

Agriculture et Agroalimentaire Canada

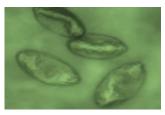
Aerobiological Surveillance of Wheat Pathogens

Laroche, A.¹, G.T. Araujo^{1, 2}, W. Lu³, E. Amundsen¹, N.K. Newlands³, R. Aboukhaddour¹, J. Larsen¹, H. Rhandawa¹, R. Graf¹, D.A. Gaudet¹, B.L. Selinger², M. Frick¹

¹Agriculture and Agri-Food Canada, Lethbridge RDC ²University of Lethbridge, Department of Biological Sciences, Lethbridge ³Agriculture and Agri-Food Canada, Summerland RDC Red Deer, Alberta January 10, 2018

Presentation Outline

- Wheat pathogen surveillance tools
- Collection of samples
- Detection of samples
- Disease Modeling
- Future prospects



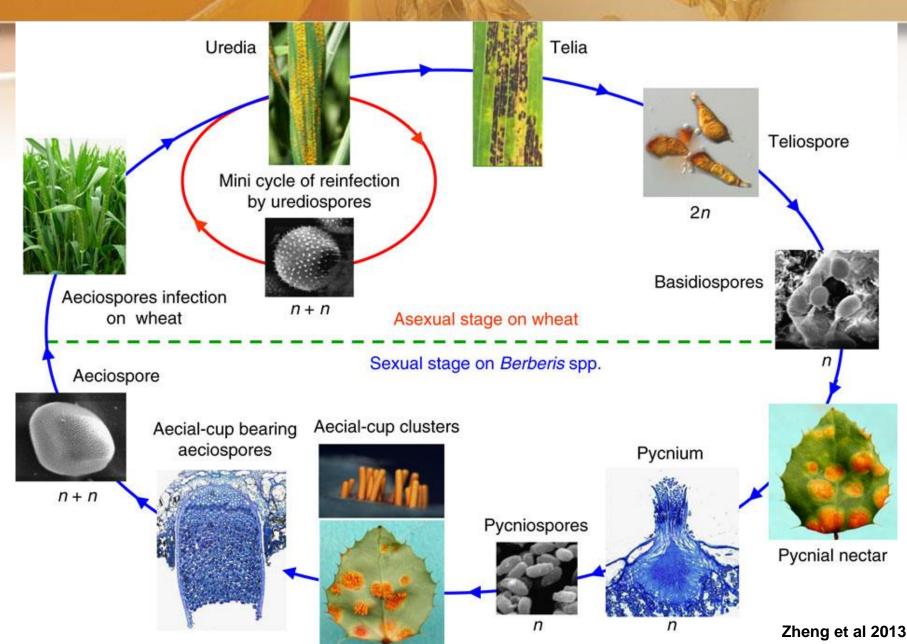
Puccinia striiformis f.sp. tritici (Pst) causal agent of stripe (yellow) rust

Introduction

Host-pathogen interaction

- Not all interactions are successful
- Pathogens can cause mild to severe damage
- Disease Triangle Concept

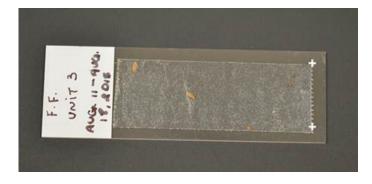
redits: https://masters.agron jastate.edu

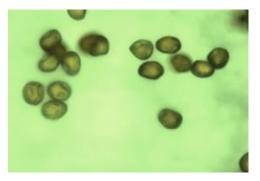


Credits: http://www.outdoorphotographycanada.com

Puccinia striiformis f.sp. tritici life cycle

Wheat pathogen surveillance tools


 Currently, we have to wait for symptoms on susceptible lines of wheat



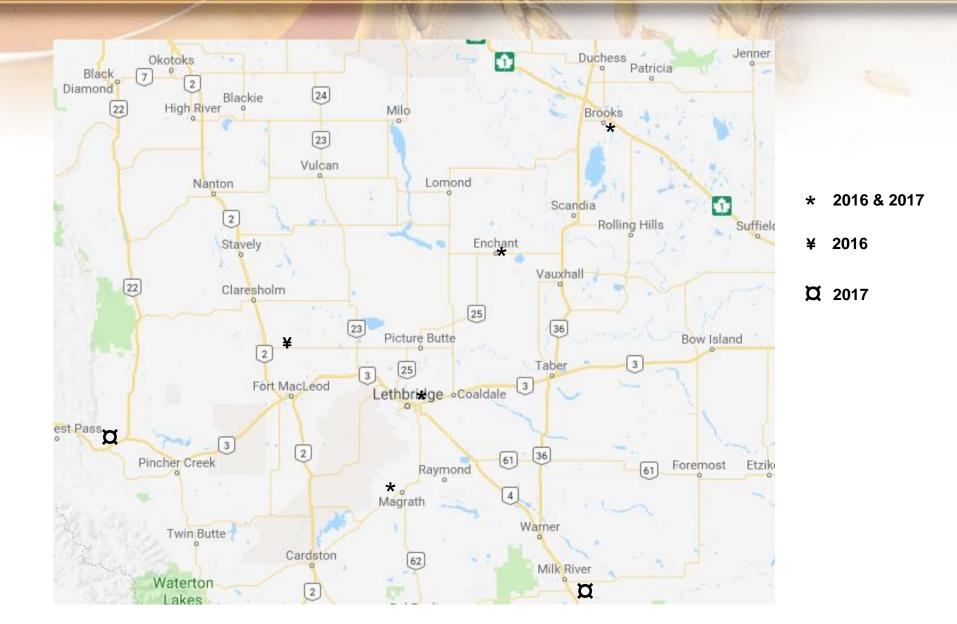
Wheat pathogen surveillance tools

• We are using sticky slides to detect presence of potential airborne pathogens.

Adhesive tape

rust spores – 400X

Microscopy analyses


Wheat pathogen surveillance tools

• We are also using spore collectors to detect presence of potential airborne pathogens.

Burkard Cyclone

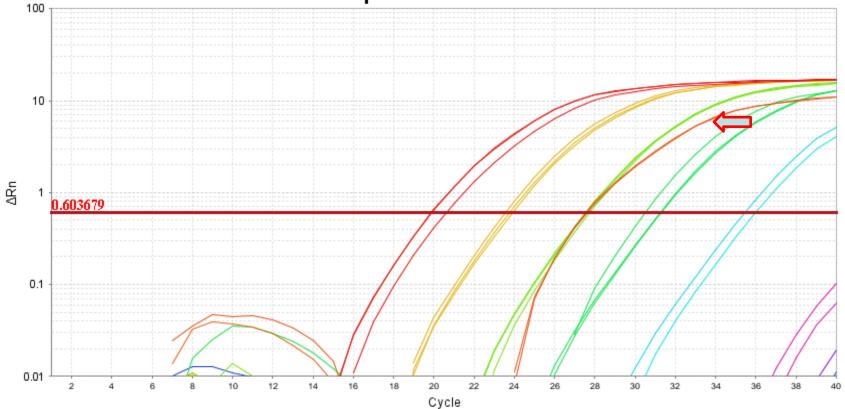
Location of spore collector units in southern Alberta

Detection of samples

DNA level

Different standard approaches enable identification at species level, very sensitive and highly specific

- Immunological level
 - Identification at species level, very sensitive, highly specific and rapid


Detection of samples

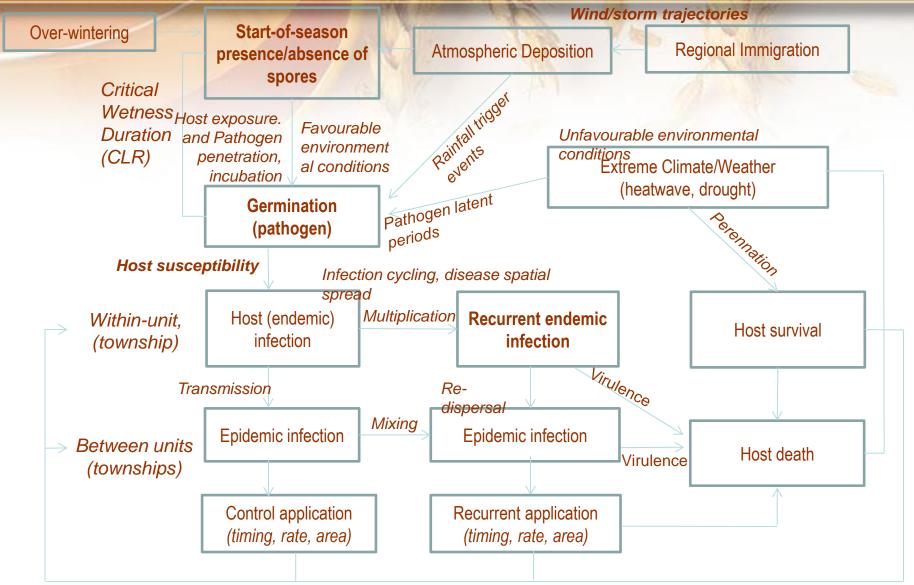
DNA level

- Need to break the spore to release the DNA and then detect the presence of a given pathogen based on a unique DNA sequence.
- DNeasy PowerSoil DNA Isolation Kit (Qiagen) a 2 step protocol that first breaks the spores open and then yield a fraction of DNA that can be used to detect pathogens.
- Identified and validated unique DNA sequences for each species
- qPCR to detect and quantify pathogens.

qPCR results (stripe rust target)

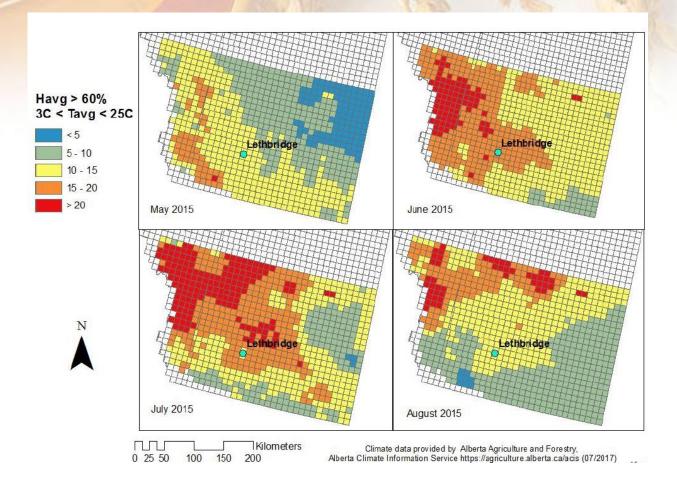
Amplification Plot

Pathogen-specific primer sets


• The seven best PCR primer sets tested

Primer set (F/R)	Pathogens	Diseases	Detection level
Pg2	Puccinia graminis f. sp. tritici	Stem rust	0.2 pg - 16 spores
PST	Puccinia striiformis f. sp. tritici	Stripe rust	0.3 pg - 25 spores
			0.5 pg - 20 spores
Pt2-032/ Pt1-113#2	Puccinia triticina f. sp. tritici	Leaf rust	
			2.0 pg - 307 spores
Bgt -6	Blumeria graminis f. sp. tritici	Powdery mildew	
			0.1 pg - 7 spores
Tox A1/ Tox A2	Pyrenophora tritici-repentis	Tan spot	
			0.2 pg - 8400 spores
Fgram B	Fusarium graminearum	Fusarium head blight	
ITS1/ITS4	Universal primer	All fungal samples	

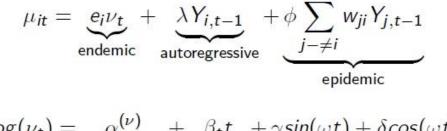
Summary


- We can reliably detect 6 wheat pathogens at a very low detection level: stripe rust, stem rust, leaf rust, powdery mildew, tan spot and Fusarium head blight
- The assay is rapid and would covers the most prevalent diseases of wheat on the Canadian Prairies
- Detection level well below minimum number of spores needed for successful infection at field level.

Disease modeling and forecasting framework

Pathogen survival, Over-summering

Potential wheat rust disease occurrence based on temperature and humidity empirical thresholds (Alberta municipalities, 2015)

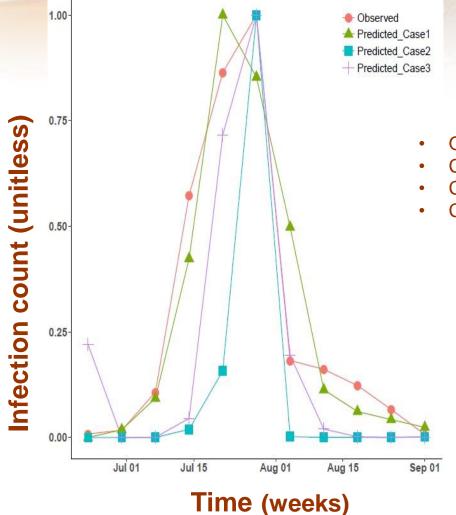

*municipality-interpolated high-resolution climate data from Alberta Climate Information Service (ACIS), https://agriculture.alberta.ca/acis/

Spatial endemic epidemic multivariate time-series model (HHH4)

Assumptions:

- Negative binomial model
- Constant population
- Districts have the same seasonality effect at time t
- Autoregressive and epidemic effects are homogeneous across districts, constant in time
- Spores only spread from the side neighboured districts

Basic model (without covariate spatial random effects):

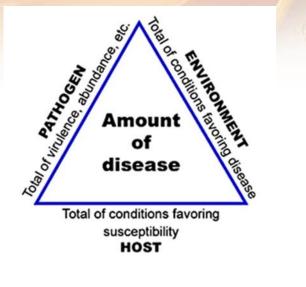


$$log(\nu_t) = \underbrace{\alpha^{(\nu)}}_{\text{inital states}} + \underbrace{\beta_t t}_{\text{gradient}} + \underbrace{\gamma sin(\omega t) + \delta cos(\omega t)}_{\text{seasonal trend}}$$

Where

- e_i is the population for district *i*.
- ν_t is the seasonality effect.
- α and $exp(\beta_t)$ are the endemic parameters.
- λ is the **autoregressive** parameter, $\lambda = exp(\alpha^{(\lambda)})$.
- ϕ is the **epidemic** parameter, $\phi = exp(\alpha^{(\phi)})$.

Spatial (HHH4) model predictions



- Observed spore counts (Lethbridge, 2015)
- Case 1 (HHH4 model, observed climate data)
- Case 2 (HHH4 model, ensemble-based reanalysis data)
- Case 3 (HHH4 model, observed and reanalysis data)

Summary

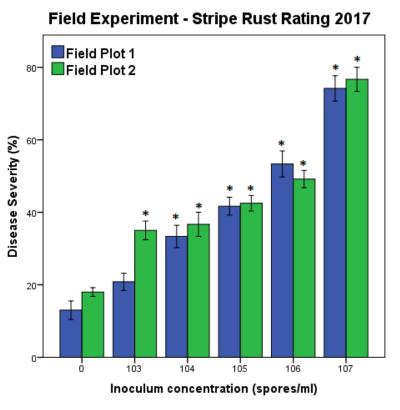
- Spatial model is able to predict disease occurrence width and peak timing well (Fairfield, Lethbridge validation site)
- Highest model prediction is achieved for the spatial model (HHH4) that
 assumes disease spread between adjacent districts
- Prediction power increases when combining station measured and ensemble-model reanalysis climate information
- Forecast model development/validation requires larger sample size of disease monitoring data, multiple growing seasons (i.e., larger network of cyclone air samplers needed)

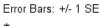
Future Prospects

Modelization of infection of stripe rust and other diseases

Near real-time information to help in decision making toward mitigating impact of pathogens on wheat yield and quality

Acknowledgements


AAFC Peer Reviewed Projects & GRDI



Previous experiment

Field experiment – stripe rust

* = P < .001

Detection of samples

- Light Microscopy
 - Limited resolution and best approximation at genus level
- Electron Microscopy
 - Additional information but slow process

Pst spores under scanning electron microscope

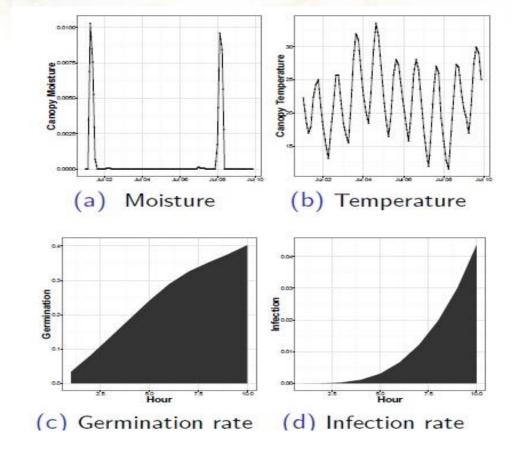
S3400N-028 10.0kV 4.5mm x1.00k SE

50.0um 3400N-023 10.0kV 4.6mm x1.60k SE

S3400N-074 20.0kV 4.5mm x7.50k SE

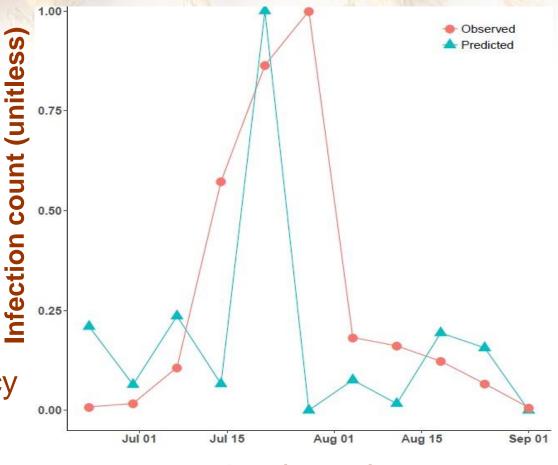
5.00um

Courtesy C. Sheedy LRDC

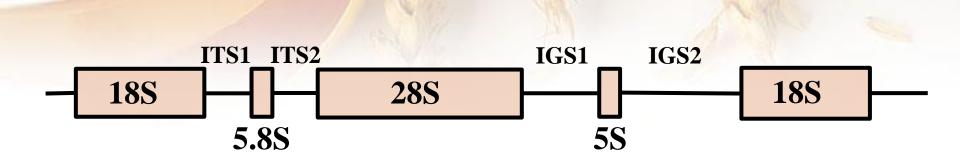

30.0um

Wheat stripe rust - Modeled germination and infection rate (Lethbridge, 2015 growing season)

Infection profile (sitespecific distribution) (CLR model)


Assumptions:

- Temperature is constant over each hourly interval
- Equal spore cohorts germinating at the start of each wet hour
- No spore germination process during the dry periods
- No neighbouring infections
- Spore germination, infection are only affected by canopy temperature and moisture
- The process of spore germination and infection is Weibull-distributed


CLR model predictions (normalized) (2015 growing season, Lethbridge spore profile)

- higher variability in prediction error during early/late season
- observed infection rate close to predicted ;
- timing of infection shows largest discrepancy

Time (weeks)

Schematic of rDNA locus

Fungi placement

Eukaryota Kingdom: Fungi **Phylum: Basidiomycota Class:Agaricomycetes** Subclass: Agaricomycetidae **Order: Atheliales Family: Atheliaceae** Genus: Athelia Species: A. arachnoidea

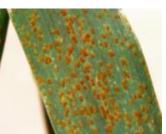
Fungi Ascomycota **Sordariomycetes Xylariomycetidae Xylariales Microdochiaceae** Microdochium M. nivale

Wheat rusts

stripe rust

stem rust

leaf rust

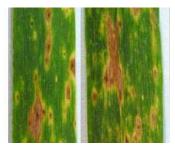


www.agric.wa.gov.aus

Common diseases of wheat in Western Canada

- Stripe rust (*Puccinia striiformis f. sp. tritici*)
- Leaf rust (Puccinia triticina)
- Stem rust (*Puccinia graminis f. sp. tritici*)
- Powdery mildew (Blumeria graminis f. sp. tritici)
- Tan spot (Pyrenophora tritici-repentis)
- Fusarium head blight (Fusarium graminearum)

http://msue.anr.msu.edu


http://theconversation.com

http://agric.wa.gov.au

http://agric.wa.gov.au

http://www.grdc.com.au

https://www.ag.ndsu.edu

Wheat rusts

- Rusts are obligate biotrophs
- Puccinia striiformis f.sp. tritici (Pst) is causal agent of stripe rust 117 Mb
- Puccinia triticina (Pt) is causal agent of leaf rust 135 Mb
- Puccinia graminis f.sp. tritici (Pgt) is causal agent of stem rust 89 Mb
- Around the world, wheat rusts can cause yield reduction from 20% to 90%

Genome size of different organisms and number of genes

	Size (Mb)	Genes (1000)
Escherichia coli (bacteria) Saccharomyces cerevisiae (yeast) Tilletia carries (bunt)	4.7 15 23	3 6
Arabidopsis thaliana (mouse cress) Puccinia striiformis (stripe rust)	70 117	23
Drosophila melanogaster (fruit fly)	140	15
Oryza sativa (rice) Brassica napus (rapeseed) Medicago sativa (alfalfa) Zea mays (maize)	580 1,200 1,600 2,400	27
Homo sapiens (man) Hordeum vulgare (barley) Thinopyrum elongatum (2x) 6,0 Secale cereale (rye) Avena sativa (oat)	3,300 5,100 00-8,000? 8,300 11,300	30
<i>Triticum aestivum</i> (wheat) <i>Fritillaria assyriaca</i> (lily)	16,000 123,000	57

Arumuganathan and Earle, 1991; Ausubel et al. 1995; Brown 1991; Dean and Schmidt, 1995; Mills 1996.

Acknowledgements

Associates and collaborators at LeRDC:

Michele Frick Alejandro Peña Briana Smith Eric Amundsen Denis Gaudet Harpinder Randhawa Robert Graf Jamie Larsen

Ottawa RDC: Scott Redhead Hélène Labbé

AAFC Peer Reviewed Projects Alberta Crop Industry Development Fund