# Crop Availability of Sulphur From Elemental-S

Kent Martin, Ph.D.

Alberta Update



# Background

- Sulphur is taken up by plants as SO<sub>4</sub><sup>=</sup>
- Mobile in the soil, immobile in the plant
- Fertilizer recommendations tied to yield goals
  - Due to mobility in soil and activity in the plants
- Deep soil sampling increases accuracy and predicted crop response
- Deficiency typically seen with coarse soil texture, low S testing soil, low organic matter, or eroded areas
  - In crops with high demand alfalfa, canola, corn



# Survey

- Survey conducted to Researchers, University, and Consultants
- 100% of respondents recognized the need for S and that farmers focus on S is increasing
  - Perceived need for Sulfate 73%
  - Perceived need for ES 27%
  - What are the drivers?
    - Availability of S to the crop
    - Able to be blended
    - Free of dust and fines
- Recognized need for high analysis S product that is readily available

# Role of S in Plants (Canola)

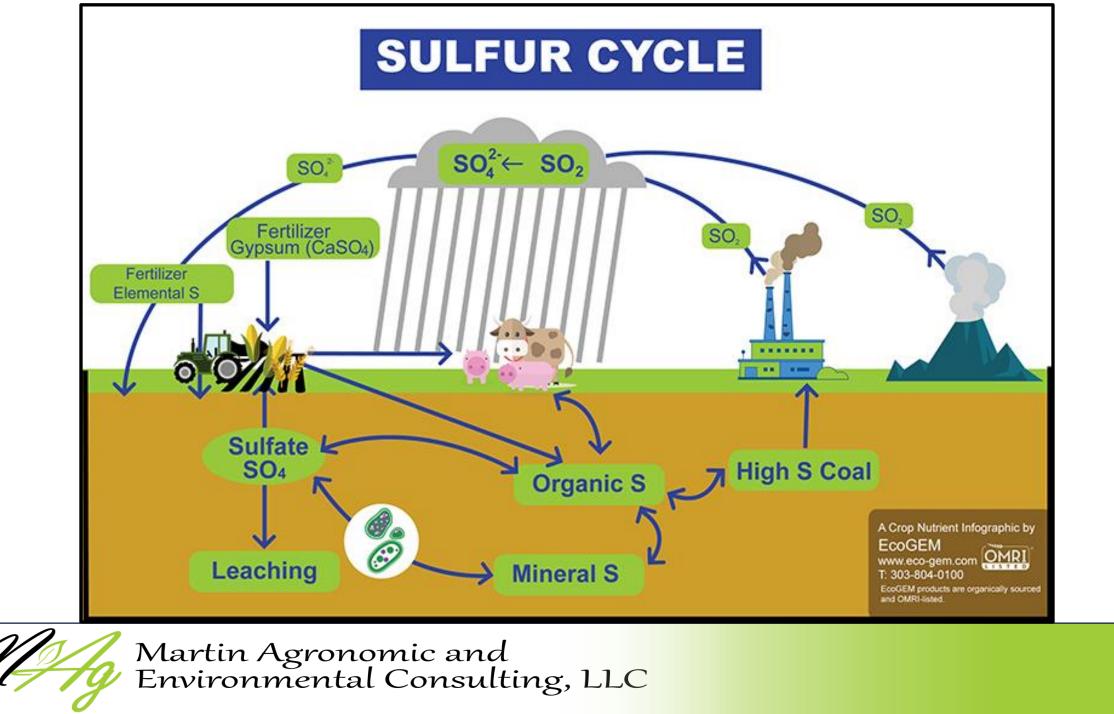
- Key nutrient for structural plant parts
- Part of enzymes
- Amino acids responsible for protein synthesis
- Chlorophyll synthesis
- Rapid crop growth
- Earlier maturity
- Yield
- Protein content
- Oil content

Martin Agronomic and Environmental Consulting, LLC **Biochemical** 

Yield

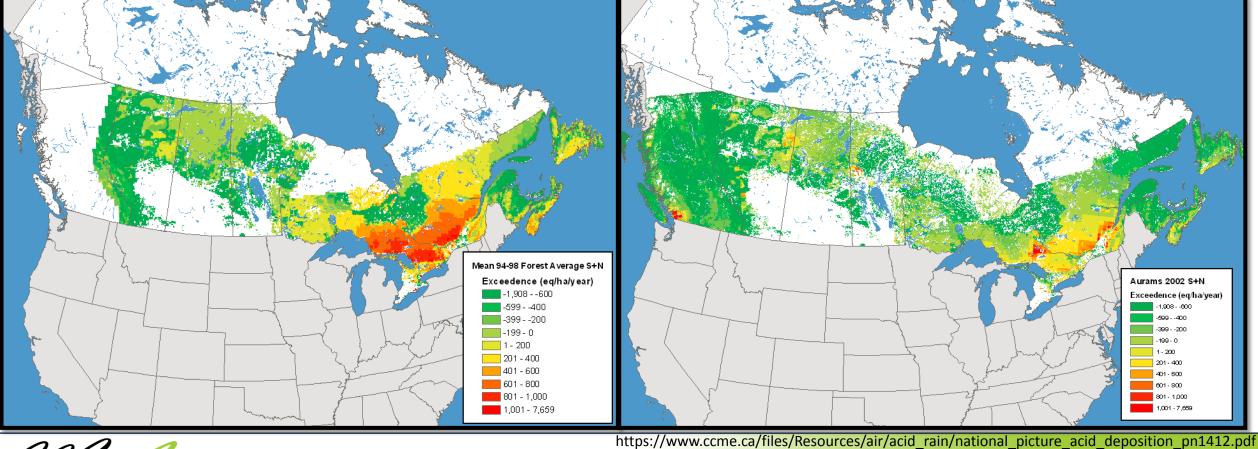
Quality

#### Sulphur Deficiency Symptoms

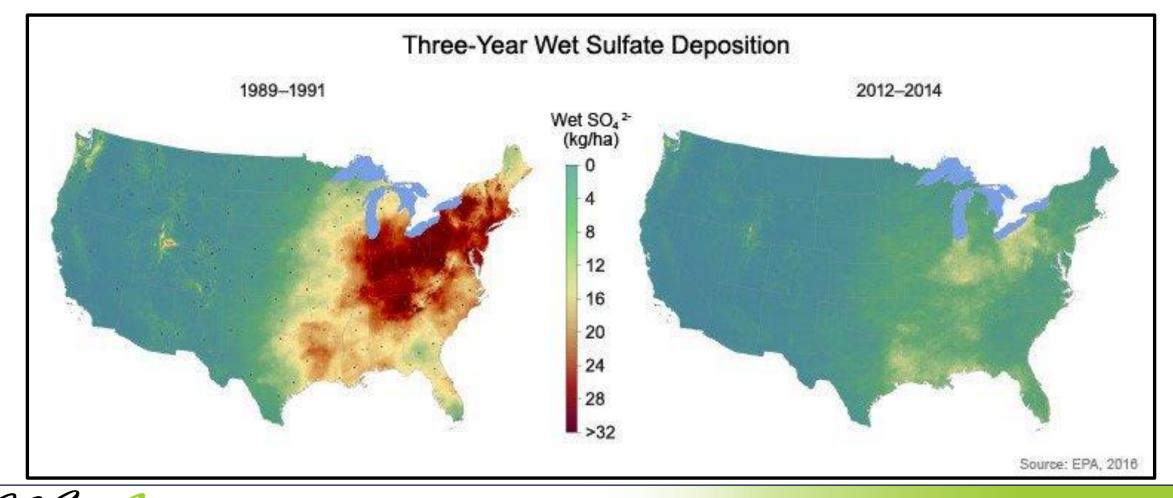









#### Atmospheric Deposition of S

One of the greatest reasons for decrease in S deposition is clean air



#### Atmospheric Deposition of S



# Sulphur Sources

- Soil S Pool:
  - Organic (95%) ------ Inorganic (5%)
  - Balance depends on the balance of immobilization and mineralization
    - Immobilization microbial conversion of inorganic S to organic S (not available to plants)
    - Mineralization Breakdown of organic S into inorganic compounds that results in plant available S
- S Fertilizer
  - Sulfate
    - Ammonium Sulfate (21-0-0-24)
    - Gypsum (CaSO<sub>4</sub>, 15% S, 19% Ca)
  - Elemental
    - Sulphur Bentonite (0-0-0-90)
    - Co-granulated S

| Fertilizer Source           | Formula                                                       | Analysis   |  |
|-----------------------------|---------------------------------------------------------------|------------|--|
| Ammonium Sulfate            | (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub>               | 21-0-0-24  |  |
| Ammonium Thiosulfate (ATS)  | (NH <sub>4</sub> ) <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | 12-0-0-26  |  |
| Gypsum                      | $CaSO_4 \bullet 2H_2O$                                        | 0-0-0.5-17 |  |
| Epsom Salt                  | MgSO₄ ● 7H <sub>2</sub> O                                     | 0-0-0-14   |  |
| Potassium Magnesium Sulfate | $K_4SO_4 \bullet 2MgSO_4$                                     | 0-0-22-23  |  |
| Potassium Sulfate           | K <sub>4</sub> SO <sub>4</sub>                                | 0-0-50-18  |  |
| Elemental S                 | S + Bentonite                                                 | 0-0-0-90   |  |
| Co-granulated Elemental S   | S + Co-granulated Product                                     | variable   |  |

#### Advantages and Disadvantages

#### Sulfate

| Advantages                    | Disadvantages                              |  |  |  |  |
|-------------------------------|--------------------------------------------|--|--|--|--|
| Immediately Available         | Leachable                                  |  |  |  |  |
| Fast Concentration of Sulfate | Only Takes One Large Rainfall for Loss     |  |  |  |  |
| Water Soluble                 | Water Soluble                              |  |  |  |  |
| Elemental S                   |                                            |  |  |  |  |
| Advantages                    | Disadvantages                              |  |  |  |  |
| Sustained Release             | Slower to Become Available                 |  |  |  |  |
| Less Risk of Loss by Leaching | Not Able to Immediately Correct Deficiency |  |  |  |  |
| Can Build Soil S Levels       | Need to Understand Products                |  |  |  |  |

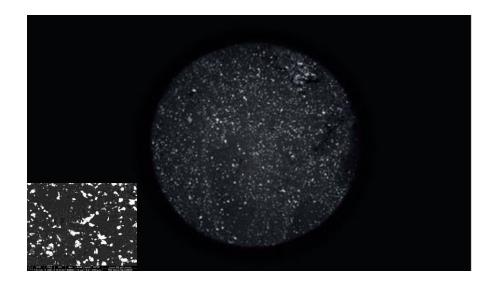


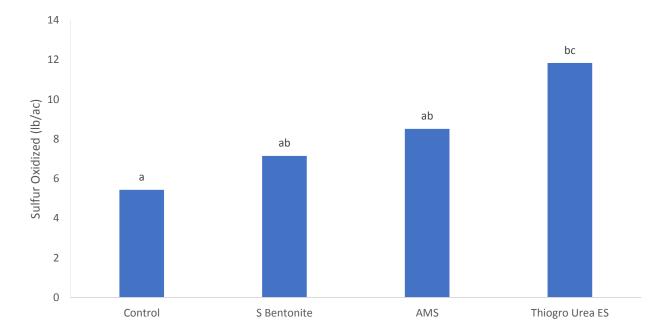
### Microbial Oxidation of Elemental S

- Elemental S must be oxidized to be available to plants
  - $S^0 + O_2 + H_2O \xrightarrow{\text{Microbes}} H_2SO_3 + \frac{1}{2}O_2 \longrightarrow H_2SO_4$
- Thiobacillius is most recognized microbe involved in S oxidation
  - Others are also important
- Conditions favorable for microbial growth are favorable for oxidation
  - Adequate temperature
  - Moisture
  - Air

### Importance of Particle Size of Elemental S

- Range in days to reach 50% oxidation from 17 to 210 days
  - Fastest occurs with smaller particle size when it was co-granulated


|                     |   |             | Particle Size      | % S Oxidized |         |
|---------------------|---|-------------|--------------------|--------------|---------|
|                     |   |             | (microns)          | 2 Weeks      | 4 Weeks |
|                     |   | > 2,000     | 1                  | 2            |         |
|                     |   | 840 - 2,000 | 2                  | 5            |         |
|                     |   | 420 - 840   | 5                  | 14           |         |
|                     | = | 180 - 420   | 15                 | 36           |         |
|                     |   | 125 – 180   | 36                 | 68           |         |
| Degryse et al. 2016 |   |             | 90 – 125           | 61           | 81      |
|                     |   |             | 60                 | 80           | 82      |
|                     |   |             | Canola.okstate.edu |              |         |

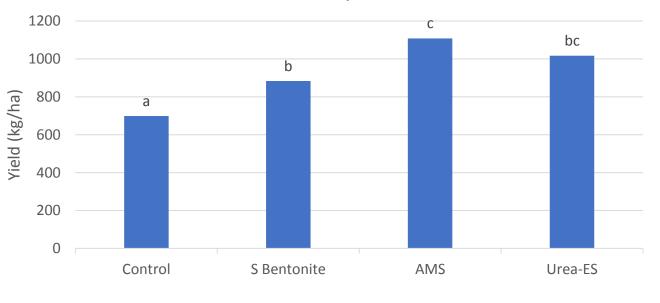

# Shell Thiogro Technologies

- Has been in the S fertilizer technology business since 1960's
- Technology allows fertilizer producer to incorporate micronized elemental S into existing product streams
- Phosphate technology developed in mid-2,000's
  - MAP, DAP, TSP with 4-15% S
  - Currently being commercially produced in India, Australia, and soon in Morocco (by OCP)
- Urea ES developed 2013
  - 10-30% ES
  - Average particle size less than 40  $\mu m$
- Special S developed 2017
  - ~ 75% ES
  - Average particle size less than 50  $\mu m$

### Urea-ES

- Various formulations evaluated
- Co-granulated urea and sulphur






#### Missouri Corn Sulfate Oxidation at V5 Growth Stage (Soil Sulfate and Plant Sulfur Uptake Included)

#### Urea-ES



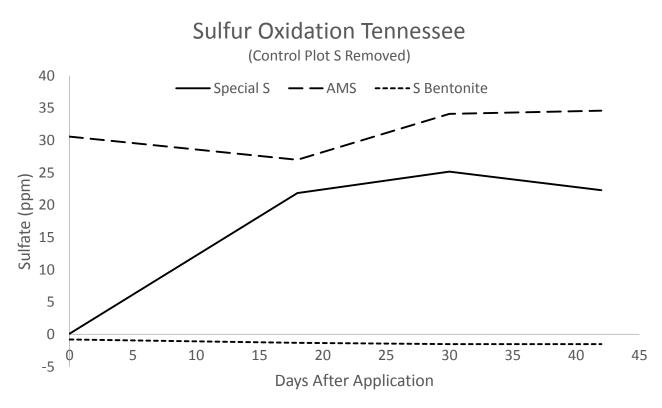
#### Wheatland Conservation Area (Swift Current, SK) Canola Yield Response 2017





#### Special-S vs Bentonite Properties

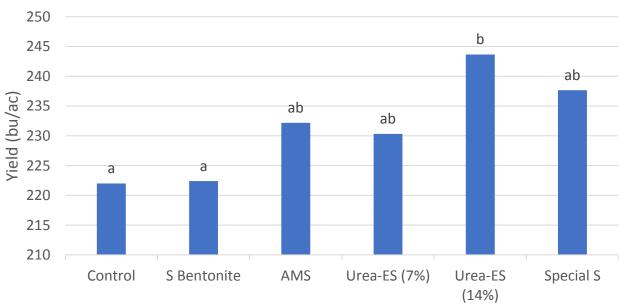
#### SPECIAL-S DISOLUTION/DISPERSION


Dispersion mechanism involves urea dissolving in water leaving clusters of sulphur particles which then 'crumble'

Timeframe: minutes (3-5)

#### SULPHUR BENTONITE SWELLING/DISPERSION

Dispersion mechanism consist of the swelling clay expand, breaking the solid elemental sulphur matrix in small pieces Timeframe: hours (24-48)








#### Special S





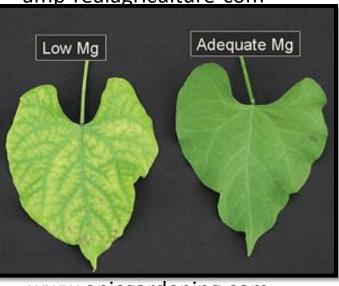
Iowa Corn Sidedress Yield Trial 2017

### Summary

- S deficiency is getting more common
- S is mobile in the soil and immobile in the plant
- S Sources
  - Sulfate (Readily available, Leaches)
  - Elemental (Must be oxidized, Less prone to loss)
- New Technologies for Elemental S
  - Small particle size is better
  - Availability is better than traditionally thought
  - Nice mix of availability and minimizing loss risk







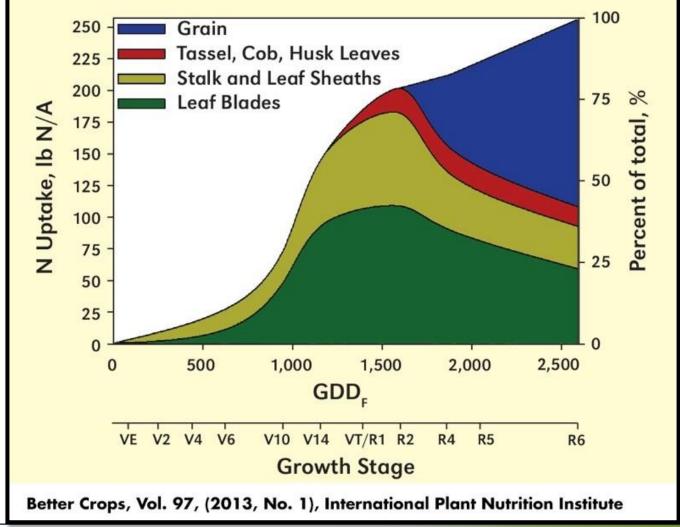

Kent Martin, Ph.D. <u>martinagconsulting@gmail.com</u> 580-430-9196

# Calcium and Magnesium

- Calcium Functions in plant growth and structural support for cell walls
  - Deficiency rarely occurs with adequate pH
  - Acid soil < 500 lb/ac deficient for legumes
  - Mobile in soil
  - Most common source is lime, gypsum
- Magnesium Central in chlorophyll molecule used for photosynthesis
  - Deficiency in coarse sands with low pH
  - Immobile in soil
  - Common sources dolomitic lime, magnesium sulfate, K-Mag






www.epicgardening.com



### History

- The first reported ES use was in South Carolina in 1877 (Charles Panknin)
  - Recommendation: 95 parts bone or ground phosphate with 5 parts elemental S to aid in P availability
  - Knew ES was oxidized to  $SO_4$ , but didn't know it was a microbial process
- 2008 Estimates of global S supplies estimated ~ 5 billion tons
  - Contained in natural gas, oil, metal sulfides, salt domes and volcanic deposits
- 2008 Production of S worldwide reached 69 million tons
  - Canada (13.5%), US (13%), China (12%), Russia (10%), Japan (4.5%) ...
- Of all S consumed in the world, 55% was used in production of fertilizers

#### S Uptake and Partitioning in Corn

