

Agriculture et Agroalimentaire Canada

Agriculture Residue Harvest & Collection: Obstacles & Opportunities

By:

Mark Stumborg, P.Eng. Agriculture and Agri-Food Canada Swift Current, Saskatchewan

Producer Value Equation for Harvest

- 1. Seed Quantity and Quality
- 2. Time
- 3. Capital Cost (Purchase and Depreciation)
- 4. Operational and Maintenance Costs

We are trying to add another:

Crop Residue Quantity and Quality

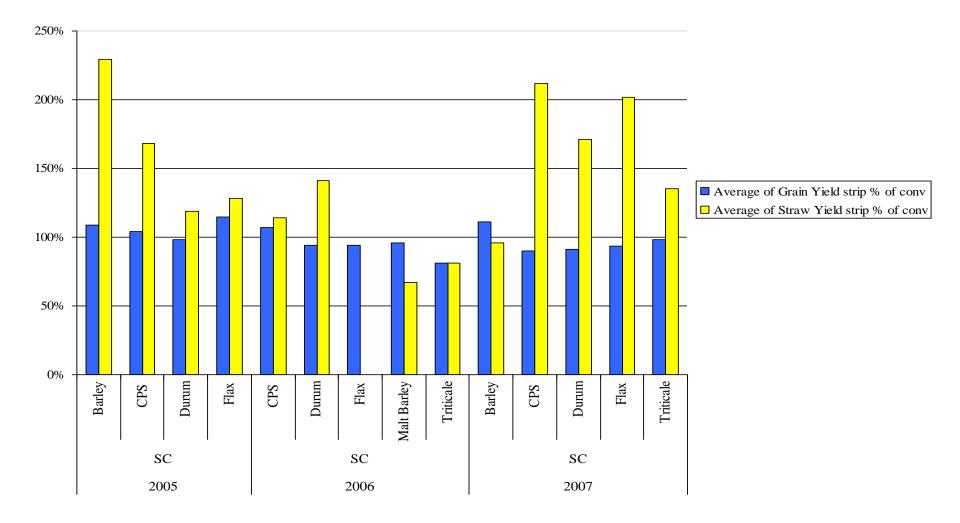
Harvest Challenges

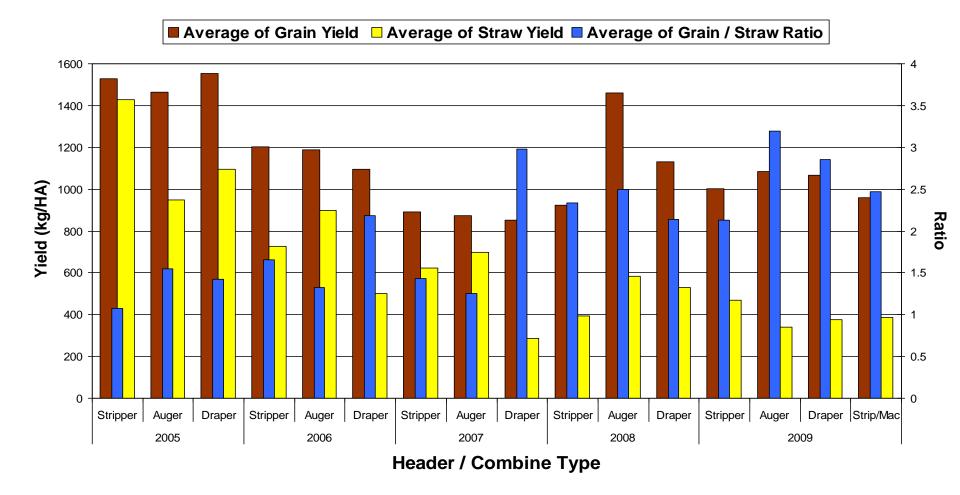
Rotary vs. Conventional Combines:

- Rotary combine: grinding action leaves less baleable straw with considerably affected quality and integrity.
- Conventional: responsible for harvesting <25% of the combined acres.</p>

20' Header - Conventional

Seed Quality


- Malting Barley:
 - Stripper leaves many awns & cleaner sample.
- Lentils:
 - Leaves 10 12" stubble.
 - No dirt & few cracks or peels.
- Flax:
 - Works with tough straw.
 - Less overall loss
- All crops: picks up down material (lodged, tracks, sawfly, etc.)



IH & SC Plots: Biomass and Grain Yields

Draft: Do Not Cite!

Simonson Flax Demonstration

Draft: Do Not Cite!

Demonstration Yields

2005 - 2008

	Ave Grain Yield (Kg/ha)	% of Draper Rotary	Ave Straw Yield (Kg/ha)	Straw as % of Draper Rotary
Stripper / Conventional and Stripper Rotary	1144	98	794	132
Auger / Conventional	1253	108	783	130
Draper / Rotary	1166	100	603	100

2005 - 2007

	Ave. Grain Yield (Kg/ha)	% of Draper Rotary	Ave Straw Yield (Kg/ha)	Straw as % of Draper Rotary
Stripper/Conventional and Stripper/Rotary	1217	103	927	148
Auger/Conventional	1185	101	849	135
Draper/Rotary	1177	100	628	100

Stripper Header Issues and Modifications

Bull Nose Adjustment:

- Difficult to adjust according to variable crop height or condition.
- Excessive interference causes increased straw breakage & grain loss.
- Desiccation appears to embrittle plant components, increasing losses.

Addition of guage wheels for rotor height control. **Residue Export Sustainability Issues**

- 1. Loss of Erosion Protection
- 2. Loss of Soil Nutrients
- 3. Loss of Carbon from the System
- 4. Economic Returns for Producers

Indian Head Long-Term Rotations 1957-1987

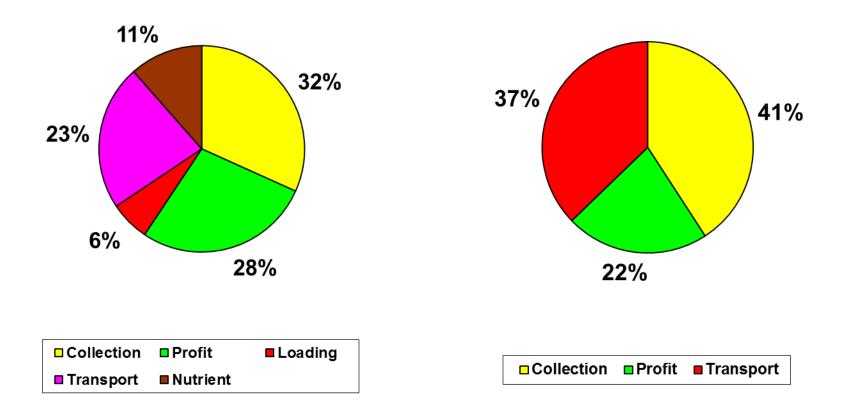
Rotation: Fallow - Spring Wheat - Spring Wheat All plots - Conventional Tillage System

	Fertilizer	Straw	Total Org C (0–6")	Total Org N (0–6")	Fallow Yield Bu ac ⁻¹	% of A	Stubble Yield Bu ac ⁻¹	% of A
			T ha⁻¹	kg ha ⁻¹			Duuo	
A	Fertilized	Left	38.5	3243	38	100	34	100
В	Fertilized	Removed	38.2	3067	39	103	35	103
C	No Fertilizer	Left	36.4	2966	34	89	13	38

Indian Head Long-Term Rotations 1990-2002

Rotation: Fallow - Spring Wheat - Spring Wheat All plots - Zero Tillage System

	Fertilizer	Straw	Fallow Yield	% of A	Stubble Yield	% of A
			Bu ac ⁻¹		Bu ac ⁻¹	
A	Fertilized	Left	44	100	37	100
В	Fertilized	Removed	45	102	38	103
С	No Fertilizer	Left	24	55	11	30


Erosion Impact of Stover Removal

Tillage	Residue	Peak	Run-Off	Sediment
System	Level	Run-Off	Volume	Yield
	kg ha ⁻¹	mm hr ⁻¹	mm	kg ha ⁻¹
No-Till	0	17.0	4.5	72.0
	750	9.0	2.6	11.0
	1500	1.0	0.2	7.0
Conv. Till	0	51.0	35.5	2812
	750	34.0	32.7	1001
	1500	26.0	18.0	513

Note: No-till @ 12% slope, Conventional Till @ 9%slope.

Mostaghimi et al. (1992).

Cost Division for Export

Based on 50 km Haul, FOB Plant, & Custom Rates in Saskatchewan. Estimated cost: \$65 - \$70 tonne⁻¹ in 2012.

Flax Value Equation: Shelbourne Header

- a) Grain: Potential gain in grain yield;
- b) Improvement in opportunity cost due to higher field rates and improved harvest window (flax harvest August 8 – 14);
- c) Reduced wear & tear on combine (50% less material);
- d) Up to 20% less fuel required;
- e) Potentially cleaner seed sample;
- f) Potential saving of desiccation;
- g) Opportunity for higher value straw returns.

Producer Returns: Quality Starts @ Harvest

Low Value Uses:

- Example: flax pulp for paper quality enhancement.
- Producer Net Range: \$ 5 to \$10 per tonne.
- Savings from disposal and chopping: ~\$1 per tonne.

Medium Value Uses:

- Examples: insulation products, plastic composites, and low end textiles.
- Producer Net Range: \$30 to \$100 per tonne.

High Value Uses:

- Examples: high-end plastic composites and textile applications.
- Producer Net Range: \$60 to \$150 per tonne.

Note:

Potential producer returns depend on fibre length, cleanliness, strength, & quantity. Rotary harvested straw can only meet the requirements for low value uses.

Mascerated Flax Straw: Preprocessing & Densification

Typical Flax Straw Round Bale Weights: 1350 lbs

Mascerated Flax Straw Bale Weight: 2200 lbs

A 63% Increase !

Mascerating Wheat Straw

Before

Initial Observations

- Masceration increased straw losses.
- Masceration did not increase round bale density.
- Masceration increased square bale density by ~17%.

New Land Impact Analysis Tool

BIMAT

<u>Biomass Inventory Mapping and Analysis Tool</u>

Why did Canada build it?

- Provide access to accurate and reliable Canadian biomass and landscape information via the Internet.
- Facilitate analysis of biomass inventory and impact of exploitation of selected agricultural, forestry, and municipal woody biomass.

Where is the BIMAT located?

Go to: www.agr.gc.ca

Use search & follow the BIMAT links to the Land Resource Viewer.

Or go to: http://atlas.agr.gc.ca/bimat

BIMAT II Function Improvements

Function Improvements

- Estimates for grain production;
- Alternative crop residue harvest system modeling;
- Modeling of annual variability in biomass supply;
- Land suitability information for the production of new forestry and forage crops for cellulosic feedstocks;
- Logistics and carbon accounting information;

Expand Biomass Reference Material

• Add information about quality, conversion processes and life cycle evaluation.

Straw and Grain Input Data Statistics for BIMAT 2

Estimated Number of Input Datasets accessed (>29,245)

• ASCII: 28,630

3

- Geotiffs: 546
- Spreadsheets:
- Shapefiles: 13
- Tables: 54
- 19+ Python Scripts
- Lines of code????

Road distances from origin cells to the surrounding destination cells within 250 km have been calculated using National Road Network dataset *(9,637,254 records)*.

Next Steps

- BIMAT II is scheduled to be released within AAFC on March 31, 2013
 - Dev Version: <u>http://evans/EMAF/apps/en/bimat_ocib/</u>
- External Release expected to be around April 30, 2013

Acknowledgements

- CBIN Canadian Biomass Innovation Network, a Federal Interdepartmental Committee which has provided substantial funding to this project
- PERD Program on Energy Research and Development, has also provided long-term funding to this project.
- ecoETI
- FP Innovations (FERIC)
- AAFC AESB
- AAFC Research Branch
- AAFC NLWIS
- SWM International
- Wheatland Conservation
- SaskFlax

Thank You for Your Attention !

Canada