull 1 US dollar	273 \$ US/kg of improvement per day -1.0 kg DM/day 273 \$ US/head = 0.987098621 Canadian dollars 270 \$ CAD/head	Google website. January 17, 2011.
Average premium for low RFI bulls from Australia and US	199 \$ CAD/head	Calculated
Reduction in price to feed calves from low RFI sires for finishing diet	8.50 \$ CAD/head 50 - 70 \$ US/head	AGCanada.com Study Says Low RFI Bulls Sire Feed-Efficient Calves. December 7, 2009. Available at: http://www.agcanada.com/Article.aspx?ID=14638 Progressive Cattleman. The quest for efficiency: South Dakota breeder sees big potential with RFI system. Available at: http://www.progressivecattle.com/index.php?option=com_content&view=article&id=3554:th e-quest-for-efficiency-south-dakota-breeder-sees-big-potential-with-rfi- system&catid=93:featured-main-page
Currently, there are no premiums being paid in Alberta for low RFI cattle. Cattleland number of clients requesting RFI testing because of insufficient economic incentive. O Alberta right now such as carcass quality or breed characteristics, where premiums cou The interest in this breeding scheme has not grown over the past couple of years; how	Feedyards have had 2 years of decreases in the Other characteristics are being pursued in 11d be achieved. ever, if the Alberta Protocol for greenhouse gas	Phone call with William (research manager at Cattleland Feedyards) on January 17, 2011.
offsets gets approved, the economics for RFI testing may change the way beef is produ	aced in Alberta.	
" As a cow-calf producer and feeder, Stuart Thiessen of Namala Farms near Strathmore, has al their own calves. 'I really hope RFI will work and we can make it fit into the production syster reward low RFI cattle,' he says. 'If the market pulls it, cow-calf producers will look for low RF	ready installed GrowSafe feed bunks to test m. The challenge will be how the market will I bulls.'	AGCanada.com Study Says Low RFI Bulls Sire Feed-Efficient Calves. December 7, 2009. Available at: http://www.agcanada.com/Article.aspx?ID=14638
He foresees the day when buyers will be willing to pay more for low RFI calves. But to get the cross-herd scoring system to understand which herds are different from others.	ere from here, he says, will require some sort of	
'Assuming RFI works, we will be able to improve production and not hurt what our customer something to be said for good marketing - you have to have good production numbers.' "	s want. At the end of the day - though there's	
Negative cash flow anticipated for the first 10 years of investing in RFI superior genetics. Cost of testing is expected to decrease over time.		Technical Protocol Plan (TPP) for Selection for residual feed intake in beef cattle quantification protocol. Part B. Received from Emmanuel Laate via email on October 20, 2010.
Calculation changes to the model - Adjust feed requirements based on the above information for steers, heifers, replacement hei - Calculate less garbage for less feed used - Adjust enteric formentation emissions and manure emissions calculations to account for red-	ifers, and bulls used DMI of steers, beifers, replacement beifers, and bull	Is
request circulation childshold and manufe circulations to account for real	acca 2.1.11 of succes, functio, replacement functio, and buil	

- Reduce total manure generation based on feed intake
- Reduce energy requirements for feeding cattle and manure collection
- Modify transportation for calf-fed and yearling-fed systems to exclude cattle to be tested
- Include additional transportation for cattle to be tested

BMP 5 - CALCULATIONS FOR MODEL	Adjust everything on the Summary Tab to Update these Calculations
According to the Alberta Environment (September 2009), Selec Credit duration - first generation only within Alberta's ej Reductions may be claimed on the animals with low RF1 Animals in the project condition have EBVs computed us Therefore, EBVs for 2002 are set to zero (baseline year	tion for Residual Feed Intake in Beef Cattle Quantification Protocol Draft Version 2.0: ph year crediting period. EBV's and their first generation progeny only. ing a specified year as the base year or beginning of the project. The mean EBV of a particular trait is set to zero for all the animals born in that year or earlier. for protocol).
Culling/replacement rate for bulls (US) Culling/replacement rate for beef cows (from model) Assume both bulls and cows are in the beef system for 4 y Replacement rate of calf crop	25 % 17 % ears 12 %
Low RFI Values Assumed minimum low RFI value Assumed maximum low RFI value	-0.5 kg DM/day -1.0 kg DM/day
Heritability Assumed low heritability Assumed medium heritability Assumed high heritability	16 % 275 % 39 %
Breeding bulls Low RFI value (reduction in DMI) Estimated mean DMI (from model) (base year) Percent change in DMI between project and baseline	-1 kg DM/day assumed average certified RF _b EBV of sizes 13.61 kg DM/day -7.35 %
Assumed dam RFI _p EBV Heritability	2.20 Fig DM/ (day 0.00 Eg DM/ (day 39 %
Example Calculation (-0.5 kg DM/day RFI for sire): Assigned RFI ₂ EBV to steers and heifers = r steers and heifers with low RFI genetics) = % Change : =	[(Sire RFl _p EBV) + Dam RFl _p EBV)] / 2 [(-0.5 kg DM/day) + (0 kg DM/day)] / 2 - 0.25 kg DM/day [(RFl _p EBV) / (Base Year mean DMI)] * 100 [(-0.55 kg DM/day) / (13.61 kg DM/day)] * 100 - 1.8 %
Model Calculation: Calculated RFI EBV for steers and heifers = % Change ! =	-0.5 kg DM/day -3.7 %
Eorthis model: Calf Crop (birth year) 20' Calf Crop (slaughter year) 20' Bulls # # bulls tested 11'	10 11 52
# bulls tested with low RFI Total bulls with low RFI in system Bull RFI RRV 1 % reduction in DMI 7 Replacement Bulls # replacement bulls with low RFI	23 55 56 (Jkg DM/day 55 %
Replacement bull RFI EBV -0.1 % reduction in DMI -3.4 Cows/Replacement Heifers 2 # cows/replacement heifers with low RFI 22 Replacement heifer RFI EBV -0.1 % reduction in DMI -3.3	50 kg DM/day 57 % 54 50 kg DM/day 57 %
Calves Calf-fed steers born with low RFI 12 Calf-fed heifers born with low RFI 11 Yearling-fed steers born with low RFI 13 Yearling-fed heifers born with low RFI 12 Calf RFI EBV -00 % reduction in DMI for calves -34	28 199 56 33 55 kg DM/day 57 %

				kg DM/day	% CALVES	S BORN FROM		kg DM/day	%						L	OW RFI - CALF-I	FED CATTLE					LOW RFI - YEAR	LING-FED CATTL	E	
			LOW RFI - BU	JLLS	LOW	W RFI BULLS	LC	W RFI - CALVES BORN		LOW RFI - REPLAC	EMENT HEIFERS	LOW RFI - REPLA	CEMENT BULLS		STEERS			HEIFERS			STEERS			HEIFERS	
Yea	r #bull	s # bulls tested	Total bulls with	Calculated % r	duction in # of calve	es (1st generation)	# of calves (1st generation)	Calculated RFI EBV	% reduction in DMI	#1st generation calves	Cows/Replacement	# 1st generation calves	Replacement bulls	# 1st generation	Low RFI	Low RFI	# 1st generation	Low RFI	Low RFI	#1st generation	Low RFI	Low RFI	# 1st generation	Low RFI	Low RFI
	tested	with low RFI	low RFI in beef	RFI EBV	DMI from	n low RFI bulls	from low RFI bulls	1st generation calves	for calves born	used for replacement	heifers with low RFI	used for replacement	with low RFI	calves	Calf-fed steers	Calf-fed steers	calves	Calf-fed heifers	Calf-fed heifers	calves	Yearling-fed steer	SYearling-fed steers	calves	Yearling-fed heife	. Yearling-fed heifer
			system (cull rate 25%)		(calf crop	p from bulls-4 yrs)	with low RFI genetics	with low RFI genetics		heifers	adjust diet - total 4 yrs	bulls	adjust diet - total 4 yrs	calf-fed steers	Birth Year	Slaughter Year	calf-fed heifers	Birth Year	Slaughter Year	yearling-fed steers	Birth Year	Slaughter Year	yearling-fed steers	Birth Year	Slaughter Year
200	0 111	14	14	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	1 117	15	28	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200	2 123	15	30	-1.0	-7.35	540	210	-0.5	-3.67	24	24	1	1	45	45	0	38	38	0	55	55	0	47	47	0
200	3 129	16	31	-1.0	-7.35	568	221	-0.5	-3.67	25	25	1	1	47	47	45	40	40	38	58	58	55	49	49	47
200	4 136	17	48	-1.0	-7.35	598	233	-0.5	-3.67	27	52	1	2	50	50	47	43	43	40	61	61	58	52	52	49
200	5 143	18	66	-1.0	-7.35	921	359	-0.5	-3.67	41	93	2	4	77		50	66	66	43	94	94	61	80	80	52
200	6 150	19	70	-1.0	-7.35	1,260	491	-0.5	-3.67	56	149	3	7	105	105	77	90	90	66	128	128	94	110	110	80
200	/ 15/	20	73	-1.0	-7.35	1,325	516	-0.5	-3.67	59	183	3	9	110	110	105	94	94	90	135	135	128	115	115	110
200	5 165	21	77	-1.0	-7.35	1,392	542	-0.5	-3.67	62	218	3	11	116	116	110	99	99	94	141	141	135	121	121	115
200	9 174	22	81	-1.0	-7.35	1,461	569	-0.5	-3.67	65	242	3	12	122	122	116	104	104	99	149	149	141	127	127	121
201	182	23	85	-1.0	-7.35	1,534	598	-0.5	-3.67	68	254	4	13	128	128	122	109	109	104	156	156	149	133	133	12/
201	1 1,498	187	252	-1.0	-7.35	1,611	628	-0.5	-3.67	71	266	4	14	134	134	128	115	115	109	164	164	156	140	140	133
201	2 1,498	187	419	-1.0	-7.35	4,795	1,870	-0.5	-3.67	213	41/	11	22	399	399	134	341	341	115	488	488	164	417	417	140
201	5 1,498	187	585	-1.0	-7.35	7,960	3,104	-0.5	-3.67	353	705	18	37	663	663	399	567	567	341	810	810	488	693	693	41/
201	4 1,498	187	749	-1.0	-7.35	11,106	4,551	-0.5	-3.67	495	1,150	20	59	925	925	665	791	791	567	1,150	1,150	810	967	967	695
201	5 1,498	187	749	-1.0	-7.35	14,231	5,550	-0.5	-3.67	631	1,690	33	88	1,185	1,185	925	1,014	1,014	791	1,448	1,448	1,130	1,239	1,239	967
201	5 1,498	187	749	-1.0	-7.30	14,231	5,550	-0.5	-3.67	651	2,108	33	110	1,185	1,185	1,185	1,014	1,014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
201	7 1,498	187	749	-1.0	-7.30	14,231	5,550	-0.5	-3.67	651	2,580	33	125	1,185	1,185	1,185	1,014	1,014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
201	5 1,498	187	749	-1.0	-7.30	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,185	1,185	1,185	1,014	1,014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
201	1,490	187	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,324	33	132	1,105	1,185	1,185	1,014	1,014	1,014	1,440	1,448	1,440	1,239	1,239	1,239
202	1 1 498	107	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,324	33	132	1,105	1,105	1,105	1,014	1,014	1,014	1,440	1,440	1,440	1,239	1,239	1,239
202	1 1,490	187	749	-1.0	-7.35	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,105	1,185	1,185	1,014	1,014	1,014	1,448	1,448	1,440	1,239	1,239	1,239
202	3 1/98	187	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,105	1 185	1,105	1,014	1,014	1,014	1,448	1,448	1,448	1 239	1,239	1,239
202	1 1 498	187	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,105	1 185	1,105	1,014	1,014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
202	5 1.498	187	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,105	1 185	1,105	1,014	1,014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
202	5 1,490	187	749	-1.0	7.35	14,231	5,550	-0.5	-3.67	631	2,524	33	132	1,105	1 185	1,105	1,014	1,014	1,014	1,448	1,448	1,448	1 239	1,239	1,239
202	7 1,498	187	749	-1.0	-7.35	14.231	5,550	-0.5	-3.67	631	2,524	33	132	1,185	1,185	1,185	1.014	1.014	1,014	1,448	1,448	1,448	1,239	1,239	1,239
202	8 1.498	187	749	-1.0	-7 35	14 231	5,550	-0.5	-3.67	631	2 524	33	132	1 185	1 185	1 185	1 014	1 014	1 014	1 448	1 448	1 448	1 239	1 239	1 239
202	9 1,498	187	749	-1.0	-7.35	14.231	5,550	-0.5	-3.67	631	2,524	33	132	1.185	1,185	1,185	1.014	1.014	1.014	1.448	1.448	1.448	1.239	1,239	1,239
203	1,498	187	749	-1.0	-7.35	14.231	5,550	-0.5	-3.67	631	2,524	33	132	1,185	1,185	1,185	1.014	1.014	1.014	1.448	1,448	1.448	1,239	1,239	1,239
	Note	1	Note 2	Note 3			Note 4	Note 5	Note 5	Note 6	,	Note 6		,	/	,			1 ,000	1 ,000	,	,	,		+

Notes:

Tested postweaning before breeding period. Calves born the following year.
 Assumes 19 calves per bull (as per model) (constant over time)
 Constant value over time. EBVs for replacement heifers cannot be certified as it is assumed that they are not tested (as per Alberta protocol).
 Only first generation calves are included in low RFI calculations (as per protocol). Diets will be adjusted for entire life of animal.
 Values assumed to be constant. No increase in genetics superiority included (too complex for this model).
 Cows are 95% of breeding herd and bulls are 5% (model)

Protocol states that 2002 is the baseline year; therefore, diets before 2002 cannot be adjusted for emissions reductions.

					BMP 5 - H	BENEFITS AND	COSTS				
BMP 5 - Superior Residual Feed Intake (RFI) Genetics in Breeding Ani	mals					Low RFI Val	ues				
Post-weaned animals selected for potential replacement bulls will be teste to reduce feed intake while keeping weight gain constant.	ed for RFI in yearling-fed	l and calf-fed systems. Bu	lls with low RFI will be us	ed as breeding an	imals	Minimu Maximu	m low RFI v m low RFI v	value -0.5 k value -1.0 k	g DM/day g DM/day		
Low RFI value assumed	-1.0 kg DM/da	y (value car	be adjusted here for entir	re model)							
Heritability percentage value assumed	39 %	(value car	be adjusted here for entir	re model)		Heritability	:	16.0	,		
Calf Crop (birth year) Calf Crop (slaughter year)	2010 2011	(value car (value car	be adjusted here for entin be adjusted here for entin	re model) re model)		Medium High her	heritability ritability	27.5 %	0 /0 /0		
Total number of animals		,	,	,			,				
(number of bulls tested this year)	182 bulls										
(number of bulls tested with low RFI this year)	23 bulls						Total GHO	G emissions	2.0981E+10 kg CO2	e	
(total number of breeding bulls with low RFI this year)	85 bulls										
(total number of calves born this year with low RFI)	598 calves						Total acid	ification	3.0760E+07 kg SO2	-Eq	
(total number of calves born per year based on 2001 model)	2,113,345 calves								0.11	-	
(percentage of calves born with low RFI to total this year)	0.03 %						Total eutre	ophication	5.5380E+06 kg PO4	-Eq	
Total weight affected by BMP (to slaughter)	322 tonnes						Total non-	-renewable energy	3.4516E+11 MJ-Eq		
(total slaughter weight not affected) (model has an affect on cow/ca	If and feedlot operations)									
		COW/CALF OPE	RATIONS					FEEDLO	T OPERATIONS		
		,		Per Unit						Per Unit	
	BMP 5	Baseline (2001)	Change	Market Value	Total Impact	BMP	5	Baseline (2001)	Change	Market Value	Total Imp
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount)	(unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million
Inputs with Change											
Production of pesticide/herbicide											
Production of chemical fertilizer											
Production of bedding											
Production of min., trc min., cobalt, protein suppl., vit., antibiotic											
Purchase of chemical fertilizer											
Urea, as N, at regional storehouse											
Ammonia, liquid, at regional storehouse											
Monoammonium phosphate, as P2O5, at regional storehouse											
Monoammonium phosphate, as N, at regional storehouse											
Ammonium sulphate, as N, at regional storehouse											
Purchase of manure for land application											
Purchase of pesticide/herbicide											
Purchase of seed for barley											
Purchase of seed for barley silage											
Purchase of seed for alfalfa/grass hay											
Purchase of water to irrigate crops											
Purchase of amendment materials						C	l kg	0 kg	0 kg	-	-
Purchase of composting equipment (Windrow turner)						C	turners	0 turners	0 turners	-	-
Purchase of construction supplies for composting (clay for pad)						0	units	0 units	0 units	-	-
Purchase of bull with low RFI for breeding (cow-calf) (premium)	23 head	0 head	23 head	\$0	\$0.000						
Sale of bull with low RFI for breeding (seedstock producer) (premium)	-23 head	0 head	-23 head	\$0	\$0.000						
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	-6.59E+04 kg	\$0.14	-\$0.009						
Purchase of barley						4.49E+09	kg	4.49E+09 kg	-3.50E+04 kg	\$0.16	-\$0.006
Purchase of barley silage						7.58E+09	kg	7.58E+09 kg	-2.80E+05 kg	\$0.04	-\$0.011
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0.0 kg	\$0.06	\$0.00	4.22E+08	kg	4.22E+08 kg	0.0 kg	\$0.06	\$0.00

Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0.0 kg	\$0.06	\$0.00	4.22E+08 kg	4.22E+08 kg	0.0 kg	\$0.06	\$0.00
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-					
Purchase of ionophores	0 kg	0 kg	0 kg	-	-					
Purchase of RAC						0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.90E+07 kg	7.91E+07 kg	-3.09E+04 kg	\$0.48	-\$0.015	1.45E+08 kg	1.45E+08 kg	-2.79E+03 kg	\$0.48	-\$0.0013
Purchase of vitamins	1.68E+03 kg	1,684 kg	-9.75E-01 kg	\$1.37	-\$0.0000013	1.76E+05 kg	1.76E+05 kg	-3.61E+00 kg	\$1.37	-\$0.000005
Purchase of RFI testing	182 tests	0 tests	182 tests	\$91	\$0.02	0 tests	0 tests	0 tests	-	-
Fuel/energy required to operate composting equipment						0 kWh or L	0 kWh or L	0 kWh or L	-	-
Fuel consumed to transport barley and barley silage										
Fuel consumed to transport alfalfa/grass hay										
Fuel consumed for cropping activities										
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	\$0.75	\$0.00	0 L	0 L	0 L	\$0.75	\$0.00
Fuel consumed to transport garbage (change)	0 L	0 L	0 L	\$0.75	\$0.00	0 L	0 L	0 L	\$0.75	\$0.00
Fuel consumed to transport bedding (change)										
Fuel consumed to feed livestock (change)	-559 L	0 L	-559 L	\$0.75	-\$0.000419	-1,024 L	0 L	-1,024 L	\$0.75	-\$0.000766
Fuel consumed to collect manure (change)						-11.68 L	0 L	-11.68 L	\$0.75	-\$0.0000087
Fuel cons. to transp. min., trc min., cob., prot. suppl., vit., antibiotic										
Fuel consumed to transport livestock for testing	291 L	0 L	291 L	\$0.75	\$0.0002	0 L	0 L	0 L	-	-
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	0 hrs	0 hrs	0 hrs	-	-
Working capital interest	<mark>0</mark> \$	<mark>0</mark> \$	0\$	-	-	<mark>0</mark> \$	<mark>0</mark> \$	0\$	-	-
Total Input Value Change					-\$0.01					-\$0.02
Outputs with Change										
Manure sold for land application						2.51E+10 kg	2.51E+10 kg	-8.80E+05 kg	\$0.00	\$0.00
Compost sold for land application						0 kg	0 kg	0 kg	-	-
Price for beef to feedlot (purchase or sale) (change)	-598 head	0 head	-598 head	\$0.00	\$0.00	598 head	0 head	598 head	\$0.00	\$0.00
Total Output Value Change					\$0.00					\$0.00

0.00

al Impact

Page 1 of 2

CHANGE IN	OVERALL	GHG EMISSIONS
CILLINGE III	O T LIGHTLL	Ono Emissiono

BEEF ACTIVITIES - SOIL AND CROP Manure generation
Methane emissions from stored manure Enteric fermentation emissions N ₂ O emissions from stored manure (direct) N ₂ O emissions from stored manure (indirect) N ₂ O emissions from cropping and land use Total P emissions from run-off Soil Carbon Change in Soil From Land Use Direct CO2 emissions from managed soils
OVERALL SUMMARY
Forage and cereal sub-activities Energy generation and consumption activities
Cereal activities Forage activities Feedlot and pasture activities
Cow activities (transportation) Bull activities (transportation) Yearling-fed system activities (transportation) Calf-fed system activities (transportation)

Total GWP for BMP

Total Change in GWP for BMP

Overall Baseline GWP (2001)

	3.45E+10 kg	3.45E+10 kg	-228,579 kg
	1.49E+08 kg CO ₂ e 7.03E+09 kg CO ₂ e 1.83E+09 kg CO ₂ e 4.04E+08 kg CO ₂ e	1.49E+08 kg CO ₂ e 7.03E+09 kg CO ₂ e 1.83E+09 kg CO ₂ e 4.04E+08 kg CO ₂ e	-972 kg CO ₂ e -45,844 kg CO ₂ e -12,756 kg CO ₂ e -2,824 kg CO ₂ e
	0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
	2.81E+00.1++.CO.+	2.91E+00.1-= CO =	11 242 hz CO a
	$2.81E+09 \text{ kg CO}_2 e$	$2.81E+09 \text{ kg CO}_2e$	-11,245 kg CO ₂ e
	0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e
	3.20E+06 kg CO ₂ e	3.20E+06 kg CO ₂ e	-379 kg CO ₂ e
	2.49E+07 kg CO ₂ e	2.49E+07 kg CO ₂ e	0 kg CO ₂ e
	3.14E+06 kg CO ₂ e	3.14E+06 kg CO2e	0 kg CO ₂ e
kg CO₂e	1.22E+10 Cow/Calf		
kg CO₂e			-7.40E+04

COW/CALF OPERATIONS

BMP 5Baseline (2001)Change(amount)(unit)(amount)(unit)(change)(unit)

BMP 5 - BENEFITS AND COSTS

	FEEDLOT OPERATIONS								
BMP 5	Baseline (2001)	Change							
(amount) (unit)	(amount) (unit)	(change) (unit)							
1.89E+10 kg	1.89E+10 kg	-145,385 kg							
1.44E+08 kg CO2e	1.44E+08 kg CO ₂ e	-13,458 kg CO ₂ e							
3.56E+09 kg CO ₂ e	3.56E+09 kg CO ₂ e	-276,956 kg CO ₂ e							
3.27E+08 kg CO ₂ e	3.27E+08 kg CO ₂ e	-2,482 kg CO ₂ e							
3.06E+08 kg CO ₂ e	3.06E+08 kg CO ₂ e	-2,327 kg CO ₂ e							
0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e							
1.04E+09 kg CO2e	1.04E+09 kg CO ₂ e	-4,159 kg CO ₂ e							
0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e							
1.40E+08 kg CO ₂ e	1.40E+08 kg CO ₂ e	-1,413 kg CO ₂ e							
1.08E+08 kg CO2e	1.08E+08 kg CO ₂ e	963 kg CO ₂ e							
6.59E+07 kg CO ₂ e	6.59E+07 kg CO ₂ e	611 kg CO ₂ e							

5.69E+09 Feedlot

-2.99E+05

Overall Baseline GWP (2010)	kg CO ₂ e/kg live weight	14.7049	(calculated from this model - for 2010/2011 calf crop)
Overall BMP GWP	kg CO₂e/kg live weight	14.7049	
Change in overall GWP from 2001	kg CO₂e/kg live weight	-0.00032	
Change in overall GWP from 2010	kg CO₂e/kg live weight	0	

kg CO₂e/kg live weight 14.7052

Change in GWP per kg of beef affected from 2001

kg CO₂e/kg live weight -1.418

(total change in GHG emissions divided by total weight of cattle affected)

Notes: Energy generation emissions divided by the number of cattle on cow/calf vs feedlo Feedlot and pasture activities are divided as per below.

BEEF INDUSTRY								
BMP 5	Baseline	(2001)	Change					
(amount) (unit)	(amount)	(unit)	(change)	(unit)				
9.57E+08 kg CO ₂ e	9.57E+08	kg CO ₂ e	-8,821 kg CO ₂ e					
4.15E+06 kg PO ₄ -eq	4.15E+06	kg PO ₄ -eq	-27 kg PO ₄ -eq					
-2.36E+08 kg CO ₂ e	-2.36E+08	kg CO ₂ e	1,556 kg CO ₂ e					
1.89E+08 kg CO ₂ e	1.89E+08	1.89E+08 kg CO ₂ e		-1,155 kg CO ₂ e				
1.001.001	4.205.00	1 60	E 450	1 60				
1.20E+09 kg CO ₂ e	1.20E+09	kg CO ₂ e	-7,470	kg CO ₂ e				
2.28E±08.kg.CO.a	2 28E±08	ka CO a	2 1 9 1	ka CO a				
$3.56E \pm 00 \text{ kg CO}_2 \text{e}$	3.30E+00	$kg CO_2 e$	-2,101	$kg CO_2 e$				
$2.00E \pm 00 \text{ kg CO}_2 \text{e}$	2.00E+00	$kg CO_2 e$	-1,000	$kg CO_2 e$				
5.04E+08 kg CO ₂ e	5.04E+08	kg CO ₂ e	-02,809	kg CO ₂ e				

3.04E+09 Beef Industry

-8.28E+04

					BMP 5 - Bl	ENEFITS AND COSTS				
BMP 5 - Superior Residual Feed Intake (RFI) Genetics in Breeding An	imals					Low RFI Values				
Post-weaned animals selected for potential replacement bulls will be tes to reduce feed intake while keeping weight gain constant.	ted for RFI in yearling-fed a	and calf-fed systems. Bull	ls with low RFI will be use	ed as breeding an	imals	Minimum low RFI v Maximum low RFI v	value -0.5 k value -1.0 k	sg DM/day sg DM/day		
Low RFI value assumed	-1.0 kg DM/day	(value can	be adjusted here for entir	e model)						
Heritability percentage value assumed	39 %	(value can	be adjusted here for entir	e model)		Heritability	14 0	4		
Calf Crop (birth year)	2029	(value can	be adjusted here for entir	e model)		Medium heritability	27.5 %	6		
Calf Crop (slaughter year)	2030	(value can	be adjusted here for entir	e model)		High heritability	39 %	6		
Total number of animals						ц				
(number of bulls tested this year) (number of bulls tested with low RFI this year)	1,498 bulls 187 bulls					Total GHC	Gemissions	2.0977E+10 kg CO2e		1
(total number of breeding bulls with low RFI this year)	749 bulls									
(total number of calves born this year with low RFI) (total number of calves born per year based on 2001 model)	5550 calves					Total acidi	fication	3.0752E+07 kg SO2-I	iq	
(percentage of calves born with low RFI to total this year)	0.26 %					Total eutro	ophication	5.5377E+06 kg PO4-I	iq	
Total weight affected by BMP (to slaughter)	2,987 tonnes					Total non-	renewable energy	3.4514E+11 MJ-Eq		
(total slaughter weight not affected) (model has an affect on cow/c	alf and feedlot operations)									
		COW/CALF OPE	RATIONS				FEEDLO	T OPERATIONS		
	BMP 5	Baseline (2010)	Change	Per Unit Market Value	Total Impact	BMP 5	Baseline (2010)	Change	Per Unit Market Value	Total Impact
	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)	(amount) (unit)	(amount) (unit)	(change) (unit)	(\$/unit)	(\$ Million)
Inputs with Change										
Production of pesticide/herbicide										
Production of chemical fertilizer Production of bedding										
Production of min., trc min., cobalt, protein suppl., vit., antibiotic										
Purchase of chemical fertilizer Urea as N at regional storehouse							_			
Ammonia, liquid, at regional storehouse										
Monoammonium phosphate, as P2O5, at regional storehouse										
Ammonium sulphate, as N, at regional storehouse										
Purchase of manure for land application										
Purchase of pesticide/herbicide										
Purchase of seed for barley silage										
Purchase of seed for alfalfa/grass hay										
Purchase of water to irrigate crops Purchase of amendment materials						0 kg	0 kg	0 kg	-	-
Purchase of composting equipment (Windrow turner)						0 turners	0 turners	0 turners	-	-
Purchase of construction supplies for composting (clay for pad)	407.1 1	22.1 1		* 0	<u> </u>	0 units	0 units	0 units	-	-
Purchase of bull with low RFI for breeding (cow-calf) (premium) Sale of bull with low RFI for breeding (seedstock producer) (premium)	-187 head	-23 head	-164 head -164 head	\$0 \$0	\$0.00 \$0.00					
Purchase of alfalfa/grass hay	6.59E+09 kg	6.59E+09 kg	-5.30E+05 kg	\$0.14	-\$0.073					
Purchase of barley						4.48E+09 kg	4.49E+09 kg	-2.84E+05 kg	\$0.16	-\$0.0458
Purchase of bedding	5.09E+08 kg	5.09E+08 kg	0.0 kg	\$0.06	\$0.00	4.22E+08 kg	4.22E+08 kg	-2.08E+08 kg 0.0 kg	\$0.04 \$0.06	\$0.00
Purchase of animal shelters, wind breakers, fencing, etc.	0 units	0 units	0 units	-	-					
Purchase of ionophores Purchase of RAC	0 kg	0 kg	0 kg	-	-	0 kg	0 kg	0 kg	-	-
Purchase of min., trc min., cobalt, protein suppl., antibiotic	7.88E+07 kg	7.90E+07 kg	-2.76E+05 kg	\$0.48	-\$0.1311	1.45E+08 kg	1.45E+08 kg	-2.13E+04 kg	\$0.48	-\$0.0101
Purchase of PEI testing	1.67E+03 kg	1.68E+03 kg	-8.17E+00 kg	\$1.37	-\$0.0000112	1.76E+05 kg	1.76E+05 kg	-2.75E+01 kg	\$1.37	-\$0.000038
Fuel/energy required to operate composting equipment	1,498 tests	182 tests	1,510 tests	391	\$0.12	0 tests 0 kWh or L	0 kWh or L	0 tests 0 kWh or L	-	-
Fuel consumed to transport barley and barley silage										
Fuel consumed to transport alfalfa/grass hay Fuel consumed for cropping activities										
Fuel consumed to bed livestock (change)	0 L	0 L	0 L	\$0.75	\$0.00	0 L	0 L	0 L	\$0.75	\$0.00
Fuel consumed to transport garbage (change) Fuel consumed to transport bedding (change)	0 L	0 L	0 L	\$0.75	\$0.00	0 L	0 L	0 L	\$0.75	\$0.00
Fuel consumed to feed livestock (change)	-5,244 L	-559 L	-4,685 L	\$0.75	-\$0.004	-9,599 L	-1,024 L	-8,575 L	\$0.75	-\$0.006
Fuel consumed to collect manure (change)						-108.46 L	-11.68 L	-96.78 L	\$0.75	-\$0.00007244
Fuer const to transp. min., trc min., cod., prot. suppl., vit., antibiotic Fuel consumed to transport livestock for testing	2,394 L	291 L	2,103 L	\$0.75	\$0.0016	0 L	0 L	0 L	-	-
Labour (change)	0 hrs	0 hrs	0 hrs	-	-	0 hrs	0 hrs	0 hrs	-	-
Working capital interest Total Invut Value Change	0 \$	0 \$	0 \$	-	-\$0.086	0\$	0 \$	0 \$	-	-\$0.15
					<i>40.000</i>					40.10
Outputs with Change						0.545-40.1	0.512-401	0.407-04.1	#0.00	#0.00
Manure sold for land application Compost sold for land application						2.51E+10 kg 0 ko	2.51E+10 kg 0 ko	-8.18E+06 kg 0 ko	\$0.00	\$0.00
Price for beef to feedlot (purchase or sale) (change)	-5550 head	0 head	-5550 head	\$0.00	\$0.00	5550 head	598 head	4952 head	\$0.00	\$0.00
Total Output Value Change					\$0.00					\$0.00

Page 1 of 2

BMP 5 - BENEFITS AND COSTS

CHANGE IN OVERALL GHG EMISSIONS		(COW/CALF OPERATION	S	FEEDLOT OPERATION		
		BMP 5	Baseline (2010)	Change		BMP 5	Baseline (2010)
		(amount) (unit)	(amount) (unit)	(change) (unit)		(amount) (unit)	(amount) (unit)
BEEF ACTIVITIES - SOIL AND CROP							
Manure generation		3.44E+10 kg	3.45E+10 kg	-1,938,417 kg		1.89E+10 kg	1.89E+10 kg
Methane emissions from stored manure		1.49E+08 kg CO ₂ e	1.49E+08 kg CO ₂ e	-8,249 kg CO ₂ e		1.44E+08 kg CO ₂ e	1.44E+08 kg CO ₂ e
Enteric fermentation emissions		7.03E+09 kg CO ₂ e	7.03E+09 kg CO ₂ e	-389,200 kg CO ₂ e		3.56E+09 kg CO ₂ e	3.56E+09 kg CO ₂ e
N2O emissions from stored manure (direct)		1.83E+09 kg CO ₂ e	1.83E+09 kg CO2e	-108,316 kg CO ₂ e		3.27E+08 kg CO2e	3.27E+08 kg CO2e
N2O emissions from stored manure (indirect)	4.04E+08 kg CO ₂ e	4.04E+08 kg CO2e	-23,976 kg CO ₂ e		3.06E+08 kg CO ₂ e	3.06E+08 kg CO ₂ e
N ₂ O emissions from cropping and land use							
Total P emissions from run-off							
Soil Carbon Change in Soil From Land Use							
Direct CO2 emissions from managed soils							
OVERALL SUMMARY							
Construction		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		0 kg CO ₂ e	0 kg CO ₂ e
Forage and cereal sub-activities							
Energy generation and consumption activitie	25	2.81E+09 kg CO ₂ e	2.81E+09 kg CO ₂ e	-94,155 kg CO ₂ e		1.04E+09 kg CO ₂ e	1.04E+09 kg CO ₂ e
O&M activities		0 kg CO ₂ e	0 kg CO ₂ e	0 kg CO ₂ e		0 kg CO ₂ e	0 kg CO ₂ e
Cereal activities							
Forage activities							
Feedlot and pasture activities		3.20E+06 kg CO2e	3.20E+06 kg CO2e	-3,389 kg CO ₂ e		1.40E+08 kg CO2e	1.40E+08 kg CO ₂ e
Cow activities (transportation)		2.49E+07 kg CO2e	2.49E+07 kg CO2e	0 kg CO ₂ e			
Bull activities (transportation)		3.14E+06 kg CO ₂ e	3.14E+06 kg CO ₂ e	0 kg CO ₂ e			
Yearling-fed system activities (transportation	ı)					1.08E+08 kg CO ₂ e	1.08E+08 kg CO ₂ e
Calf-fed system activities (transportation)						6.59E+07 kg CO ₂ e	6.59E+07 kg CO ₂ e
Total GWP for BMP	ka CO o	1 22E+10 Cour/Calf				E 60E±00 Ecodlot	
Total Change in GWP for BMP	ky CO ₂ e	1.22E+10 Cow/Call				5.09E+09 reculot	
	kg CO₂e			-6.27E+05			
Total change in emissions		-3,839 tonnes					
Overall Baseline CWP (2001)							
Overall baseline GVVI (2001)	ka CO₂e/ka live weiaht	14.70524					
	5 - 2 - 5 5 -						
Overall Baseline GWP (2010)							
	kg CO₂e/kg live weight	14.70492					
Overall BMP GWP							
	ka CO₂e/ka live weight	14.70223					
Change in overall GWP from 2001							
	kg CO₂e/kg live weight	-0.0030					

Change in GWP per kg of beef affected from 2010 kg CO2e/kg live weight

Change in overall GWP from 2010

(total change in GHG emissions divided by total weight of cattle affected)

Notes:

Energy generation emissions divided by the number of cattle on cow/calf vs feedlo Feedlot and pasture activities are divided as per below.

kg CO2e/kg live weight

-0.0027

-1.285

BEEF INDUSTRY									
BMP 5		Baseline	(2010)	Change					
(amount) (1	unit)	(amount)	(amount) (unit)		(unit)				
9.57E+08 kg (CO ₂ e	9.57E+08	kg CO ₂ e	-73,630	kg CO ₂ e				
4.15E+06 kg I	PO ₄ -eq	4.15E+06	kg PO ₄ -eq	-228 kg PO ₄ -eq					
-2.36E+08 kg CO ₂ e		-2.36E+08	kg CO ₂ e	12,948 kg CO ₂ e					
1.89E+08 kg CO ₂ e		1.89E+08	kg CO ₂ e	-9,634 kg CO ₂ e					
0			0 -		0 -				
1.20E+09 kg 0	CO ₂ e	1.20E+09	kg CO ₂ e	-62,407	kg CO ₂ e				
3.38E+08 kg (CO ₂ e	3.38E+08	kg CO ₂ e	-18,126	kg CO ₂ e				
2.86E+08 kg 0	CO ₂ e	2.86E+08	kg CO ₂ e	-15,903	kg CO ₂ e				
3.03E+08 kg 0	CO ₂ e	3.04E+08	kg CO ₂ e	-561,316	kg CO ₂ e				

3.04E+09 Beef Industry

Change (change)

-1,204,972 kg

-111,677 kg CO₂e

-2,297,311 kg CO₂e

-20,614 kg CO₂e

-19,325 kg CO₂e

0 kg CO₂e

0 kg CO₂e

-34,827 kg CO₂e

-11,731 kg CO₂e

6,954 kg CO₂e

4,410 kg CO₂e

-2.48E+06

(unit)

-7.28E+05