Long-term Management Effects on Crop Yields and Soil N Cycling

Agronomy Update 2018
Presented by Miles Dyck
University of Alberta
management affects soil properties and processes

New guidelines reflect benefits of no-till farming

Posted Aug. 28th, 2014 by Robert Arnason

Soil fertility | North Dakota university is the first in the U.S. to adopt new corn recommendations

The 11-page guide makes it clear that no-till soil is distinct from tilled soil. NDSU experts say farmers with fields dedicated to continuous no-till, for six years or longer, need 40 to 50 pounds less nitrogen per acre to grow corn than producers with tilled fields.

the case for long-term plots

• Long-term experiments required to understand soil response to changes in management because soil properties change slowly

• Information from Long-term experiments can support contemporary management decisions
Breton Classical Plots
Breton Classical Plots

- 5-year, WOBHH
- 5-year, WOBHH
- 5-year, WOBHH
- 5-year, WOBHH
- 2-year, WF

11) check
10) NPS(-K)
 9) NPKS
 8) PKS(-N)
 7) NPK(-S)
 6) Lime
 5) check
 4) NKS(-P)
 3) NPKS
 2) Manure
 1) check
<table>
<thead>
<tr>
<th>5-yr: WOBHH</th>
<th>2yr: W-F</th>
<th>Treatment</th>
<th>Plot/Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0-0-0</td>
<td>0-0-0-0</td>
<td>Check</td>
<td>1, 5, 11</td>
</tr>
<tr>
<td>87.5-?-?-?</td>
<td>90-?-?-?</td>
<td>Manure (M)</td>
<td>2</td>
</tr>
<tr>
<td>50-22-46-20</td>
<td>90-22-46-20</td>
<td>NPKS</td>
<td>3, 9</td>
</tr>
<tr>
<td>50-0-46-20</td>
<td>90-0-46-20</td>
<td>NKS (-P)</td>
<td>4</td>
</tr>
<tr>
<td>50-22-46-0</td>
<td>90-22-46-0</td>
<td>NPK(-S)</td>
<td>7</td>
</tr>
<tr>
<td>0-22-46-20</td>
<td>0-22-46-20</td>
<td>PKS(-N)</td>
<td>8</td>
</tr>
<tr>
<td>50-22-0-20</td>
<td>90-22-0-20</td>
<td>Check</td>
<td>11</td>
</tr>
</tbody>
</table>

- **N source:** 46-0-0-0
- **P source:** 0-45-0-0
- **K source:** 0-0-60-0
- **S source:** 0-0-0-90
Breton Classical Plots
Gray Soils

Gray Luvisol

D. Brown Chernozem

SETTLERS SNAPPED UP THE BEST FARMLAND FIRST

GOOD SOIL WAS GOLD FOR EARLY SETTLERS

Go West, young man | Settlement of the Prairies rested on the fertility of the soil and the perseverance of those who heeded the call to move west and make a living on the frontier.

Homes made from prairie soil helped early pioneers survive.

Breaking soil was difficult. The soil quality discovered beneath would dictate the success of the farms. | WESTERN DEVELOPMENT MUSEUM ARCHIVE PHOTO

Western Producer; The soil issue
Average Wheat Yields: 2007-2016 rotation averages

Fertility Treament
Check Manure NPKS PKS(-N) NKS(-P) NPS(-K) NPK(-S)
wheat yield (kg ha\(^{-1}\))

Average Wheat Yields: 2007-2016 rotation averages

Fertility Treament
Check Manure NPKS PKS(-N) NKS(-P) NPS(-K) NPK(-S)
wheat yield (bu ac\(^{-1}\))
Average Wheat N Uptake in Grain and Straw: 2007-2016

Fertility Treatment

Fertility Treatment

wheat N uptake (kg N ha$^{-1}$)

wheat N uptake (kg N ha$^{-1}$)
Average Wheat Yields: 2007-2015 rotation response to fertilizer NPKS

![Graph showing wheat yield response to different fertilizer treatments.](image-url)
Nutrient management planning

• Long-term rotation and fertilization affects soil nutrient balances and response to added nutrients

• On-farm rotations may not always be consistent, but...

• Keeping records of crops, yields, and fertilizer applications can help to estimate N, P, K, S exports over time and help make fertilization application decisions

• Nutrient management planning to address N, P, K, S deficiencies will increase fertilizer use efficiency
Linking long-term management and productivity to greenhouse gas emissions – nitrous oxide, N_2O
Cumulative growing season N_2O emissions (2013-2016)
Fertilization-yield-soil N-N$_2$O emission feedback

![Graph showing the relationship between total soil N (0-15 cm) and growing season N$_2$O-N emissions for different fertilization treatments.](image-url)
N\textsubscript{2}O-N per kg grain → intensity

<table>
<thead>
<tr>
<th>Fertility Treatment</th>
<th>Control</th>
<th>Manure</th>
<th>NPKS</th>
<th>PKS(-N)</th>
<th>NPK(-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg N\textsubscript{2}O-N kg-1 grain (X10-3 kg kg-1)</td>
<td>0.0</td>
<td>0.2</td>
<td>0.4</td>
<td>0.6</td>
<td>0.8</td>
</tr>
</tbody>
</table>

WF

5yr-WOBHH

![Chart showing kg N\textsubscript{2}O-N kg-1 grain (X10-3 kg kg-1) for different fertility treatments.](chart.png)

Y-axis: kg N\textsubscript{2}O-N kg-1 grain (X10-3 kg kg-1)

X-axis: fertility treatment
Applications

- Growing season N$_2$O emissions affected by long-term soil N balance and both fertilizer and non-fertilizer sources of N

- Positive (increasing) soil N balance associated with higher yields but also higher N$_2$O emissions.

- Addressing all nutrient deficiencies is key to increased crop N uptake which will reduced N$_2$O emission intensity \Rightarrow N$_2$O-N per yield
Acknowledgements

• Dick Puurveen – Breton Plots Manager
• Kyle Kipps – MSc Student and Research Assistant
• Leah Predy – undergraduate student
• Jennifer Martin, Syed Mostafa – technical help
• Past Breton Plots Academic Leads and Support Staff
• Breton Plots Donors

• Funders: Shell Canada, Fertilizer Canada, International Plant Nutrition Institute, ACIDF, Alberta Wheat Commission, NSERC
Extra links

• Recent article in Better Crops (p.7-9):
 • http://www.ipni.net/publication/bettercrops.nsf/0/0A88BF43B62A15E78525806B004DB7D4/$FILE/BC-2016-4.pdf or

• More information about the Breton Plots:
 • http://prairiesoilsandcrops.ca/articles/volume-5-10-screen.pdf or
 • http://prairiesoilsandcrops.ca/volume5.php or
 • http://bretonplots.ales.ualberta.ca/Endowment-Fund
Growing Conditions 2007-2016

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Precipitation (mm)(^z)</th>
<th>Growing Season Precipitation (mm)(^y)</th>
<th>Growing season GDD(^x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>664</td>
<td>491</td>
<td>1249</td>
</tr>
<tr>
<td>2008</td>
<td>375</td>
<td>286</td>
<td>1279</td>
</tr>
<tr>
<td>2009</td>
<td>278</td>
<td>180</td>
<td>1278</td>
</tr>
<tr>
<td>2010</td>
<td>645</td>
<td>487</td>
<td>1121</td>
</tr>
<tr>
<td>2011</td>
<td>532</td>
<td>376</td>
<td>1251</td>
</tr>
<tr>
<td>2012</td>
<td>556</td>
<td>439</td>
<td>1382</td>
</tr>
<tr>
<td>2013</td>
<td>442</td>
<td>284</td>
<td>1378</td>
</tr>
<tr>
<td>2014</td>
<td>530</td>
<td>286</td>
<td>1297</td>
</tr>
<tr>
<td>2015</td>
<td>412</td>
<td>180</td>
<td>1315</td>
</tr>
<tr>
<td>2016</td>
<td>548</td>
<td>392</td>
<td>1216</td>
</tr>
</tbody>
</table>

\(^z\)October 1 of previous calendar year to September 30 of stated calendar year
\(^y\)April 1 – August 31 of stated calendar year
\(^x\)base 5°C