Hinton Wood Products A division of West Fraser Mills Forest Management Agreement FMA 8800025 O.C. 565/2007

Mountain Pine Beetle Forest Management Plan Technical Report #3 - Annual Allowable Cut Projection-

April 30, 2010

Table of Contents

1	Intro	oduction	. 1
	1.1	Software Tools	. 2
2	Data	a and Methods	. 3
	2.1	Landbase Classification Inputs	. 3
	2.1.1	1 Assigning pre-blocks	. 5
	2.1.2	2 Sequencing Susceptible Pine	. 6
	2.2	Yield Projection Inputs	. 6
	2.2.1	1 Utilization Standards	. 6
	2.2.2	2 Cull Deductions	. 7
	2.2.3	3 Deciduous Mortality	. 7
	2.2.4	4 Low stocking yield modifier	. 8
	2.2.5	5 Piece Size	. 8
	2.3	Model Assumptions	. 8
	2.3.1	1 Model Objective and Constraints	. 9
	2.3.2	2 Transition Matrix and Regeneration Lag Assumptions	. 9
	2.4	Harvest Deferrals	12
	2.5	Spatial Constraints	13
3	Resi	ılts	14
	3.1	Preferred Pine Management Strategy	14
	3.2	Future Forest Attributes	15
	3.3	PPMS yield strata transitions through time	20
	3.4	MPB Disaster Scenario	20
4	Reco	ommended AAC Summary	21
	4.1	Spatial Harvest Sequence	21
	4.2	Comparison to the 1999 FMP	22
5	Refe	erences	23
6	App	endix	24
	6.1	PPMS Selection Process	24
	6.2	Long Run Sustained Yield Average	26
	6.3	Additional Tables and Graphs Related to the PFMS	28
	6.4	PPMS TSA Models and Output Spatial Data	34
	6.4.1	1 Data Library	35
	6.5	Non-Timber Values: Water Yields Assessment	40
	6.5.1	1 Major Basins	42
	6.5.2	2 Watershed Groups	46
	6.5.3	3 Watersheds	54
	6.6	Non-Timber Values: Grizzly Bear	63

List of Figures

Figure 1. HWP forest management Area (Green) within Alberta
Figure 2. Actual planned block boundaries compared to planned boundaries as defined
through the "polygon selection method"
Figure 3. Estimated rate of deciduous volume retention versus stand age
Figure 4. Planned block that does not align with the standard transition matrix – (block
has been declared to be entirely regenerated to a pure pine yield strata (Base10=8))
Figure 5. PPMS final projected AAC over the planning horizon
Figure 6. Coniferous and deciduous landbase contributions to the final projected AAC 15
Figure 7. PPMS stand type contributions to the coniferous AAC
Figure 8. PPMS contribution by species to the coniferous AAC
Figure 9. PPMS change in MPB Rank 1 and 2 stands within the contributing landbase. 17
Figure 10. PPMS change in total growing stock
Figure 11. PPFMS change in total growing stock for stands that meet the minimum
harvest age requirement (80+ for pure coniferous and mixedwoods; 60+ for pure
deciduous)
Figure 12. Age class distribution at the base date (2008)
Figure 13. PPMS age class distribution in 2027
Figure 14. PPMS yield strata transitions through time (black line represents the end of the
accelerated cut period - 2028)
Figure 15. PPMS mean piece size $(Trees/m^3)$ – results averaged by decade
Figure 16. PPMS mean haul distance (to Hinton mill site)
Figure 17. PPMS mean harvest age
Figure 18. PPMS mean harvest area by broad cover group
Figure 19. Base Yield Estimates
Figure 20. Base Precipitation Estimates
Figure 21: Major Basins
Figure 22: Major Basins – Gross Area
Figure 23: Watershed Groups
Figure 24: Watershed Groups with 20 Year Spatial Harvest Sequence
Figure 25: Watershed Groups with projected increase in water yield > 15% (Pine Creek
and Windfall Creek)
Figure 26: Watershed Groups – Gross Area (within FMA) & Harvest Summary 53
Figure 27: Watersheds
Figure 28. Grizzly Bear Watershed Units
Figure 29. Grizzly Bear Safe Harbour (current)
Figure 30. Grizzly Bear Safe Harbour (future)

List of Tables

Table 1. Estimated rate of deciduous volume retention due to mortality 7
Table 2. Mean low stocking adjustment ratio by yield stratum (weighted by block area) 8
Table 3. Yield strata standard transition matrix*: Area by yield strata in 2008 and 2027 10
Table 4. Planned Blocks with a declared yield strata different than the standard transition
matrix
Table 5. Recommended AAC based on the preferred pine management strategy
Table 6. TSA scenario tracking sheet 25
Table 7. LRSYA for the HWP FMA: natural to natural stand transitions were assumed
(minimum harvest ages applied)
Table 8. LRSYA for the HWP FMA: natural to managed stand transitions were assumed
(minimum harvest ages applied)
Table 9. LRSYA for the HWP FMA: natural to managed stand transitions were assumed
(no minimum harvest age applied)
Table 10. PPMS summary of AAC projections for each 5 year period (starting May 1,
2008)
Table 11. PPMS total merchantable volumes harvested
Table 12 – Water Yield Assessment: Major Basins 43
Table 13 – Water Flow Assessment: Watershed Groups
Table 14 – Water Yield Assessment: Watersheds 55
Table 15. RSF, Mortality Risk and Safe Harbour Summary – Grande Cache Population 66
Table 16. RSF, Mortality Risk and Safe Harbour Summary – Yellowhead Population 66
Table 17. Open Route Density – Grande Cache Grizzly Bear Population 67
Table 18. Open Route Density – Yellowhead Grizzly Bear Population

1 Introduction

Hinton Wood Products (a division of West Fraser Mills Ltd) renewed its Forest Management Agreement (FMA) effective May 1, 2008 (O.C. 565/2007). The entire management area is close to a million hectares in size and is located in west-central Alberta (Figure 1). This diverse area is comprised of five natural sub-regions: Upper Foothills, Lower Foothills, Montane, Sub-Alpine and Alpine (listed in order of prevalence).

Eighty percent of the FMA forested area consists of pure coniferous stands, with the remaining 20% consisting of pure deciduous stands (~8%) and mixedwoods (~12%). Lodgepole Pine contributes approximately 65% of the total merchantable volume within the FMA. Therefore, the expanding mountain pine beetle (MPB) infestation being observed across west-central Alberta (during the autumn of 2009) make an MPB forest management plan (FMP) amendment critical for the Hinton Wood Products (HWP) FMA.

Figure 1. HWP forest management Area (Green) within Alberta

This report is the third volume in a series of three technical reports undertaken as part of the HWP MPB FMP amendment. This report makes extensive use of the results from the first two reports in the series *Landbase Classification* and *Yield Projections*.

This Annual Allowable Cut Projection report has four objectives:

1. Propose a new annual allowable cut (AAC) for the Hinton FMA in accordance with the healthy pine strategy as outlined by *Alberta Sustainable Resource Development*;

- 2. Provide an overview of the methodology and assumptions used to derive the *Preferred Pine Management Scenario* (PPMS);
- 3. Propose a 10-year spatial harvest sequence (SHS) that comports with the PPMS.
- 4. Assess the potential impacts on key non-timber values.

1.1 Software Tools

The timber supply analysis was completed through linear program modeling by using the *Remsoft Spatial Planning System* (2009.09) and *Mosek* 6.0(x64) as the LP solver. *Microsoft Excel2002* and *FoxPro 9.0* were used intermittently for simple data tasks and error checking.

2 Data and Methods

The input landbase shapefile used in the TSA was *Final_2009TSAINPUT* (see *Technical Report* #1 - *Landbase Classification* for a full discussion). To improve the model efficiency all polygons with an area less than <0.0001 in size were ignored; which resulted in 1.3ha of total area (0.3ha of contributing area) being ignored in the TSA.

2.1 Landbase Classification Inputs

A total of thirteen landbase attribute themes were used in the TSA models (see Section 6.4 *[PFMS_SPAT] & [PFMS_NONSPAT]*):

Theme 1: Working Circle and Compartment

Only operationally specified compartments were opened for harvest during the first 10 years of the planning horizon. The specified compartments were then closed in 2018 and the compartments previously closed were opened. After twenty years (starting in 2028) all compartments were assumed open for harvest. The first 10-years of sequenced blocks make up the spatial harvest sequence (SHS). A summary of SHS volumes by compartment is located in Table 11.

Theme 2: Special Management Areas

Special management areas have been identified within the FMA (by HWP) as locations potentially requiring additional consideration during harvest assessments. These sites include:

- High elevation sheep and goat SMA
 - Total area= 1,300ha
 - Contributing area = 238ha
 - Area sequenced within the first decade = 0ha
 - Any special requirements in this area will be handled at the operational level. No special TSA constraints or restrictions were applied.
- Pinto Creek Mountain Goat SMA
 - o Total area= 3,106ha
 - Contributing area = 2,715ha
 - Area sequenced within the first decade = 193ha
 - Any special requirements in this area will be handled at the operational level. No special TSA constraints or restrictions were applied.
- Trumpeter Swan Lake SMA
 - \circ Total area= 1,042ha
 - \circ Contributing area = 315ha
 - Area sequenced within the first decade = 172.7ha
 - During the landbase classification trumpeter swan lakes were buffered by 200m and designated as non-contributing (passive) landbase. Only a small portion of the SMA is outside the buffered area and within the contributing landbase. Any additional special requirements in this area will be handled at the operational level.
- Woodland Caribou SMA
 - Total area= 54,264ha
 - Contributing area = 35,833ha
 - Area sequenced within the first decade = 0ha
 - The management intent is to defer any harvesting within this SMA until the end of 2017 timber year. From a model formulation standpoint, a spatial

LOCK of 10 years was applied to these areas. The deferral does not preclude HWP from engaging in salvage or pine management within this SMA.

Theme 3: Summer versus winter only access

All areas within the FMA were designated as either summer or winter-only access. This theme was used to track the summer ground harvest rate for the *Preferred Forest Management Strategy* (PFMS). This was not a model constraint.

Theme 4: Mountain pine beetle risk ranking

The MPB stand risk ranking was used in the TSA model to force an increased harvest rate in 1 and 2 stands (especially pine dominated stands).

Theme 5: High value identifier

If a stand had an AVI height call of 19m+ tall it was identified as likely having high fiber value. This theme was not used as a constraint but was used for information purposes only.

Theme 6: Yield strata

All stands were assigned to a yield stratum which provides the link between landbase classification and yield projections. Yield strata assignments were also used to ensure aggressive sequencing of pure pine stands within the first 20 years of the planning horizon.

Theme 7: Stand regeneration Status

All stands were assigned to a regeneration status to track the origin status (fire origin, fully-stocked managed, or low-stocked managed) of all stands through the planning horizon. This theme was also used to implement regeneration lag into the model (upon harvest a proportion of each yield strata was assigned to *NSR* status (Section 2.3.2)).

Theme 8: Contributing versus passive landbase

All stands were assigned to either the contributing or passive landbase. This theme did not change throughout the entire planning horizon.

Theme 9: Polygon contains a cutline identifier

As described in *Technical Report #1 - Landbase Classification* the TSA model input layer (*Final_2009TSAINPUT*) accounted for cutlines and seismic lines as an area reduction within each individual polygon. This allowed for an overall a drop in the number of polygons within the spatial file, while the contributing landbase stayed the same. This theme was used to track the presence of cutlines or seismic lines within polygons. Initially the purpose was to model cutline and seismic line reclamation after harvest. However, due to time constraints this was not implemented in the TSA models. The AAC impacts of reclamation will be investigated more fully in the 2014 plan. This theme was not used in the TSA.

Theme 10: Regeneration declaration of pre-blocks

The base date for the plan is May 1, 2008; thus a number of modeled pre-blocks have been harvested and have been assigned to a regenerated yield stratum. In the vast majority of cases the regenerated yield strata aligned with the standard transition matrix (Table 3); however in a few instances (276ha) this is not the case (Table 4). Theme 10 was implemented to ensure that blocks were modeled to regenerate to the declared yield stratum.

Theme 11: Landbase designation

All pure coniferous and mixedwood stands were modeled to be managed to maximize coniferous volume; only pure deciduous were modeled to maximize deciduous volume. This distinction influenced stand sequenced by way of compartment sequencing and minimum harvest ages.

Theme 12: AVI pine composition 70% or higher

This theme was used to track stands that have 70% or more pine composition (AVI based). This information was **only used in the** *Disaster* **scenario TSA** to kill non-salvaged stands.

Theme 13: AVI non-pine coniferous composition 40% or higher

Similar to theme 12, this theme was used to track stands that have 40% or more non-pine conferous composition (AVI based). This information <u>was not used in the TSA</u>.

2.1.1 Assigning pre-blocks

During the landbase classification (*Technical Report* #1 – *Landbase Classification*) all available planned blocks were cut into the net landbase. Since that time HWP planners have surveyed additional planned blocks. These new planned blocks were included in the TSA input file [*final_2009TSAinput*] by a *polygon selection method* (no additional GIS work was done to physically cut the boundaries into the net landbase). If a new planned block included 50% or more of the area of a polygon within the contributing landbase then the entire polygon (within the

contributing landbase) was assumed to be planned for harvest (Figure 2). While there were some individual block outages, this method was successful in realistically representing the planned block boundary in most instances. The total actual area of additional planned blocks was 2,972.2ha which resulted in a total of 2,812.5ha of planned blocks after the *polygon selection method* was completed. The deviations caused by this method will be assessed through variance tracking.

Figure 2. Actual planned block boundaries compared to planned boundaries as defined through the "polygon selection method".

2.1.2 Sequencing Susceptible Pine

The Hinton FMA has a high prevalence of mature to over-mature pine volume (Figure 12). A major goal of the PPMS was to reduce this highly susceptible area on the FMA. This was accomplished by direct operational planning and by allowing the TSA software (*STANLEY*) to sequence only stands with both of the following attributes (over the first 20 years of the planning horizon):

• Must have an MPB Risk Ranking of 1 or 2 [theme 4]

And

- Must have a high pine species composition, identified by yield strata [theme 6]:
 0 E_B8_GH
 - o E_B8_GL
 - o E_B8_MH
 - o E_B8_ML

These harvest restrictions were not applied to pure deciduous stands.

2.2 Yield Projection Inputs

The selected yield curves align with the FMA's sawlog management emphasis.

2.2.1 Utilization Standards

Yields in the model were based on the coniferous and deciduous yield curves from *Technical Report #2 - Yield Projections (Appendix 1)*. The utilization standards used:

Coniferous

- 15/11 utilization standard
- 15cm stump
- tree length harvesting
- minimum merchantable length = 3.76m (empirical); 3.66m (GYPSY-based)
- volumes were reported in one of three species groups:
 - o PL_VOL includes Pl only
 - SW_VOL includes Sw, Se, Fb, Fa, and Fd
 - o SB_VOL includes SB only
- Tamarack (Lt) was considered unmerchantable
- Dead trees contributed no merchantable volume

Deciduous

- 15/10 utilization standard
- 15cm stump
- volumes reported as total deciduous merchantable volume:
 - o DEC_VOL includes both Aw and Pb volume
- Birch (Bw) was considered unmerchantable
- Dead trees contributed no merchantable volume
- Empirical curves
 - o cut-to-length harvesting

- \circ target length = 2.56m
- \circ minimum merchantable length = 1.78m
- GYPSY curves
 - tree length harvesting
 - \circ minimum merchantable length = 3.66m

2.2.2 Cull Deductions

Cull deductions were not applied to any yield strata in *Technical Report #2 - Yield Projections* (*Section 6*). Rather a percentage cull reduction was applied to each yield curve within the TSA model.

Coniferous cull reduction = 5% Deciduous cull reduction = 13.2%

2.2.3 Deciduous Mortality

During empirical curve development, losses due to mortality were accounted for as dead trees did not contribute any merchantable volume. However due to a lack of plots in deciduous-dominated stands aged 140+ years, the acceleration in deciduous mortality is potentially under-represented in older stands. Therefore, a conservative approach was taken and an age-based mortality constant (Huang 1999) was applied to the deciduous volumes of all empirical based curves (Table 1). A deciduous volume reduction was <u>not</u> applied to GYPSY based curves as the model accounts for deciduous mortality.

Table 1. Estimated rate of deciduous volume retention due to mortality

Stand Age (yrs)	0 to 100	105	110	115	120	125	130	135	140	145	150	155	160	165	170	175	180+
Deciduous Volume Retention Rate	1.000	0.980	0.941	0.884	0.814	0.732	0.644	0.544	0.465	0.382	0.305	0.238	0.181	0.134	0.096	0.068	0.046

Figure 3. Estimated rate of deciduous volume retention versus stand age

2.2.4 Low stocking yield modifier

An October 30, 2009 letter from SRD titled *Regenerating landbase – ARIS records validation* described the process to proportionally reduce volume projections for managed stands with a performance survey total stocking between 50% and 80% (hereafter called "low stocking blocks"). The *Alberta Regeneration Survey Manual* defines 80%+ stocking as a fully stocked stand; therefore an adjustment ratio was calculated for each stand as follows:

Block adjustment ratio = Total performance survey stocking / 80

The mean-area-weighted block adjustment ratio for each yield stratum was then calculated (Table 2). Volume retention for low stocked stands averaged closed to 80% in all yield strata (with a range of 70% to 90%). Therefore, a simple 0.8 adjustment factor (block retains 80% of the volume of a fully stocked stand) was applied to all low stocking blocks in the TSA.

Vield Strata	Area (ba)	Mean performance survey stocking	Mean low stocking adjustment ratio (rounded down)
E B1 XL	(II a) 61	71.1	(10011000 0001)
E B2 XX	55.8	66.2	0.8
E_B3_XX	1.7	58.3	0.7
E_B9_XX	1.7	66.3	0.8
G_B4_XX	10.9	72.5	0.9
G_B5_XX	49.7	75.6	0.9
G_B7_XX	253.7	64.6	0.8
G_B8_XX	1,332.8	70.4	0.8

 Table 2. Mean low stocking adjustment ratio by yield stratum (weighted by block area)

2.2.5 Piece Size

Piece size projections were developed for each yield strata in the TSA. A detailed discussion of the development methodology is available in section 6.2 of *Technical Report #2 - Yield Projections*. Cull deductions were applied equally across all piece sizes.

2.3 Model Assumptions

- Planning Horizon = 200 years
- Minimum Polygon Size = 0.0001ha
- Model Start Date = May 1, 2008
- Entire FMA (which is the defined forest area) was modeled as a single sustained yield unit (SYU).
- As in the 1999 FMP separate FMU AACs were not calculated.
- Model Period Length = 5 years
- Minimum Harvest Age for Pure deciduous stands = 60 years (12 periods)
- Minimum Harvest Age for Mixedwoods and Pure Coniferous stands = 80 years (16 periods)

- Death Age for Mixedwoods and Pure Coniferous Stands = 320 years
- Death Age for Pure Deciduous Stands = 220 years

2.3.1 Model Objective and Constraints

There were two main objectives in the TSA models:

- 1. Maximize total (coniferous + deciduous) merchantable volume harvested over the entire planning horizon. In the TSA model this was the objective function.
- 2. Aggressively reduce the area of the most MPB susceptible pine stands over the first 20 years of the planning horizon. In the TSA model this was done by allowing the model to only sequence the most at risk rank 1 and 2 stands with the highest pine composition (Section 2.1.2).

Constraint #1 – Even-flow total coniferous and deciduous AAC

The total (primary + incidental) AAC for both coniferous and deciduous species were constrained to fluctuate within a maximum of +/- 5% of the *planning stretch* AAC. *Planning stretch* refers to the time period over which the AAC is averaged. When an accelerated cut was not being proposed: the planning stretch AAC = the mean planning horizon AAC. When an accelerated cut was proposed (as in PPMS) then the planning horizon is divided into two planning stretches (accelerated cut and post accelerated cut). Additionally planning stretches are also further divided by spatial versus aspatial planning (see Appendix 6.3 for details).

Constraint #2 – Non-declining coniferous and deciduous growing stock

Coniferous growing stock (for stands 80+ years old) and deciduous growing stock (for stands 60+ years old) levels were constrained to be non-declining over the last 50 years of the planning horizon.

Constraint #3 – 300,000 m³/yr of coniferous volume from the Marlboro working circle

A "loose" constraint was implemented to force 300,000 m³/yr of coniferous volume from the Marlboro working circle. This was done to ensure that significant volume was removed from the Marlboro working circle as it was the hardest MPB attacked region on the FMA as of April 2010.

2.3.2 Transition Matrix and Regeneration Lag Assumptions

All harvesting was modeled as a clear cut with each stand being regenerated based on the standard transition matrix (Table 3). The only exceptions were for a small area of operationally planned blocks with a silviculture declaration (Table 4). In the TSA model any blocks harvested or planned after May 1, 2008 were incorporated into the model as uncut pre-blocks. In a relatively small number of instances (273.6ha), these blocks had a declaration that did not match the standard transition matrix (Table 3). These deviations had two primary causes: 1) slivers caused by deviations between planned block and AVI polygon boundaries; or 2) the planned block was located (according to AVI) between two or more stand types (Figure 4).

All stands were assumed to regenerate to fully stocked status. Performance survey data from 2006, 2007, and 2008 were used to calculate a mean regeneration lag for each yield stratum (see

Technical Report #2 - Yield Projections for more detail). Regeneration lags were not applied to the yield curves directly but were included within the TSA model as a transition multiplier. Each harvested yield type was modeled so that a proportion of the area was assigned to a 5 year regeneration lag (the other portion of the stand was assigned a regeneration lag of zero).

Proportion of stand with a 5yr regen lag = Regen. Lag from Table 3 / 5

To account for regeneration lag on blocks cut prior to the 2008 start date. A total of 2 years was subtracted from the total stand age (regeneration lag rounded to the nearest year) for each stand assigned to one of the GYPSY based growth curves (G_B4_XX, G_B5_XX, G_B7_XX, and G_B8_XX). Two years was not added to stands assigned to an empirical based curve because the yield projections were derived from plot data that was assumed to have an origin age that was equal to the AVI inventory age. However, in the TSA model as stands were harvested a regeneration lag (Table 3) was applied to all yield strata (empirical and GYPSY based).

The overall reason for handling regeneration lag within the TSA model was to prevent site growth from being confounded with administrative decisions (as is the situation when regeneration lags are embedded within yield curves). The TSA regeneration lag approach allows for much greater model flexibility.

If a stand died before being harvested, the entire stand was assigned to a 10 year (2 period) regeneration lag and re-assigned to a modest yield stratum. For example, when a high density pure deciduous stand (E_B1_XH) died it was re-assigned to a low density pure deciduous yield curve (E_B1_XL) .

	Regen	Regen	Harvest	yield strata areas (ha)	
Harvest Yield Strata & Description	Lag (years)	Yield Strata	At the start of planning horizon in 2008	At the end of the 20 year accelerated harvest in 2027	Change
E_B1_XL Pure D, All sites, A or B crown closure	1.57	E_B1_XH	11,257	6,009	-5,248
E_B1_XH Pure D, All sites, C or D crown closure	1.57	E_B1_XH	36,975	43,222	6,247
E_B2_XX DC (PL), All sites, All crown closures	1.55	E_B2_XX	17,195	17,235	40
E_B3_XX DC (Spruce/Fir), All sites, All crown closures	2.37	E_B3_XX	14,244	14,292	48
E_B4_XX† CD (Spruce/Fir), All sites, All crown closures	1.72	G_B4_XX	9,239	8,674	-564
E_B5_XX CD (PL), All sites, All crown closures	2.19	G_B5_XX	21,057	18,949	-2,109
E_B7_MX Pure C (SW/FB), Medium site, All crown closures			43,671	43,558	-113
E_B7_GL Pure C (SW/FB), Good site, A or B crown closure	2.37	G_B7_XX	11,766	10,933	-833
E_B7_GH Pure C (SW/FB), Good site, C or D crown closure			6,866	6,315	-551
E_B8_ML Pure C (PL), Medium site, A or B crown closure			38,092	22,034	-16,057
E_B8_MH Pure C (PL), Medium site, C or D crown closure E_B8_GL Pure C (PL), Good site, A or B crown closure		C DO XX	131,841	80,175	-51,666
		G_B8_XX	33,808	24,531	-9,277
E_B8_GH Pure C (PL), Good site, C or D crown closure	•		103,589	71,192	-32,398
E_B9_XX Pure C (SB), All sites, All crown closures	2	E_B9_XX	8,074	8,454	380

Table 3. Yield strata standard transition matrix*: Area by yield strata in 2008 and 2027

	Regen	Regen	Harvest	yield strata areas (ha)	
Harvest Yield Strata & Description	Lag (years)	Yield Strata	At the start of planning horizon in 2008	At the end of the 20 year accelerated harvest in 2027	Change
E_UN_DM and Fin_base10=1 Understory Managed: Pure D, All sites, All crown closures	1.57	E_B1_XH	2,997	1,884	-1,113
E_UN_DM and Fin_base10=2 Understory Managed: DC (PL), All sites, All crown closures	1.55	E_B2_XX	1,132	1,108	-23
E_UN_DM and Fin_base10=3 Understory Managed: Pure DC (Spruce/Fir), All sites, All crown closures	2.37	E_B3_XX	5,394	5,360	-34
E_UN_DM and Fin_base10=4 or 6† Understory Managed: Pure CD (Spruce/Fir), All sites, All crown closures	1.72	G_B4_XX	5,470	5,444	-26
E_UN_DM and Fin_base10=5 Understory Managed: Pure CD (PL), All sites, All crown closures	2.19	G_B5_XX	850	838	-12
E_UN_CX and Fin_base10=7 Understory Managed: Pure C (SW/FB), All sites, All crown closures	2.37	G_B7_XX	32,033	31,663	-370
E_UN_CX and Fin_base10=8 Understory Managed: Pure C (PL), All sites, All crown closures	2.04	G_B8_XX	11,980	11,390	-590
E_UN_CX and Fin_base10=9 Understory Managed: Pure C (SB), All sites, All crown closures	2	E_B9_XX	7,942	7,560	-382
G_B4_XX GYPSY based: CD (Spruce/Fir) [†] , All sites, All crown closures	1.72	G_B4_XX	2,315	2,952	637
G_B5_XX GYPSY based: Pure CD (PL), All sites, All crown closures	2.19	G_B5_XX	3,424	5,527	2,103
G_B7_XX GYPSY Based: Pure C (SW/FB), All sites, All crown closures	2.37	G_B7_XX	12,336	14,223	1,887
G_B8_XX GYPSY Based: Pure C (PL), All sites, All crown closures	2.04	G_B8_XX	76,615	186,640	110,025
Total			650,162	650,162	

* - Standard transitions were always used except when a strata declaration was present for a planned block (see Table 4) † - Base10 strata 4 and 6 were combined

Harvest Yield Strata	Declared Regeneration Yield Strata	Area (ha)
	E_B2_XX	6.8
	E_B3_XX	72.1
F B1 YH	G_B4_XX	18.1
E_DI_AII	G_B5_XX	2.2
	G_B7_XX	2.9
	G_B8_XX	8.1
E B1 YI	E_B3_XX	0.1
E_DI_AL	G_B7_XX	22.5
E B2 XX	G_B5_XX	3.1
L_D2_AA	G_B8_XX	6.5
	E_B1_XH	21.2
F B3 XX	G_B4_XX	34.4
E_B1_XL G_B5_XX G_B7_XX G_B5_XX E_B2_XX G_B8_XX E_B3_XX G_B4_XX G_B7_XX G_B7_XX	1.9	
	G_B8_XX	3.9
E_B4_XX	G_B7_XX	4.3
E B5 VV	E_B2_XX	19.7
E_DJ_AA	G_B8_XX	15.3
E_B7_GH	G_B8_XX	0.6
E_B7_GL	E_B1_XH	0.1

Table 4. P	lanned Blocks w	ith a declared yi	eld strata d	lifferent than	the standard	transition matrix
------------	-----------------	-------------------	--------------	----------------	--------------	-------------------

Harvest Yield Strata	Declared Regeneration Yield Strata	Area (ha)
	E_B3_XX	5.3
	G_B8_XX	5.3
E_B7_MX	G_B8_XX	< 0.1
F B8 GH	E_B2_XX	< 0.1
E_D6_011	G_B5_XX	11.9
E_B8_GL	E_B1_XH	0.5
	E_B3_XX	0.2
E_B9_XX	G_B4_XX	< 0.1
	G_B8_XX	1.1
	E_B1_XH	0.5
E_UN_CX	E_B3_XX	< 0.1
	G_B4_XX	< 0.1
F UN DM	G_B7_XX	< 0.1
E_OIV_DIVI	G_B8_XX	7.7
Total		276.3

Figure 4. Planned block that does not align with the standard transition matrix – (block has been declared to be entirely regenerated to a pure pine yield strata (Base10=8))

2.4 Harvest Deferrals

Two types of harvest deferrals were included in the TSA model:

Harvest Deferral #1 - Woodland Caribou Special Management Area

Harvesting within the Woodland Caribou SMA [theme6= 'WOODL'] was deferred until 2018 (in Woodstock this is a two year lock: _LOCK 2).

Harvest Deferral #2 – Residual Patches

Technical Report #1 – *Landbase Classification (Section 2.1.4 and 2.6.1.2)* describes a process of identifying residual patches. To prevent residual patches from being immediately sequenced for harvest, all residual patches were assigned to a 30 year harvest deferral (6 period _Lock).

2.5 Spatial Constraints

The model development included a 70 year spatial allocation of coniferous landbase blocks (pure coniferous and mixedwoods) and 60 year spatial allocation of deciduous landbase blocks. This process allows for the impacts of spatial landbase interactions to be assessed. The first 10 years (2 periods) of spatially allocated blocks represents HWP's proposed spatial harvest sequence (SHS).

Spatial attributes:

- Coniferous Spatial Harvest Sequence Planning Horizon = 70 years
- Deciduous Spatial Harvest Sequence Planning Horizon = 60 years
- Adjacency Distance = 50m selected to ensure that computer generated blocks did not cross small permanent water courses
- No Green-up Period to better reflect natural disturbance harvesting
- Multi-period blocks were allowed to better reflect natural disturbance harvesting

3 Results

The preferred pine management strategy (PPMS) was developed by examining the results from several TSA models (see Appendix 6.1 for a full discussion of the PPMS selection process). A major management goal of this plan was to reduce the area of MPB susceptible pine stands and secondarily to correct some of the current age class imbalances across the FMA (Figure 12). The chosen PPMS quickens this process by proposing a twenty year accelerated cut while safeguarding the economic and environmental sustainability of the FMA.

3.1 Preferred Pine Management Strategy

The *final projected* (FP) AAC levels of the PPMS incorporates a 70 year coniferous and a 60 year deciduous spatial harvest sequence. The last 130 years of the coniferous planning horizon and the last 140 years of the deciduous planning horizon are based on aspatial projections. This process (as outlined in the *Alberta Planning Standard*) allows for confidence that the PPMS is a sustainable strategy.

The accelerated coniferous AAC from 2008 to 2027 was project at 1,766,576m³/year (Figure 5). Starting in 2028 a coniferous AAC reduction to 1,399,724m³/year is expected. This is a modest dropdown, as it is a spatially allocated AAC that is just 10.2% below the aspatial baseline even-flow coniferous AAC of 1,558,269 m³/year (run B2: Table 6). The deciduous AAC from 2008 to 2027 was project at 249,831m³/year. The MPB strategy results in very little deciduous AAC uplift during the accelerated cut because the vast majority of harvesting occurs in pine dominated stands (Figure 5). The strict avoidance of mixedwood stands over the first twenty years of the planning horizon results in little deciduous volume being harvested off the coniferous landbase (Figure 6).

Figure 5. PPMS final projected AAC over the planning horizon

Figure 6. Coniferous and deciduous landbase contributions to the final projected AAC

3.2 Future Forest Attributes

The PPMS strategy provides future forest attributes consistent with what is desired with a MPB forest management plan amendment:

- During the accelerated cut period (2008 to 2027) the vast majority of coniferous volume is obtained from pine dominated stands (Figure 7). Upon completion of the accelerated cut, a 15 year period (2028 to 2042) begins where few pine dominated stands are harvested. This overall trend is still discernable when volume by individual species types are examined (Figure 8); but it is not as strong. Significant pine volumes are still projected to be harvested off the non-pine dominated stands during the 15 year period. During a MPB epidemic it is unlikely that these trees will remain uninfected. This strongly suggests that during the 20 year accelerated cut, non-pine coniferous pockets within pure pine stands should not be harvested (when feasible). This variance causing practice will provide critical volume to mitigate the post-MPB AAC downfall and will hopefully sustain the economic future of the FMA.
- The PPMS significantly decreases the area of highest pine-dominated rank 1 and 2 susceptible stands (based on current composition). Over the accelerated cut period the area of pine dominated rank 1 and 2 stands drops from 164,834ha to 76,487ha; a drop of over 50% in 20 years (Figure 9).
- The total FMA growing stock (especially pine) decreases during the accelerated cut (2008 to 2027) (Figure 10). After 2043 the total growing stock on the FMA remains constant. However, for harvest age stands (80+ years for pure coniferous and mixedwood, 60+ for deciduous) the downward growing stock trend continues until the pine stands harvested during the accelerated cut period reach the minimum harvest age of 80 years old (Figure 11). With density management it is expected that some of these

regenerating stands should be merchantable prior to the current fire-origin based 80 year minimum harvest age.

• The Hinton FMA currently has a high percentage of mature to over-mature age class forest (Figure 12). This age class distribution tends to make the FMA more vulnerable to insect and disease impacts. After 20 years of the PPMS, the age class distribution is more balanced (Figure 13).

Figure 7. PPMS stand type contributions to the coniferous AAC

Figure 8. PPMS contribution by species to the coniferous AAC

Figure 9. PPMS change in MPB Rank 1 and 2 stands within the contributing landbase

Figure 10. PPMS change in total growing stock

Figure 12. Age class distribution at the base date (2008)

Figure 13. PPMS age class distribution in 2027

3.3 PPMS yield strata transitions through time

The accelerated cut period produces a significant shift within the pine yield strata grouping from fire origin to managed status (Figure 14). No significant shifts are projected in any other yield groupings. A yield strata shift begins in 2023 when understory managed stands are heavily harvested because understory managed stands are regenerated to the yield strata type that is best represented by the current stand understory. Aside from the harvest of understory managed stands, the area distribution of each yield grouping (Black spruce, Pine, White spruce – fir, Mixedwoods, and Deciduous) remains constant throughout the planning horizon.

Figure 14. PPMS yield strata transitions through time (black line represents the end of the accelerated cut period - 2028)

3.4 MPB Disaster Scenario

A MPB disaster scenario was modeled as per the guidelines established by SRD:

- Massive pine mortality was assumed 10 years into the planning horizon.
- Salvage cutting was possible for 10 years (20 years into the planning horizon).
- Salvaged stands have a normal regeneration lag.

- For stands not salvaged:
 - With >=70% pine composition the entire stand (non-pine volume included) was assumed to have died. The stand was to regenerate on a low density curve with a 15 year regeneration lag.
 - With <=60% pine composition the pine volume only included was assumed to have died. The stand growth continues as normal (pine volume removed).
- The HWP FMA had a total of 364,627ha of rank 1 and 2 stands. Due to age class distribution and harvest deferral issues it was not possible to achieve the target to reduce the area of Rank 1 and 2 stands to 25% of that in the currently approved FMP by year 20. In the *Disaster Scenario* Rank 1 and 2 stands were aggressively harvested over the first 20 years of the disaster scenario. However, the model was allowed the flexibility to not harvest a portion of the approximately 100,000ha of rank 1 and 2 stands with a pine component <=60%. This was done to align the model better to HWP's anticipated field strategies.

The main purpose of the *Disaster Scenario* was to project the AAC downfall after a massive MPB attack. And the results were devastating, the coniferous AAC drops by well over 1,000,000m³/year (compared to the even-flow AAC) to just over 400,000m³/year (Table 6).

The disaster scenario is a somewhat pessimistic model as it assumes an instant infection of the entire FMA and the salvage period ends with an assumed 100% loss of all un-salvaged pine volume. Additionally, some non-pine volume was also assumed to be lost. Regardless, the MPB disaster scenario provides an understanding of the gravidity of the situation and clearly establishes that a significant drop in AAC will occur after an FMA-wide MPB epidemic.

4 Recommended AAC Summary

Based on the extensive analyses undertaken, HWP recommends a coniferous AAC of $1,766,576m^3$ /yr and a deciduous AAC of $249,831m^3$ /yr.

$AAC (m^3/yr)^*$							
Coniferous	Deciduous						
15/11 utilization standard	15/10 utilization standard						
1,766,576	249,831						

Table 5. Recommended AAC based on the preferred pine management strategy

* - No attempt was made to estimate structure retention volumes; therefore structure retention will be monitored, reported annually and charged against the AAC.

4.1 Spatial Harvest Sequence and Strata Description Table

HWP has produced a 10-year SHS file [*PPMS_10yearSHS.shp*] derived directly from the PPMS. This will be the file referenced during variance checks. Due to the length of the table, the *Strata Description Table* has been included as an MS Excel spreadsheet (*Strata Description.xls*) on the enclosed CD *MPB Plan Amendment – Complete Final Reports, Maps, and Strata Description Table*.

4.2 Comparison to the 1999 FMP

There are significant differences between the 1999 Forest Management Plan and this Mountain Pine Beetle Forest Management Plan Amendment:

- 1. The utilization standard has changed from a pulp focus (10/8 utilization) to a sawlog standard (15/11 coniferous and 15/10 deciduous).
- 2. The 1999 plan did not have a MPB focus.
- 3. No SHS was required in 1999.

These differences make a direct comparison between the 1999 AAC and the above recommended PPMS AAC very difficult. However:

- 1. In 2006 an operational adjustment to the 1999 10/8 AAC was approved by SRD which changed the coniferous AAC to $1,535,000m^3$ /yr at a 15/10 utilization standard. This aligns well with the new 15/11 baseline even-flow coniferous AAC of $1,558,269m^3$ /yr (Table 6 B2).
- 2. The 1999 FMP sets the 10/8 deciduous AAC to 169,449m³/yr. Initially this seems to conflict with the new recommended 15/10 deciduous AAC of 249,831m³/yr. However, the 1999 deciduous LRSYA was 413,587m³/yr (10/8 utilization). The low 1999 deciduous AAC seems to have been caused by no even-flow constraints being imposed. A low mean deciduous AAC over the first twenty years of the planning horizon in the 1999 FMP was predominately due the prioritization of harvest in older coniferous age classes.

5 References

Alberta Sustainable Resource Development. 1991 Alberta Vegetation Inventory Standards Manual - Version 2.1. Alberta Environmental Protection, Resource Data Division, Data Acquisition Branch. Edmonton, Alberta.

Alberta Sustainable Resource Development. 2006 Alberta Forest Management Planning Standard. Version 4.1 – April 2006. Forest Management Branch, Public Lands and Forest Division, Alberta Sustainable Resource Development, Edmonton, Alberta.

Alberta Sustainable Resource Development. 2008. Alberta timber harvest planning and operating ground rules framework for renewal. Forest management branch. Forest Management Branch, Public Lands and Forest Division, Alberta Sustainable Resource Development, Edmonton, Alberta.

Huang, S. 1999. Interim mortality models for white spruce and aspen grown in boreal mixed-species stands. Forest Management Division, Lands and Forest Service. Alberta Environment. Presented at the WESBOGY Annual Meeting, September 1999.

Weldwood of Canada. 2000. 1999 Forest Management Plan – Volume I, Management Strategy 1999 – 2008. Weldwood of Canada Limited, Hinton Forest Resources. Hinton, Alberta

Weldwood of Canada. 2000. 1999 Forest Management Plan – Volume II, Resource Analysis. Weldwood of Canada Limited, Hinton Forest Resources. Hinton, Alberta

Weldwood of Canada. 2002. Harvest Planning and Operating Ground Rules. Weldwood of Canada Limited, Hinton Forest Resources. Hinton, Alberta

6 Appendix

6.1 PPMS Selection Process

The selection of the PPMS was done through an iterative process. First a realistic baseline evenflow coniferous and deciduous AAC was established at $1,558,269 \text{m}^3/\text{yr}$ and $246,007 \text{m}^3/\text{yr}$ respectively (Run B2 - Table 6). The B2 run was used as the basis for calculating the target area reduction in rank 1 and 2 stands through the 75% in 20 years guideline.

MRank12 = 217,949ha • 0.25

= 54,487ha

where: MRank12 = Minimum area of rank 1 and 2 stands that must remain on the landbase after 20 years of accelerated cut.

Due to age class distribution and harvest deferrals, reducing the total area of rank 1 and 2 forests to 54,487ha was not possible within 20 years. The minimum achievable area was 71,803ha. Therefore, a healthy pine model was run (H2) to project the implications of achieving as close as possible to the 71,803ha goal (75,000ha was used as the target to provide the model with some flexibility). This resulted in a radical accelerated coniferous AAC of $2,913,347m^3/yr$ and a resultant fall-down to $945,811m^3/yr$. These AAC fluctuations were unrealistic to implement.

The next step was to control the coniferous post-accelerated AAC fall-down by inserting a minimum AAC constraint (column K - Table 6). Through this process it was decided that *Run P1* was the most operationally realistic aspatial management strategy. *Run P1* projected a 20 year accelerated AAC at 17% above the baseline run (B2) while projecting a fall-down AAC that is only 4% below baseline even-flow.

The use of a constraint to force a maximum area reduction on MPB Rank 1 and 2 stands was abandoned for two reasons:

- 1. The model disproportionably harvested the least productive stands to maximize the area reduction.
- 2. Many of the MPB rank 1 and 2 stands have significant non-pine volumes making those stands more likely to remain at merchantable status in the event of an MPB attack.

The approach adopted was to allow only rank 1 and 2 pine-dominated pure coniferous stands to be sequenced during the twenty year accelerated cut period. For the deciduous landbase, only pure deciduous stands were sequenced.

Table 6. TSA scenario tracking sheet

								Ι	J	K	L		
A	В	С	D	Е	F	G	Н	AAC m ³ /y the surge (2	vr – during 008 - 2027)	AAC m ³ /y years of th horizon (20	AAC m ³ /yr - last 180 years of the planning horizon (2028 - 2207)		N
Run #	Category	Locks & Pre- blocks Included	Compartment Plan Followed	Marlboro Coniferous AAC >= 300,000 m3/yr between 2013 and 2028 (periods 2 to 4)*	Growing Stock Does Not Decline over the last 50 years of the planning horizon	Force Surge Harvest (periods 1 to 4) into Pure Pine Rank 1 and 2 stands	Spatial Harvest Sequence Included	Coniferous	Deciduous	Coniferous	Deciduous	Area (ha) of rank 1 and 2 stands at the start of 2008	Area (ha) of rank 1 and 2 stands at the end of 2027
B1	Basalina	Yes	No	No	Yes	No	No	1,564,303	246,007	1,564,303	265,509	364,627	216,743
B2	Dasenne	Yes	Yes	Yes	Yes	No	No	1,558,269	244,652	1,558,269	263,739	364,627	217,949
D2	Disaster	Yes	Yes	Yes	Yes	Yes	No	2,303,572	379,019	409,678	193,885	364,627	145,000
H2	Healthy Pine	Yes	No	Yes	Yes	No	No	2,913,347	322,041	945,811	220,899	364,627	$75,000^{\dagger}$
H6		Yes	No	Yes	Yes	No	No	2,180,572	305,583	1,400,000	278,570	364,627	172,864
P1	Preferred Pine Management Strategy (Non Spatial)	Yes	Yes	Yes	Yes	Yes	No	1,820,548	261,817	1,500,000	264,802	364,627	204,935
Р3	Preferred Pine Management Strategy (Spatial)	Yes	Yes	Yes	Yes	Yes	Yes	1,766,576	249,831	1,399,724 [‡]	241,204 [‡]	364,627	208,700

* - not a hard constraint

† - assigned as a model constraint.
‡ - mean of spatially allocated portion of the planning horizon (see Table 10 for details)

6.2 Long Run Sustained Yield Average

Yield Stratum	ield Landbase ratum Type		Coniferous MAI	Deciduous MAI	Net Area	Coniferous LRSYA	Deciduous LRSYA	
E D2 VV		MAI*	$(\mathbf{m}^2/\mathbf{ha}/\mathbf{yr})$	$(\mathbf{m}^2/\mathbf{ha}/\mathbf{yr})$	(ha)	(m^{2}/yr)	(m ² /yr)	
E_B2_XX		1.27	0.71	17,195	21,906	12,146	1.27	
E_B3_XX		1.37	1.45	14,244	19,574	20,668	1.37	
E_B4_XX		2.65	0.41	9,239	24,509	3,817	2.65	
E_B5_XX		1.90	0.47	21,057	39,993	9,982	1.90	
E_B7_GH		2.23	0.50	6,866	15,312	3,443	2.23	
E_B7_GL		1.83	0.87	11,766	21,519	10,228	1.83	
E_B7_MX	~	2.06	0.04	43,671	89,973	1,788	2.06	
E_B8_GH	Coniferous (Pure	2.37	0.21	103,589	245,080	21,831	2.37	
E_B8_GL		1.95	0.16	33,808	65,897	5,456	1.95	
E_B8_MH	or	1.67	0.02	131,841	220,457	2,762	1.67	
E_B8_ML	Mixedwood)	1.27	0.05	38,092	48,466	1,731	1.27	
E_B9_XX		1.11	0.11	8,074	8,985	911	1.11	
E_UN_CX		2.36	0.41	51,955	122,532	21,469	2.36	
E_UN_DM		0.91	2.00	12,846	11,713	25,643	0.91	
$G_B4_XX^{\dagger}$		2.39	0.46	2,315	5,530	1,055	2.39	
$G_B5_XX^{\dagger}$		2.98	0.67	3,424	10,205	2,288	2.98	
$G_B7_XX^{\dagger}$		2.52	0.54	12,336	31,092	6,677	2.52	
$G_B8_XX^{\dagger}$		3.23	0.35	76,615	247,141	26,566	3.23	
E_B1_XH	D	0.72	2.20	36,975	26,487	81,305	0.72	
E_B1_XL	Pure	0.83	1.52	11,257	9,363	17,100	0.83	
E_UN_DM	Deciduous	1.06	2.00	2,997	3,172	5,992	1.06	
Total					650,163	1,288,908	282,858	

Table 7. LRSYA for the HWP FMA: natural to natural stand transitions were assumed (minimum harvest ages applied)

* - A two year regeneration lag was included. A minimum harvest age of 80years for the coniferous landbase and 60 years for deciduous landbase was assumed.
 [†] - All stands currently on a GYPSY based managed stand yield curve, were assumed to remain within the yield strata.

	Age of	Coniferous	Deciduous		Coniferous	Deciduous	
Yield Maximum		MAI	MAI	Net Area	LRSYA	LRSYA	
Stratum	MAI*	$(m^{3}/ha/yr)$	(m ³ /ha/yr)	(ha)	$(\mathbf{m}^{3}/\mathbf{yr})$	(m^3/yr)	
E_B1_XH	100	0.72	2.20	51,116	36,616	112,399	
E_B2_XX	80	1.27	0.71	18,343	23,369	12,957	
E_B3_XX	80	1.37	1.45	19,652	27,006	28,515	
G_B4_XX	105	2.39	0.46	17,070	40,780	7,779	
G_B5_XX	90	2.98	0.67	25,313	75,450	16,915	
G_B7_XX	100	2.52	0.54	106,693	268,902	57,749	
G_B8_XX	90	3.23	0.35	395,961	1,277,278	137,301	
E_B9_XX	105	1.11	0.11	16,014	17,823	1,807	
Total				650,163	1.767.223	375.421	

Table 8. LRSYA for the HWP FMA: natural to managed stand transitions were assumed (minimum harvest ages applied)

* - A two year regeneration lag was included. A minimum harvest age of 80years for the coniferous landbase and 60 years for deciduous landbase was assumed.

Fable 9. LRSYA for the HWP FMA: natural to managed stand transitions were assumed (10
ninimum harvest age applied)	

Yield Stratum	Age of Maximum MAI*	Coniferous MAI (m ³ /ha/yr)	Deciduous MAI (m ³ /ha/yr)	Net Area (ha)	Coniferous LRSYA (m ³ /yr)	Deciduous LRSYA (m ³ /yr)
E_B1_XH	100	0.72	2.20	51,116	36,616	112,399
E_B2_XX	60	1.34	0.31	18,343	24,552	5,715
E_B3_XX	65	1.41	1.37	19,652	27,665	26,983
G_B4_XX	105	2.39	0.46	17,070	40,780	7,779
G_B5_XX	90	2.98	0.67	25,313	75,450	16,915
G_B7_XX	100	2.52	0.54	106,693	268,902	57,749
G_B8_XX	90	3.23	0.35	395,961	1,277,278	137,301
E_B9_XX	105	1.11	0.11	16,014	17,823	1,807
Total				650,163	1,769,065	366,647

* - A two year regeneration lag was included. A minimum harvest age of 80 years for the coniferous landbase and 60 years for deciduous landbase was assumed.

Note: This table was constructed based on data from 5yr age classes so slight differences are expected between this table and the MAI targets tables (5-2 & 5-3) in *Technical report #2: Yield Projections*.

6.3 Additional Tables and Graphs Related to the PFMS

Total Coniferous AAC

Projected total coniferous AAC was divided into three planning stretches:

Planning Stretch 1 = Periods 1 to 4 (2008 to 2027)

- Accelerated Cut
- Allocated Spatially

Planning Stretch 2 = Periods 5 to 14 (2028 to 2077)

- Post-Accelerated Cut
- Allocated Spatially

Planning Stretch 3 = Periods 15 to 40 (2078 to 2207)

- Post-Accelerated Cut
- Allocated Aspatially

Total coniferous AAC for each planning period fell within the +/-5% even flow requirement (Table 10).

Total Deciduous AAC

Projected total deciduous AAC was divided into four planning stretches:

Planning Stretch 1 = Periods 1 to 4 (2008 to 2027)

- Accelerated Cut
- Allocated Spatially

Planning Stretch 2 = Periods 5 to 12 (2028 to 2067)

- Post Accelerated Cut
- Allocated Spatially

Planning Stretch 3 = Periods 13 to 14 (2068 to 2077)

- Post Accelerated Cut
- Partially Allocated Spatially
- Grouped with periods 15 to 40 to calculate the mean AAC

Planning Stretch 4 = Periods 15 to 40 (2078 to 2207)

- Post Accelerated Cut
- Allocated Aspatially

The deciduous AAC was fully allocated spatially for the first 60 years (12 periods) of the planning horizon. Periods 13 and 14 represent only a partial spatial allocation. This was due to a technical issue that required stands to be re-sequenced (ie. Pure deciduous stands with a minimum harvest age of 60 years could be sequenced twice within a 70 spatial harvest sequence). When discussed with SRD it was agreed that a 60 year deciduous spatial harvest sequence was the requirement for this plan. Additionally the mean deciduous AAC for periods 13 to 40 was

35,000m³/yr higher than the mean AAC for periods 5 to 12. This indicates that the AAC falldown projected in periods 13 and 14 was caused purely by a technical issue and does not reflect an expected occurrence (Table 10).

The projected deciduous AACs for periods 2 and 4 violate the +/-5% even flow requirement (Table 10). This was not considered to be a significant issue as the fluctuations were just outside the 5% range (+7% and -6%). Additionally the SHS will be operationally implemented on a decadal scale (all periods 1 and 2 blocks will be pooled together and so will all period 3 and 4 blocks). When this is done the deciduous SHS is well within the +/-5% even-flow rule (+1.7% for periods 1 and 2; -1.7% for periods 3 and 4).

	Coniferous AAC (m ³ /yr)					Deciduous AAC (m ³ /yr)					
Period	From Coniferous Landbase	From Deciduous Landbase	Total Planned	Planning Stretch Mean	% Diff. Planned versus Stretch Mean	From Deciduous Landbase	From Coniferous Landbase	Total Planned	Planning Stretch Mean	% Diff. Planned versus Stretch Mean	
1	1,720,282	91,237	1,811,518		+3%	168,705	73,039	241,744		-3%	
2	1,639,815	97,854	1,737,669	1766576	-2%	183,439	83,058	266,496	240.921	+7%	
3	1,640,406	128,897	1,769,303	1,700,370	0%	185,079	70,578	255,657	249,651	+2%	
4	1,626,850	120,965	1,747,815		-1%	187,302	48,128	235,430	1	-6%	
5	1,336,481	47,230	1,383,711		-1%	79,675	158,508	238,183		-1%	
6	1,324,177	44,438	1,368,615		-2%	86,367	157,322	243,689		+1%	
7	1,325,671	43,650	1,369,321		-2%	86,275	156,772	243,047		+1%	
8	1,338,708	36,351	1,375,059		-2%	84,800	158,318	243,118	241 204	+1%	
9	1,388,677	32,514	1,421,191	1 300 724	+2%	79,078	157,879	236,958	241,204	-2%	
10	1,396,343	33,512	1,429,855	1,377,724	+2%	82,969	158,965	241,933		0%	
11	1,407,288	36,321	1,443,609		+3%	80,139	156,866	237,005		-2%	
12	1,404,627	38,646	1,443,273		+3%	83,214	162,487	245,700		+2%	
13	1,378,085	17,444	1,395,530		0%	47,231	161,253	208,485	276,286	-25%	
14	1,367,071	0	1,367,071		-2%	0	159,019	159,019		-42%	
15	1,430,678	69,322	1,500,000	1,500,000	0%	98,532	173,845	272,377		-1%	
16	1,463,930	36,070	1,500,000		0%	98,532	173,845	272,377		-1%	
17	1,464,257	35,743	1,500,000		0%	98,532	173,845	272,377		-1%	
18	1,464,376	35,624	1,500,000		0%	98,532	173,845	272,377		-1%	
19	1,464,686	35,314	1,500,000		0%	98,532	173,845	272,377		-1%	
20	1,464,765	35,235	1,500,000		0%	98,532	173,845	272,377		-1%	
21	1,464,084	35,916	1,500,000		0%	93,605	193,107	286,713		+4%	
22	1,460,469	39,531	1,500,000		0%	93,605	193,107	286,713		+4%	
23	1,466,318	33,682	1,500,000		0%	93,605	193,107	286,713		+4%	
24	1,466,249	33,751	1,500,000		0%	93,605	193,107	286,713		+4%	
25	1,466,221	33,779	1,500,000		0%	93,605	193,107	286,713		+4%	
26	1,466,238	33,762	1,500,000		0%	93,605	193,107	286,713		+4%	
27	1,466,190	33,810	1,500,000		0%	93,605	193,107	286,713		+4%	
28	1,466,258	33,742	1,500,000		0%	93,605	193,107	286,713		+4%	
29	1,466,447	33,553	1,500,000		0%	93,605	193,107	286,713		+4%	
30	1,466,758	33,242	1,500,000		0%	93,605	193,107	286,713		+4%	
31	1,466,253	33,747	1,500,000		0%	93,605	193,107	286,713		+4%	
32	1,466,369	33,632	1,500,000		0%	93,605	193,107	286,713		+4%	
33	1,466,428	33,572	1,500,000		0%	93,605	193,107	286,713		+4%	
34	1,466,479	33,521	1,500,000		0%	93,605	193,107	286,713		+4%	
35	1,466,512	33,488	1,500,000		0%	93,605	193,107	286,713		+4%	
36	1,466,527	33,473	1,500,000		0%	93,605	193,107	286,713		+4%	
37	1,466,530	33,470	1,500,000		0%	93,605	193,107	286,713		+4%	

Table 10. PPMS summary of AAC projections for each 5 year period (starting May 1, 2008)

		Conife	Deciduous AAC (m ³ /yr)							
Period	From Coniferous Landbase	From Deciduous Landbase	Total Planned	Planning Stretch Mean	% Diff. Planned versus Stretch Mean	From Deciduous Landbase	From Coniferous Landbase	Total Planned	Planning Stretch Mean	% Diff. Planned versus Stretch Mean
38	1,466,528	33,472	1,500,000		0%	93,605	193,107	286,713		+4%
39	1,466,527	33,473	1,500,000		0%	93,605	193,107	286,713		+4%
40	1,466,527	33,473	1,500,000		0%	93,605	193,107	286,713		+4%

Note: Green shading denotes that the AAC has been spatially allocated.

Figure 15. PPMS mean piece size (Trees/m³) – results averaged by decade

Figure 16. PPMS mean haul distance (to Hinton mill site)

Figure 17. PPMS mean harvest age

Figure 18. PPMS mean harvest area by broad cover group

Compartment	Coniferous (m ³)	Deciduous (m ³)	Grand Total (m ³)
ATHABASCA 01	467,675	11,570	479,245
ATHABASCA 02	0	0	0
ATHABASCA 03	0	0	0
ATHABASCA 04	0	0	0
ATHABASCA 06	0	0	0
ATHABASCA 08	0	0	0
ATHABASCA 09	0	0	0
ATHABASCA 10	0	0	0
ATHABASCA 11	0	0	0
ATHABASCA 12	0	0	0
ATHABASCA 13	0	0	0
ATHABASCA 14	0	0	0
ATHABASCA 15	284,165	21,013	305,178
ATHABASCA 16	59	4	63
ATHABASCA 17	0	0	0
ATHABASCA 18	0	0	0
ATHABASCA 19	33,397	1,983	35,380
ATHABASCA 20	0	0	0
ATHABASCA 21	0	0	0
ATHABASCA 22	153,809	20,367	174,177
ATHABASCA 23	106	6	112
ATHABASCA 24	521,950	18,444	540,394
ATHABASCA 26	579,782	16,916	596,698
ATHABASCA 27	451,222	35,836	487,058
ATHABASCA 28	557,235	28,117	585,352
ATHABASCA 29	187,390	9,771	197,161
ATHABASCA 30	447,445	23,212	470,656
ATHABASCA 31	209,489	9,987	219,476

Table 11.	PPMS total merchantable volumes harvested
	by compartment from 2008 to 2017

Compartment	Coniferous (m ³)	Deciduous (m ³)	Grand Total (m ³)
ATHABASCA 32	0	0	0
ATHABASCA 33	0	0	0
ATHABASCA 34	0	0	0
ATHABASCA 35	366,292	17,829	384,121
BERLAND 01	0	0	0
BERLAND 02	0	0	0
BERLAND 03	0	0	0
BERLAND 04	0	0	0
BERLAND 05	0	0	0
BERLAND 06	71,785	3,250	75,034
BERLAND 0/	8,885	591	9,476
BERLAND 08	120 427	7.053	127 400
BERLAND 10	66 114	3,416	69 529
BERLAND 10 BERLAND 11	326,236	18 920	345 156
BERLAND 12	278.061	17 273	295 333
BERLAND 12	0	0	2)5,555
BERLAND 14	0	0	0
BERLAND 16	0	0	0
BERLAND 18	29,019	1,402	30,421
BERLAND 20	0	0	0
BERLAND 21	0	0	0
BERLAND 22	0	0	0
BERLAND 23	580,593	18,714	599,307
BERLAND 24	186	11	197
BERLAND 25	231,382	9,821	241,204
BERLAND 26	259,206	10,976	270,182
BERLAND 27	109,430	3,231	112,661
BERLAND 28	0	0	0
BERLAND 29	521,469	25,337	546,806
BERLAND 30	459,245	19,304	478,549
BERLAND 31	261 797	0.115	270.002
BERLAND 33	301,787	9,113	370,902
EMBARRAS 01	0	0	0
EMBARRAS 02	0	0	0
EMBARRAS 03	0	0	0
EMBARRAS 04	0	0	0
EMBARRAS 05	111	1	112
EMBARRAS 06	273,336	10,360	283,696
EMBARRAS 07	600,326	77,374	677,701
EMBARRAS 08	0	0	0
EMBARRAS 09	7,211	13,318	20,529
EMBARRAS 10	472,419	15,614	488,033
EMBARRAS 11	384,517	119,795	504,312
EMBARRAS 12	645,759	37,645	683,404
EMBARRAS 13	0	0	0
EMBARRAS 14	61	1	62
EMBARRAS 15	0	0	0
EMBARKAS 16	0	0	0
	0	0	0
EMBADDAG 10	0	0	0
EMBARRAS 19	801 771	20 379	912 150
EMBARRAS 20	0,1,771	0	0
EMBARRAS 22	0	0	0
MCLEOD 01	0	0	0
MCLEOD 02	1.338	8	1.346
MCLEOD 03	777.354	19.957	797,310
MCLEOD 04	748	39	787
MCLEOD 05	414,278	12,445	426,724
MCLEOD 06	19,060	1,871	20,931
MCLEOD 07	291,827	11,206	303,032
MCLEOD 08	78,496	1.083	79,579

Comportment	Coniferous	Deciduous	Grand Total
Compartment	(m ³)	(m ³)	(m ³)
MCLEOD 09	1,071	35	1,106
MCLEOD 10	0	0	0
MCLEOD 11	0	0	0
MCLEOD 12	389,785	104,612	494,397
MCLEOD 13	40,341	87,702	128,043
MCLEOD 14	0	0	0
MCLEOD 15	633	187	820
MCLEOD 16	42,116	88,819	130,935
MCLEOD 17	230,925	13,154	244,079
MCLEOD 18	7,236	477	7,713
MCLEOD 19	0	0	0
MCLEOD 20	281,340	8,600	289,940
MCLEOD 21	21	0	22
MCLEOD 23	442,448	28,912	471,359
MCLEOD 24	178,650	3,780	182,430
MCLEOD 25	2,206	2,042	4,247
MCLEOD 27	215,349	11,549	226,898
MCLEOD 28	0	0	0
MARLBORO 01	0	0	0
MARLBORO 02	289,712	16,975	306,687
MARLBORO 03	0	0	0
MARLBORO 04	1,095,297	53,404	1,148,701
MARLBORO 05	271,562	11,234	282,795
MARLBORO 06	0	0	0
MARLBORO 07	241	78	319
MARLBORO 08	41,107	75,466	116,573
MARLBORO 09	0	0	0
MARLBORO 10	0	0	0
MARLBORO 11	0	0	0
MARLBORO 12	0	0	0
MARLBORO 13	552,635	408,764	961,399
MARLBORO 14	0	0	0
MARLBORO 15	0	0	0
MARLBORO 16	311,675	515,155	826,830
MARLBORO 17	67,024	86,453	153,477
MARLBORO 18	161,526	286,624	448,150
MARLBORO 19	0	0	0
MARLBORO 20	0	0	0
MARLBORO 21	442,061	25,243	467,304
MARLBORO 22	138,201	7,354	145,555
MARLBORO 23	0	0	0
MARLBORO 24	0	0	0
MARLBORO 25	0	0	0

6.4 PPMS TSA Models and Output Spatial Data

The final spatial harvest sequence files are:

• *FMP2009_TSAinput_SQ*: the same as the TSA input file from *Technical Report #1 landbase classification [FMP2009_TSAinput]* except all polygons <0.0001ha in size have been removed and the entire 14 period spatial harvest sequence have been declared.

• *PPMS_10yearSHS*: 10year SHS with individual polygon volumes and operator declared. The final TSA Woodstock models are:

- *PFMS_SPAT*: Pine Final Management Strategy (Spatial) PPMS with full spatial allocation (Woodstock re-optimization).
- *PFMS_NOTSPAT:* Pine Final Management Strategy (Non-spatial) PPMS with only pre-blocks spatially allocated (run P1 Table 6).

FMP2009_TSAinput									
FMP2009 TSAinput SO									
		PPMS		arS	HS				
Field Name	Description	Туре	Width	Dec	Valid codes and description				
Areaha	Total Polygon Area (ha)	Numeric	20	10	ha				
netarea	Net Polygon Area (ha) (excluded unmanaged portions of horizontal stands)	Numeric	20	10	ha				
Horxha	Area of unmanaged portions of horizontal stands	Numeric	16	4	ha				
STANLOCK	Spatial Locks (deferrals used in the PPMS)	Character	15		_Lock6 = 6 period lock (30 years) _Lock2 = 2 period lock (10 years)				
ACTION	TSA model action number	Numeric	3	0	 Clear-cut (Operational planned blocks) Clear-cut (Compartments eligible for harvest: 2008 to 2017) Clear-cut (Compartment eligible for harvest from 2018 on) 				
BLOCK	Block	Character	10		SXXXXX = Stanley defined block number PREB999 = Operational pre-blocks				
Cut_Period	Period action is applied	Numeric	3		Numeric: Designates the period of harvest 1 to 14				
FID_LINK	Unique Identifier	Numeric	9		Sequential number				
WS_UID	Watershed Unique Identifier	Character	50		Watershed + Numeric Unique Identifier				
AGE5YR	Stand age in 5 yr periods (2 year regeneration lag <u>not</u> included)	Numeric	3		1 = 0 to 5 years 2 = 6 to 10 years etc.				
FIN5YR	Stand age in 5 yr periods (2 year regeneration lag included)	Numeric	3		1 = 0 to 5 years 2 = 6 to 10 years etc.				
AGE10YR	STD_AGE in 10 yr periods (2 year regeneration lag <u>not</u> included)	Numeric	3		1 = 0 to 10 years 2 = 10 to 20 years etc.				
PREBLK08	Pre-blocks at the start date 2008	Numeric	16	4	1 = Block harvested during the 2008 timber year or planned for harvest from the 2008 timber year on.				
DEL	Deletion	Character	2		AN: Anth Non-vegetated AO: Deleted for being an "A" overstory with no understory present AV: Anth Vegetated CL: Cutline / Seismic DR: Disposition EC: Poor Ecosite EP: ESIP LR: Larch composition 10%+ NV: Non-Forested NO: No Deletion (Operable) NN: Non-Vegetated OB: Out of FMA PP: Potentially Productive SB: SB composition 80%+ SS: Steep Slopes WB: Water Buffer WT: Wet Site				
DEL_HIER	Deletion Hierachy	Numeric	2	0	Describes the order of deletion removals: 1 = OB: Out of FMA 2 = NN: Naturally Non-Vegetated 3 = NF: Naturally Non-Forested 4 = AN: Anth Non-vegetated 5 = AV: Anth Vegetated 6 = EP: ESIP 7 = DR: Disposition 8 = WT: Wet Site 9 = LR: Larch composition 10%+ 10 = EC: Poor Ecosite				

6.4.1 Data Library

FMP2009_TSAinput							
	FM	IP2009	_TSA	inp	ut_SQ		
		PPMS_	_10ye	arS	HS		
Field Name	Description	Туре	Width	Dec	Valid codes and description		
					 11 = AO: Deleted for being an "A" overstory with no understory present 12 = SB: SB composition 80% + 13 = PP: Potentially Productive 14 = SS: Steep Slopes 15 = WB: Water Buffer 16 = CL: Cutline / Seismic 99 = NO: No Deletion (Operable) 		
FIN_BASE10	Story of Primary Management Base 10 Strata	Numeric	16	4	 Pure Deciduous Deciduous Dominated Mixedwood (Pine is the leading conifer species) Deciduous Dominated Mixedwood (Spruce/Fir is the leading conifer species) Coniferous Dominated Mixedwood (White Spruce is the leading conifer species) Coniferous Dominated Mixedwood (Pine is the leading conifer species) Coniferous Dominated Mixedwood (Black Spruce is the leading conifer species) Coniferous (White Spruce is the leading conifer species) Pure Coniferous (White Spruce is the leading conifer species) Pure Coniferous (Pine is the leading conifer species) Pure Coniferous (Black Spruce is the leading conifer species) 		
Cl_multipy	Cut line regeneration multiplier	Numeric	16	4	This will be discussed in detail in Technical Report #3 - TSA modeling and final results		
Ws_short	Watershed Basin Unique Identifier	Character	6		Large Basin + Sub-basin number Brazeau River BRAZ149, BRAZ150, BRAZ152, BRAZ171, BRAZ4 Cardinal River CARD0, CARD140, CARD144, CARD145, CARD146, CARD147, CARD148 Edson River EDS013, EDS041, EDS042, EDS043, EDS044, EDS045, EDS046, EDS047, EDS048, EDS049 Embarras River EMBA100, EMBA101, EMBA103, EMBA104, EMBA105, EMBA108, EMBA109, EMBA110, EMBA111, EMBA6, EMBA98, EMBA99 Greg River GREG172, GREG173, GREG174, GREG175, GREG176, GREG5 Little Berland River LOWA14, LOWA257, LOWA258, LOWA54, LOWA55, LOWA56, LOWA57, LOWA258, LOWB251, LOWB252, LOWB253, LOWB217, LOWB218, LOWB251, LOWB252, LOWB253, LOWB254, LOWB255, LOWB256 Lower Erith River LOWE121, LOWE122, LOWE123, LOWE124, LOWE126, LOWE127, LOWE26 Lower McLeod River LOWM106, LOWM72, LOWM73, LOWM74, LOWM75 Lower Wildhay River LOWW212, LOWW213, LOWW214, LOWW24, LOWW212, LOWW213, LOWW214, LOWW24, LOWW262, LOWW263 MiDA64, MIDA65, MIDA61, MIDA62, MIDA63, MIDA64, MIDA65, MIDA66, MIDA67, MIDA68,		

FMP2009_TSAinput									
	FMP2009 TSAinput SQ								
		PPMS_	_10ye	arS	HS				
Field Name	Description	Туре	Width	Dec	Valid codes and description				
					MIDA69, MIDA70, MIDA71 Mid-Berland River MIDB242, MIDB243, MIDB244, MIDB245, MIDB248, MIDB250 Mid-McLeod River MIDM102, MIDM12, MIDM120, MIDM90, MIDM91, MIDM92, MIDM93, MIDM94, MIDM95, MIDM96, MIDM97 Oldman Creek OLDM83, OLDM84, OLDM85, OLDM86, OLDM87, OLDM88, OLDM89, OLDM9 Pembina River PEMB131, PEMB132, PEMB133, PEMB134, PEMB135, PEMB136, PEMB137, PEMB138, PEMB139, PEMB3 <u>Pine Creek</u> PINE261, PINE50, PINE51, PINE52, PINE53 <u>Pinto Creek</u> PINT202, PINT203, PINT204, PINT205, PINT206, PINT207, PINT208, PINT209, PINT210, PINT211, PINT7 <u>Sundance</u> SUND22, SUND77, SUND78, SUND79, SUND80, SUND21, SUND77, SUND78, SUND79, SUND80, SUND21, SUND77, TROU37, TROU38, TROU39, TROU40 <u>Upper Athabasca River</u> UPPA15, UPPA177, UPPA178, UPPA179, UPPA180, UPPA181, UPPA182, UPPA183, UPPA184, UPPA185, UPPA186, UPPA187, UPPA188, UPPA189 <u>Upper Berland River</u> UPPB209, UPPB224, UPPB225, UPPB227, UPPB228, UPPB229, UPPB230, UPPB232, UPPB233, UPPB23 <u>Upper Erith River</u> UPPE11, UPPE112, UPPE113, UPPE114, UPPE115, UPPE110, UPPE117, UPPE118, UPPE119, UPPE129, UPPE130 <u>Upper McLeod River</u> UPPM161, UPPM164, UPPM168, UPPM169, UPPM160, UPPM161, UPPM164, UPPM163, UPPM164, UPPM165, UPPM160, UPPM191, UPPM168, UPPM169, UPPM160, UPPM161, UPPM162, UPPM163, UPPM164, UPPM164, UPPM165, UPPM160, UPPM191, UPPM192, WPM199, UPPM194, UPPW190, UPPW191, UPPW192, UPPW193, UPPW194, UPPW190, UPPW191, UPPW192, UPPW193, UPPW194, UPPW190, UPPW191, UPPW192, UPPW193, UPPW194, UPPW200, UPPW201 <u>Unnamed Watershed</u> WSILD999 Willow Creek WILL16, WILL59, WILL60 Windhill Creek WILL16, WILL59, WILL60 Windhill Creek				
SSICLASS	MPB Stand Susceptibility Index with Climate Factor Groupings	Character	5		SSI10: SSI_CF>=0 AND SSI_CF<10 SSI20: SSI_CF>=10 AND SSI_CF<20 SSI40: SSI_CF>=20 AND SSI_CF<40 SSI60: SSI_CF>=20 AND SSI_CF<60 SSI80: SSI_CF>=60 AND SSI_CF<80				
OCON40	Non-pine Coniferous Composition	Character	1		Y: >=40% non-pine coniferous composition N: <= 30% non-pine coniferous composition				
Theme1	WC_CMPT field FMA working circle and compartment	Character	6		In the FMA The first 4 letters are: ATHA: Athabasca, MARL: Marlboro, EMBR: Embarras, MCLD: McLeod, BERL: Berland The last 2 numbers represent the compartment.				

FMP2009_TSAinput									
FMP2009_TSAinput_SQ									
		PPMS	_10ye	arS	HS				
Field Name	Description	- Туре	Width	Dec	Valid codes and description				
					Outside the FMA The first 2 letters are:				
					XX: outside the FMA				
					The last 4 letters identify the location:				
					ROBB: Robb townsite				
					COLS: Coalspur				
					LUCR: Luscar MUSK: Muskiki				
					OUTS: Generic Outside FMA				
					WKLK: Wiki Lake				
					HINT: Hinton Townsite				
					OBED: Obed Mine				
					SILV: Silver Summit				
					SQBK: Square Block				
					SUND: Sundance Provincial Park				
					SWIT: Switzer Provincial Park				
					HIGHS - High Elevation Sheen and Goat SMA				
	Succial Management				PINTO - Pinto Creek Mountain Goat SMA				
Theme2	Special Management Wildzone	Character	5		TRUMP - Trumpeter Swan SMA				
	WHUZOHE				WOODL - Woodland Caribou SMA				
 					XXXXX – Not in a SMA				
Theme3	Ground Operability	Character	4		WINT – Winter Ground				
					M1: High				
Theme4	Mountain Pine Beetle Risk	Character	2		M2: Medium				
1	Ranking				M3: Low M0: Minimal				
	Identifies stands with a stand				OVR19: Stand is at least 19m tall				
Theme5	height of 19m or greater	Character	5		UND19: Stand is less than 19m tall				
					E= Empirical yield curves				
					<u>G=GYPSY / ARS Curves</u> <u>P#-Dece 10 strate</u>				
					B#=Base 10 suata Last to letters = Site & Crown Closure (H=C or D;				
					$\underline{L = A \text{ or } B; X = All)}$				
Theme6	Final Yield Strata	Character	7		E_B1_XL, E_B1_XH, E_B2_XX, E_B3_XX, E_B4_XX,				
					E_{B} A , E_{B} M , E_{B} OL , $E_$				
					E_UN_CX, E_B1_XL, E_B1_XH, E_B2_XX, E_B3_XX,				
					G_B4_XX, G_B5_XX, G_B7_XX, G_B8_XX, E_B9_XX,				
					E_PAS_DE_PAS_C				
					FIRE – fire origin				
					LMAN – Low-stocked regenerating stand				
Theme7	Fire versus Managed	Character	4		MANA – managed stands				
1.11011107	The versus managed	Character			NSR – Not sufficiently re-stocked (in TSA model only)				
					NONE – non-forested				
Therese	Contributino Manue Dession	Chamatan	4		CONT – Contributing				
Theme8	Contributing Versus Passive	Character	4		PASS - Passive				
Th	Stands with a cutline within	Chamatan	_		CLINE – Cutline within boundary which can be				
Theme9	its boundary	Character	5		regenerated NOTCL – No cutlines within polygon boundary				
					E= Empirical vield curves				
	Baganaration aurula for 2008				G=GYPSY / ARS Curves				
Theme10	cutblocks and understory	Character	7		B#=Base 10 strata				
	managed stands				Last to letters = Site & Crown Closure (H=C or D; $L = A \text{ or } P \cdot Y = A^{(1)}$)				
	_				E = A of B; A = A if A E B1 XH, E B2 XX, E B3 XX, G B4 XX, G B5 XX.				

FMP2009_TSAinput									
FMP2009_TSAinput_SQ									
PPMS_10yearSHS									
Field Name Description Type Width Dec Valid codes and description									
					G_B7_XX, G_B8_XX, E_B9_XX NOT2008 – not a 2008 cutblock or an understory managed stand				
Theme 11	Landbase designation	Character	5		<u>CONIF – Stand managed for coniferous volume (Pure</u> <u>Coniferous and Mixedwoods)</u> <u>DECID – Stand managed for deciduous volume (Pure</u> <u>Deciduous)</u>				
Theme12	Pine composition	Character	4		PL70 – Stand composition >= 70% pine UNDR – Stand composition < 70% pine				
Theme13	Non-pine coniferous composition	Character	5		CON40 – Stand composition >= 40% non-pine coniferous LOWCN – Stand composition < 40% non-pine coniferous				
preblock	TSA model preblock	Character	1		$\underline{Y} = Preblock to be sequenced in the first period of the TSA model$				
lock	TSA model lock	Character	1		$\underline{Y} = TSA model deferral}$				
harvlock	User defined model lock	Character	7		<u>Lock 2 = deferred for 2 periods (10 years)</u> Lock 6 = deferred for 6 periods (30 years)				
CONHA_SQ	Sequenced net coniferous volume/ha	Numeric	18	4	Net coniferous volume/ha includes cull deductions				
DECHA_SQ	Sequenced net deciduous volume/ha	Numeric	18	4	Net deciduous volume/ha includes cull deductions and deciduous mortality				
TOTCON_SQ	Total sequenced net coniferous volume	Numeric	18	4	Net total coniferous volume/ha includes cull deductions				
TOTDEC_SQ	Total sequenced net deciduous volume/ha	Numeric	18	4	Net total deciduous volume/ha includes cull deductions and deciduous mortality				
Operator	Assigned block operator	Character	3		HWP = Hinton Wood Products				

6.5 Non-Timber Values: Water Yields Assessment

Water yield impacts of timber harvesting were modelled for the period between 2008 and 2027¹.

Projected water yield changes were assessed using three different sizes of watersheds:

- 27 major basins (average: 38,361 ha maximum: 77,360 ha minimum: 4,676 ha)
- 67 watershed groups (average: 15,419 ha maximum: 33,315 ha minimum: 4,676 ha)
- 222 watersheds (average: 4,653 ha maximum: 11,977 ha minimum: 5 ha)

The watershed groups are the most appropriate for the purposes of the FMP amendment water yield assessment. The major basins are too large and the watersheds tend to be too small for the scale of assessment completed. As the name suggests, the watershed groups were created by grouping smaller watersheds together with the intent to create units of approximately 10,000 ha in size. Groupings were limited to adjacent units that contained watercourses which flowed to a common outlet. For some watersheds along very large watercourses (e.g. Athabasca River), the groups were simply the smaller watersheds that flowed into the larger watercourse. Particular attention was focused on creating reasonable watershed groups in locations impacted during the first ten-years of the spatial harvest sequence.

Water Yield Assessment Tool

The Alberta ECA model was used to evaluate potential impacts of the spatial harvest sequence on water yield. Base precipitation and base yield estimates were obtained from a report completed for the Hinton FMA area (Strategic Planning Tools for Hydrologic Resources Phase 2 Study, Golder Associates Ltd. 1999.) Base yield estimates were provided for three hydrologic zones, which covered the extent of the FMA:

- Front Range: 279 mm
- Upper Foothills: 267 mm

¹ HWP was required to create a ten-year spatial harvest sequence for the FMP amendment. However, the water yields were assessed using a projected twentyyear sequence.

• Lower Foothills: 112 mm

Base precipitation estimates were provided for ten selected basins. These estimates were extended to all 222 watersheds in this assessment, based on the relative proximity of each watershed to the original ten (from the Golder study). See the following diagrams for an illustration of the assignments of yield and precipitation to the individual watersheds.

 $^{^{2}}$ Regions where base precipitation and yield estimates were applied are identified by colour.

6.5.1 Major Basins

The following figure illustrates the geographic extent of the 27 major basins within the Hinton FMA.

Figure 21: Major Basins

Table 12 summarizes the results of the Alberta ECA projections for the major basins. Windfall Creek shows project yield increases above 15%. This watershed is on the edge of the FMA, only 4,676 ha are within the Hinton FMA.

Major Basin	Base	Base Water Vield (mm)	Total Area	Total Harvest	Percent Harvest	Maximum V	Water Yield
	(mm)		(iid)	(ha)	Harvest	Amount (%)	Year
Brazeau River	621	273	10,189	536	5%	1.3%	2027
Cardinal River	621	272	18,595	817	4%	0.9%	2027
Edson River	567	112	41,123	7,286	18%	6.2%	2027
Embarras River	564	187	66,507	11,269	17%	2.5%	2017
Gregg River	621	268	23,523	2,093	9%	1.1%	2022
Little Berland River	596	279	9,911	981	10%	1.7%	2026
Lower Athabasca River	567	112	62,047	10,573	17%	4.5%	2027
Lower Berland River	591	238	40,156	10,844	27%	3.2%	2018
Lower Erith River	468	112	19,990	2,144	11%	4.6%	2023
Lower McLeod River	469	112	11,016	463	4%	1.6%	2027
Lower Wildhay River	582	190	44,617	11,709	26%	6.2%	2013
Mid Athabasca River	498	164	68,937	8,121	12%	1.9%	2022
Mid Berland River	596	267	33,316	6,740	20%	3.1%	2023
Mid McLeod River	519	202	55,536	6,858	12%	1.8%	2016
Oldman Creek	545	267	44,499	4,794	11%	1.2%	2013
Pembina River	621	268	43,172	2,808	7%	1.1%	2023
Pine Creek	567	149	20,569	7,160	35%	12.8%	2018
Pinto Creek	596	267	68,045	15,290	22%	3.3%	2027
Sundance	567	112	21,198	6,068	29%	7.4%	2022
Trout Creek	567	112	19,057	4,588	24%	8.3%	2023
Upper Athabasca River	564	146	59,408	1,914	3%	1.0%	2027
Upper Berland River	596	273	32,404	9,722	30%	6.3%	2023
Upper Erith River	575	207	53,058	11,594	22%	3.3%	2027
Upper McLeod River	621	269	77,361	14,223	18%	3.4%	2013

 Table 12 – Water Yield Assessment: Major Basins

Major Basin	BaseBase WaterTotal ArePrecipitationYield (mm)(h		Total Area (ha)	Total Harvest	Percent Harvest	Maximum Water Yield Increase	
	(mm)			(ha)		Amount (%)	Year
Upper Wildhay River	582	269	64,501	9,834	15%	1.6%	2013
Willow Creek	567	112	19,644	3,975	20%	7.6%	2017
Windfall Creek	567	112	4,676	1,575	34%	17.0%	2017

Figure 22 shows the area of each of the major basins within the Hinton FMA.

Figure 22: Major Basins – Gross Area

6.5.2 Watershed Groups

The following figure illustrates the geographic extent of the 67 watershed groups within the Hinton FMA.

Figure 23: Watershed Groups

Figure 24 illustrates the distribution of the scheduled harvest for two decades against the 67 watershed groups. Figure 24: Watershed Groups with 20 Year Spatial Harvest Sequence

Table 13 summarizes the results of the Alberta ECA projections for the watershed groups. "Pine Creek – G2" and "Windfall Creek – G1" show projected yield increases above 15%. These watersheds are on the edge of the FMA; hence the analysis does not include the entire watershed area. Figure 7 shows the location of these two watershed groups. These areas were attacked by MPB in 2009.

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest		Increase
	(mm)	(mm)		(ha)		Amount (%)	Year
Brazeau River - G1	621	273	10,189	536	5%	1.3%	2027
Cardinal River - G1	621	272	18,595	817	4%	0.9%	2027
Edson River - G1	567	112	7,675	1,930	25%	8.6%	2018
Edson River - G2	567	112	9,820	924	9%	3.3%	2027
Edson River - G3	567	112	14,751	2,322	16%	5.4%	2022
Edson River - G4	567	112	8,876	2,110	24%	10.3%	2027
Embarras River - G1	468	112	17,420	1,831	11%	4.8%	2027
Embarras River - G2	621	267	9,831	3,177	32%	4.4%	2013
Embarras River - G3	621	267	11,326	2,690	24%	3.8%	2017
Embarras River - G4	621	267	11,039	977	9%	1.5%	2027
Embarras River - G5	468	112	7,238	807	11%	4.3%	2023
Embarras River - G6	621	112	9,654	1,787	19%	10.5%	2017
Gregg River - G1	621	267	15,280	1,144	7%	1.3%	2018
Gregg River - G2	621	271	8,243	949	12%	2.2%	2026
Little Berland River -	596	279	9,911	981	10%	1.7%	
G1							2026
Lower Athabasca	567	112	11,357	1,623	14%	6.4%	2027
River - GI	5.67	110	0.269	2 0 1 1	200/	9.50/	2027
Lower Athabasca River - G2	507	112	9,308	2,811	30%	8.3%	2018
Lower Athabasca	567	112	10.973	3,313	30%	7.8%	2010
River - G3	507		10,270	0,010	20/0		2027
Lower Athabasca	567	112	15,792	346	2%	1.0%	
River - G4							2027
Lower Athabasca	567	112	8,311	760	9%	5.3%	2027

Table 13 – Water Flow Assessment: Watershed Groups

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest		Increase
	(mm)	(mm)		(ha)		Amount (%)	Year
River - G5							
Lower Athebasca	567	112	6 247	1 710	28%	0.2%	
River - G6	507	112	0,247	1,719	2070	9.270	2017
Lower Berland River -	596	267	1/1 328	/ 333	30%	<u>/ 1%</u>	2017
G1	570	207	14,520	7,555	5070	4.170	2018
Lower Berland River -	594	254	15 313	3 914	26%	2.6%	2010
G2	571	251	15,515	5,711	2070	2.070	2017
Lower Berland River -	579	174	10.515	2.598	25%	5.5%	
G3			- • ,• - •	_,_ ,			2027
Lower Erith River -	468	112	19,990	2,144	11%	4.6%	
G1							2023
Lower McLeod River -	469	112	11,016	463	4%	1.6%	
G1							2027
Lower Wildhay River -	567	112	22,083	5,934	27%	12.2%	
G1							2013
Lower Wildhay River -	596	267	9,754	2,715	28%	4.7%	
G2							2013
Lower Wildhay River -	596	267	12,780	3,061	24%	3.0%	
G3							2013
Mid Athabasca River -	567	112	10,034	1,791	18%	5.6%	
G1							2027
Mid Athabasca River -	486	112	28,468	4,368	15%	3.8%	
G2	10.6	220	20.125	1.0.72		0.00/	2022
Mid Athabasca River -	486	229	30,435	1,962	6%	0.8%	2022
G3	50.5	2.67	22.21.6	6 7 40	2004	2.10/	2022
Mid Berland River -	596	267	33,316	6,740	20%	3.1%	2022
GI	470	110	11 557	1.007	1.60/	5.20/	2023
Mid McLeod River -	472	112	11,557	1,807	16%	5.2%	2017
Mid MaL and Diver	170	150	10.099	1 745	1.60/	2.50/	2017
WIG MCLeod Kiver -	478	159	10,988	1,745	10%	3.3%	2013
Mid MoL and Diver	160	267	Q 1 <i>1</i> Q	300	A 0/	0.20/	2013
who wickeou kiver -	408	207	0,140	322	4%	0.5%	2013

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest		Increase
	(mm)	(mm)		(ha)		Amount (%)	Year
G3							
Mid McLeod River -	545	224	14,934	1,962	13%	1.9%	
G4			-				2016
Mid McLeod River -	621	267	9,909	1,022	10%	1.1%	
G5							2012
Oldman Creek - G1	486	267	13,039	48	0%	0.1%	2022
Oldman Creek - G2	572	267	17,927	3,254	18%	2.2%	2013
Oldman Creek - G3	567	267	13,533	1,492	11%	1.5%	2013
Pembina River - G1	621	266	10,483	155	1%	0.4%	2027
Pembina River - G2	621	269	32,690	2,653	8%	1.4%	2023
Pine Creek - G1	567	267	4,974	1,230	25%	3.6%	2018
Pine Creek - G2	567	112	15,595	5,930	38%	20.4%	2018
Pinto Creek - G1	596	267	28,496	4,135	15%	2.5%	2027
Pinto Creek - G2	596	267	25,545	5,565	22%	4.1%	2027
Pinto Creek - G3	596	267	14,005	5,590	40%	4.1%	2013
Sundance - G1	567	112	10,715	4,035	38%	11.0%	2023
Sundance - G2	567	112	10,483	2,034	19%	6.5%	2027
Trout Creek - G1	567	112	19,057	4,588	24%	8.3%	2023
Upper Athabasca	553	161	28,515	781	3%	0.9%	
River - G1							2027
Upper Athabasca	573	133	30,893	1,132	4%	1.0%	
River - G2							2027
Upper Berland River -	596	273	32,405	9,724	30%	6.3%	2022
Upper Frith Piyer G1	508	152	16 226	2 424	150/	2 40/	2023
Upper Entit River - 01	308	102	10,220	2,424	13%	5.4%	2022
Upper Erith River - G2	021 501	192	17,301	4,030	27%	5.8%	2018
Upper Erith River - G3	591	267	19,531	4,521	23%	3.4%	2027
Upper McLeod River -	621	267	16,021	1,274	8%	1.3%	2012
Unner Mel er d Dierer	(01	267	10.027	1 007	150/	0.70/	2013
Upper MicLeod River -	621	267	12,257	1,807	15%	2.1%	2013

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	(mm)	(mm)	(lla)	(ha)	Harvest	Amount (%)	Year
G2							
Upper McLeod River - G3	621	269	22,874	4,649	20%	3.2%	2013
Upper McLeod River - G4	621	279	6,978	623	9%	1.2%	2012
Upper McLeod River - G5	621	267	19,292	5,873	30%	7.0%	2013
Upper Wildhay River - G1	596	267	11,977	1,978	17%	2.3%	2013
Upper Wildhay River - G2	555	267	21,502	974	5%	0.4%	2027
Upper Wildhay River - G3	596	271	31,023	6,882	22%	2.3%	2013
Willow Creek - G1	567	112	19,644	3,975	20%	7.6%	2017
Windfall Creek - G1	567	112	4,676	1,575	34%	17.0%	2017

Figure 25: Watershed Groups with projected increase in water yield > 15% (Pine Creek and Windfall Creek)

Figure 26 shows the gross area and percent of area scheduled for harvest for each watershed group.

6.5.3 Watersheds

The following figure illustrates the geographic extent of the 222 small watersheds within the Hinton FMA.

Figure 27: Watersheds

Table 14 summarizes the results of the Alberta ECA projections for the small watersheds. A total of 10 watersheds show projected yield increases above 15% (highlighted in yellow shading in the table). As previously stated, these watersheds are generally smaller than those that would typically be used in a strategic assessment. Factors such as the timing of harvest, incorporation of residual areas, etc, may mitigate the impact on water flow. The MPB has attacked several of these watersheds in 2009. Should the MPB infestation grow significantly, water yield impacts may be best mitigated through timber harvesting and prompt regeneration.

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum V	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incre	ease
	(mm)	(mm)		(ha)		Amount	Year
						(%)	
Brazeau River-150	621	279	1,299	26	2%	0.6%	2027
Brazeau River-152	621	279	3,559	32	1%	0.2%	2021
Brazeau River-171	621	267	888	95	11%	3.1%	2026
Brazeau River-4	621	267	4,286	382	9%	2.4%	2027
Cardinal River-0	621	267	10,535	786	7%	1.6%	2027
Cardinal River-140	621	279	1,953	31	2%	0.4%	2027
Edson River-13	567	112	7,447	1,462	20%	5.9%	2023
Edson River-41	567	112	1,975	775	39%	14.0%	2018
Edson River-42	567	112	5,700	1,154	20%	7.3%	2027
Edson River-43	567	112	5,033	201	4%	2.1%	2027
Edson River-44	567	112	4,539	661	15%	5.3%	2023
Edson River-45	567	112	249	62	25%	9.8%	2022
Edson River-46	567	112	3,273	266	8%	5.3%	2027
Edson River-47	567	112	5,603	1,844	33%	14.7%	2023
Edson River-48	567	112	2,827	231	8%	4.3%	2011
Edson River-49	567	112	4,478	629	14%	9.6%	2027
Embarras River-100	468	112	8,237	607	7%	2.4%	2027
Embarras River-101	468	112	4,893	806	16%	8.3%	2027
Embarras River-103	621	267	9,831	3,177	32%	4.4%	2013
Embarras River-104	621	267	2,424	854	35%	5.9%	2013
Embarras River-105	621	267	6,401	1,464	23%	4.2%	2018

Table 14 – Water Yield Assessment: Watersheds

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
Each arman Dissan 100	(21	267	1.000	494	100/	(%)	2027
Embarras River-108	621	207	4,020	484	10%	1.7%	2027
Embarras River-109	621	267	2,501	3/3	15%	2.1%	2013
Embarras River-110	621	112	9,654	1,/8/	19%	10.5%	2017
Embarras River-111	468	112	3,841	418	11%	4.8%	2023
Embarras River-6	468	112	3,396	389	11%	3.8%	2022
Embarras River-98	621	267	6,413	493	8%	1.3%	2027
Embarras River-99	468	112	4,291	418	10%	5.3%	2027
Gregg River-172	621	267	6,946	802	12%	2.2%	2018
Gregg River-173	621	267	5,599	615	11%	2.1%	2026
Gregg River-174	621	279	44	11	25%	7.5%	2021
Gregg River-175	621	279	174	9	5%	1.7%	2020
Gregg River-176	621	279	2,426	315	13%	2.6%	2027
Gregg River-5	621	267	8,334	342	4%	0.6%	2017
Little Berland River-222	596	279	3,437	443	13%	2.5%	2023
Little Berland River-8	596	279	6,441	537	8%	1.6%	2026
Lower Athabasca River-14	567	112	11,357	1,623	14%	6.4%	2027
Lower Athabasca River-257	567	112	9,368	2,811	30%	8.5%	2018
Lower Athabasca River-258	567	112	10,973	3,313	30%	7.8%	2027
Lower Athabasca River-54	567	112	7,637	197	3%	1.6%	2027
Lower Athabasca River-55	567	112	2,226	21	1%	0.8%	2025
Lower Athabasca River-56	567	112	5,930	128	2%	0.9%	2022
Lower Athabasca River-57	567	112	8,311	760	9%	5.3%	2027
Lower Athabasca River-58	567	112	6,247	1,719	28%	9.2%	2017
Lower Berland River-1	596	267	4,217	1,691	40%	5.1%	2026
Lower Berland River-217	567	112	1,156	265	23%	9.3%	2027
Lower Berland River-218	567	112	5,142	642	12%	4.6%	2013
Lower Berland River-251	596	267	6,724	2,172	32%	4.2%	2018
Lower Berland River-252	596	267	7,605	2,160	28%	4.0%	2018

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount (%)	Year
Lower Berland River-253	596	267	6,429	1,932	30%	3.7%	2018
Lower Berland River-254	596	267	5,054	875	17%	2.3%	2012
Lower Berland River-255	567	112	1,240	395	32%	22.1%	2013
Lower Berland River-256	596	267	2,590	712	28%	4.7%	2023
Lower Erith River-121	468	112	4,301	625	15%	6.5%	2023
Lower Erith River-122	468	112	6,743	759	11%	5.0%	2023
Lower Erith River-123	468	112	216	31	14%	10.0%	2020
Lower Erith River-124	468	112	2,832	238	8%	4.8%	2023
Lower Erith River-126	468	112	2,539	173	7%	2.9%	2027
Lower Erith River-26	468	112	3,358	318	9%	3.3%	2023
Lower McLeod River-106	468	112	43	5	12%	8.3%	2021
Lower McLeod River-72	468	112	1,109	42	4%	2.1%	2022
Lower McLeod River-73	486	112	640	27	4%	2.7%	2026
Lower McLeod River-74	468	112	4,277	237	6%	2.4%	2027
Lower McLeod River-75	468	112	4,947	152	3%	1.3%	2022
Lower Wildhay River-212	567	112	6,155	2,199	36%	18.3%	2014
Lower Wildhay River-213	596	267	6,767	1,148	17%	2.6%	2013
Lower Wildhay River-214	596	267	6,014	1,914	32%	3.5%	2014
Lower Wildhay River-24	567	112	9,807	2,809	29%	11.4%	2014
Lower Wildhay River-262	596	267	9,754	2,715	28%	4.7%	2013
Lower Wildhay River-263	567	112	6,121	925	15%	8.1%	2013
Mid Athabasca River-107	486	112	112	16	14%	6.5%	2020
Mid Athabasca River-18	486	112	9,864	1,242	13%	3.4%	2027
Mid Athabasca River-61	567	112	6,899	1,456	21%	6.2%	2018
Mid Athabasca River-62	567	112	3,135	335	11%	5.5%	2027
Mid Athabasca River-63	486	112	1,693	114	7%	3.1%	2027
Mid Athabasca River-64	486	267	7,908	487	6%	0.5%	2023
Mid Athabasca River-65	486	267	7,880	203	3%	0.4%	2023

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
Mid Athabasca River-66	486	267	3,558	265	7%	1.2%	2023
Mid Athabasca River-67	486	267	3.679	239	6%	0.6%	2023
Mid Athabasca River-68	486	112	5,717	655	11%	4.2%	2022
Mid Athabasca River-69	486	112	3,125	689	22%	6.7%	2017
Mid Athabasca River-70	486	112	7,975	1,007	13%	3.4%	2022
Mid Athabasca River-71	486	112	7,392	1,414	19%	5.7%	2023
Mid Berland River-242	596	267	5,127	694	14%	2.8%	2023
Mid Berland River-243	596	267	5,355	949	18%	3.0%	2023
Mid Berland River-244	596	267	7,656	1,320	17%	3.0%	2027
Mid Berland River-245	596	267	7,719	2,137	28%	4.7%	2026
Mid Berland River-248	596	267	2,445	455	19%	3.5%	2023
Mid Berland River-250	596	267	5,013	1,184	24%	3.3%	2018
Mid McLeod River-102	468	112	4,738	608	13%	4.4%	2013
Mid McLeod River-12	468	112	9,095	1,224	13%	4.7%	2015
Mid McLeod River-120	468	112	4,151	626	15%	6.1%	2017
Mid McLeod River-90	468	267	8,148	322	4%	0.3%	2013
Mid McLeod River-91	621	267	7,517	992	13%	1.5%	2015
Mid McLeod River-92	468	267	3,266	344	11%	0.8%	2012
Mid McLeod River-93	621	267	5,484	646	12%	1.6%	2017
Mid McLeod River-94	621	267	4,425	376	9%	1.1%	2027
Mid McLeod River-95	486	267	3,361	662	20%	1.8%	2013
Mid McLeod River-96	486	112	2,889	476	16%	6.4%	2014
Mid McLeod River-97	486	112	2,462	583	24%	8.4%	2022
Oldman Creek-83	567	267	1,648	121	7%	1.3%	2013
Oldman Creek-84	567	267	3,314	133	4%	0.5%	2012
Oldman Creek-85	567	267	8,571	1,238	14%	1.9%	2013
Oldman Creek-87	486	267	7,656	48	1%	0.1%	2022
Oldman Creek-88	567	267	3,709	1,007	27%	2.5%	2018

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
Oldman Creek-89	596	267	2 919	820	28%	(%) 	2017
Oldman Creek-9	567	267	11 299	1 427	13%	2.1%	2017
Pembina River-131	621	267	3 056	356	12%	2.1%	2013
Pembina River-132	621	267	5,162	254	5%	0.9%	2023
Pembina River-133	621	267	5.880	645	11%	1.8%	2023
Pembina River-134	621	267	6.662	615	9%	2.5%	2013
Pembina River-136	621	267	4,811	20	0%	0.1%	2026
Pembina River-137	621	267	4,638	546	12%	2.5%	2023
Pembina River-138	621	267	2,621	158	6%	1.5%	2023
Pembina River-139	621	267	5,620	135	2%	0.6%	2027
Pembina River-3	621	279	4,672	81	2%	0.3%	2010
Pine Creek-261	567	112	5	3	64%	42.9%	2010
Pine Creek-50	567	112	5,689	2,985	52%	29.5%	2018
Pine Creek-51	567	112	8,759	2,320	26%	13.8%	2017
Pine Creek-52	567	267	4,974	1,230	25%	3.6%	2018
Pine Creek-53	567	112	1,143	622	54%	38.8%	2016
Pinto Creek-202	596	267	5,034	202	4%	0.7%	2026
Pinto Creek-203	596	267	4,258	171	4%	0.9%	2023
Pinto Creek-204	596	267	6,105	911	15%	2.8%	2027
Pinto Creek-205	596	267	7,503	1,037	14%	2.8%	2027
Pinto Creek-206	596	267	2,928	384	13%	2.4%	2027
Pinto Creek-207	596	267	9,008	3,233	36%	6.7%	2027
Pinto Creek-208	596	267	3,084	656	21%	4.7%	2027
Pinto Creek-209	596	267	8,124	1,160	14%	2.9%	2027
Pinto Creek-210	596	267	7,996	1,945	24%	3.6%	2027
Pinto Creek-211	596	267	6,751	2,661	39%	6.0%	2013
Pinto Creek-7	596	267	7,254	2,930	40%	5.9%	2027
Sundance-22	567	112	5,953	2,146	36%	11.8%	2023

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
Sundance-77	567	112	6.421	1 008	16%	(%) 6.3%	2027
Sundance-78	567	112	3 759	827	22%	7.1%	2027
Sundance-79	567	112	303	199	66%	31.3%	2027
Sundance-80	567	112	1 414	779	55%	15.3%	2012
Sundance-81	567	112	1,111	426	25%	7.8%	2017
Sundance-82	567	112	1,635	684	42%	15.1%	2017
Trout Creek-35	567	112	4,954	1.801	36%	13.9%	2023
Trout Creek-36	567	112	1,511	574	38%	12.6%	2022
Trout Creek-37	567	112	198	94	47%	18.7%	2018
Trout Creek-38	567	112	6,294	1,797	29%	10.2%	2023
Trout Creek-39	567	112	4,577	199	4%	2.2%	2027
Trout Creek-40	567	112	1,523	123	8%	6.2%	2027
Upper Athabasca River-15	486	112	6,928	307	4%	1.5%	2026
Upper Athabasca River-177	621	279	172	11	6%	1.8%	2020
Upper Athabasca River-178	621	267	4,008	435	11%	2.0%	2012
Upper Athabasca River-180	621	112	5,591	222	4%	2.7%	2027
Upper Athabasca River-181	486	112	3,990	149	4%	2.6%	2027
Upper Athabasca River-182	621	112	4,983	8	0%	0.1%	2026
Upper Athabasca River-183	596	279	737	44	6%	1.5%	2027
Upper Athabasca River-184	596	279	605	70	12%	1.9%	2017
Upper Athabasca River-185	596	279	6,964	640	9%	1.5%	2027
Upper Athabasca River-187	596	112	6,491	11	0%	0.2%	2026
Upper Athabasca River-189	486	112	3,460	17	1%	0.3%	2022
Upper Berland River-20	596	267	6,719	2,201	33%	5.8%	2027
Upper Berland River-224	596	279	3,366	1,777	53%	12.1%	2023
Upper Berland River-225	596	267	3,280	1,048	32%	6.5%	2023
Upper Berland River-227	596	279	3,480	451	13%	2.3%	2023
Upper Berland River-228	596	279	2,819	1,558	55%	12.8%	2023

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
Upper Berland River-229	596	279	1 536	435	28%	(%) 6.5%	2023
Upper Berland River-230	596	279	3 865	1 273	33%	7.6%	2023
Upper Berland River-232	596	267	2 862	606	21%	4 7%	2023
Upper Berland River-233	596	267	4 477	374	8%	1.6%	2022
Upper Erith River-11	621	112	8.424	2.298	27%	13.9%	2020
Upper Erith River-112	621	267	5,581	1.327	24%	4.1%	2018
Upper Erith River-113	621	267	3,296	1,024	31%	5.3%	2010
Upper Erith River-114	621	267	5,678	1,872	33%	5.9%	2027
Upper Erith River-115	468	112	5,035	605	12%	4.8%	2023
Upper Erith River-116	621	267	5,233	1,229	23%	3.3%	2027
Upper Erith River-117	468	267	3,790	509	13%	1.5%	2023
Upper Erith River-118	621	267	4,222	1,043	25%	3.1%	2018
Upper Erith River-119	468	112	4,971	340	7%	3.7%	2023
Upper Erith River-129	468	112	1,999	435	22%	11.0%	2027
Upper Erith River-130	621	267	4,830	911	19%	3.3%	2027
Upper McLeod River-10	621	267	7,853	2,300	29%	4.8%	2017
Upper McLeod River-154	621	279	4,599	777	17%	2.1%	2013
Upper McLeod River-158	621	267	6,945	751	11%	1.9%	2013
Upper McLeod River-159	621	267	4,679	510	11%	1.9%	2016
Upper McLeod River-160	621	267	4,835	1,302	27%	5.1%	2013
Upper McLeod River-161	621	267	7,402	505	7%	1.2%	2012
Upper McLeod River-162	621	267	9,076	523	6%	1.0%	2017
Upper McLeod River-163	621	279	1,595	59	4%	1.1%	2021
Upper McLeod River-165	621	279	4,881	564	12%	1.7%	2012
Upper McLeod River-166	621	267	4,334	1,257	29%	7.3%	2012
Upper McLeod River-167	621	267	7,975	2,143	27%	6.7%	2013
Upper McLeod River-168	621	267	6,983	2,473	35%	7.3%	2013
Upper McLeod River-169	621	267	5,702	1,060	19%	3.7%	2013

Watershed	Base	Base Water	Total Area	Total	Percent	Maximum	Water Yield
	Precipitation	Yield	(ha)	Harvest	Harvest	Incr	ease
	(mm)	(mm)		(ha)		Amount	Year
						(%)	
Upper Wildhay River-190	486	267	7,922	163	2%	0.3%	2027
Upper Wildhay River-191	596	267	4,795	284	6%	0.7%	2013
Upper Wildhay River-192	596	267	8,785	527	6%	0.7%	2017
Upper Wildhay River-193	596	267	4,878	580	12%	2.3%	2013
Upper Wildhay River-195	596	279	4,775	1,043	22%	3.8%	2027
Upper Wildhay River-196	596	279	998	130	13%	2.5%	2018
Upper Wildhay River-198	596	267	5,337	1,257	24%	4.0%	2013
Upper Wildhay River-199	596	279	5,640	1,863	33%	4.9%	2027
Upper Wildhay River-2	596	267	11,977	1,978	17%	2.3%	2013
Upper Wildhay River-200	596	267	3,122	712	23%	3.6%	2018
Upper Wildhay River-201	596	267	6,269	1,296	21%	2.5%	2015
Willow Creek-16	567	112	7,461	1,756	24%	9.4%	2017
Willow Creek-59	567	112	5,027	942	19%	9.3%	2018
Willow Creek-60	567	112	7,156	1,277	18%	4.9%	2015
Windfall Creek-30	567	112	3,579	1,516	42%	22.2%	2017
Windfall Creek-31	567	112	41	0	0%	0.0%	2015
Windfall Creek-33	567	112	776	59	8%	6.6%	2027

6.6 Non-Timber Values: Grizzly Bear

Grizzly bear has not been officially designated "at risk" under the Alberta Wildlife Act. In 2002, the Endangered Species Conservation Committee recommended designation as a Threatened species and this recommendation was reaffirmed in 2010. As of April 30, 2010, the Alberta government has not made a designation status decision. DNA-based grizzly bear population studies have been underway in Alberta since 2004 and a Recovery Plan was approved in 2008.

In Alberta, six Grizzly Bear Population Units have been identified. Grizzly Bear Population Units are management units based on genetic distinctions within the Alberta grizzly bear population. These population units are generally separated by major highway corridors. The population units are further subdivided into Grizzly Bear Watershed Units (GBWU), a management unit based on major watersheds subdivided along heights of land and occasionally along watercourses, to approximate the size of an adult female grizzly bear home range (~700 km2).

Each GBWU is characterized as being either Core or Secondary grizzly bear habitat based on current landscape conditions. Core Areas are areas of high habitat value (as measured by Resource Selection Function) and generally low mortality risk currently measured through Open Route Densities. Secondary Areas are areas of good habitat, reflecting the broader range of grizzly bears. The Hinton FMA is comprised of approximately:

- Core area: 48%
- Secondary area: 37%
- Not classified grizzly bear habitat: 15%

Alberta SRD conducted the necessary grizzly bear analysis and provided much of the information contained in this section of the FMP amendment. Four key values were analyzed and the results are reported for individual Grizzly Bear Watershed Units (Figure 28).

- Resource Selection Function: Resource Selection Functions (RSF) can be used as a surrogate for grizzly bear habitat and supply. Research shows a clear relationship between high RSF values and the current presence and distribution of grizzly bears as determined by DNA population inventory work. SRD's RSF objectives are:
 - In Core GBWUs the objective is to maintain or increase the current maximum RSF values.
 - In Secondary GBWUs the objective is to increase current maximum RSF values.
- Mortality Risk: Mortality Risk is a spatial model that represents the relative probability of human-caused grizzly bear mortality. The mortality risk should be used in conjunction with the open route density information to understand how

access and habitat variables interact to impact grizzly bear survival rates. SRD's mortality risk objectives are:

- In Core GBWUs the objective is to maintain or reduce current levels of mean mortality risk as determined through the mortality risk model.
- In Secondary GBWUs the objective is to reduce current levels of mean mortality risk.
- Open Route Density: Open Route Densities are defined as the total length of all open routes divided by the area of each grizzly bear watershed unit. Research conducted in both Alberta and many other parts of grizzly bear range in North America, have found that the key to maintaining grizzly bear populations is to keep human caused grizzly bear mortality rates low. Regulating human use of access (specifically motorised vehicle routes) in grizzly bear range reduces the risk of human-caused mortality. Because human use of access is difficult to measure, the Recovery Plan recommends using Open Route Densities as a surrogate for the amount of human use. SRD's open route density objectives are:
 - \circ In Core GBWUs the open route density threshold is 0.6 km/km².
 - The open route density threshold in Secondary GBWUs is 1.2 km/km².
 - In both Core and Secondary GBWUs the objective is to maintain or reduce current levels of open route density.
- Safe Harbour: Safe Harbour is a combination of habitat quality and risk. A safe harbour is an area of good habitat (high RSF values), to which bears are attracted by an abundance of resources, but also where the bear faces a low risk of human caused mortality (low Mortality Risk). SRD's safe harbour objectives are:
 - In all Core GBWUs the objective is to maintain or increase both the quantity (area) and quality (mean safe harbour value) that is currently present.
 - In Secondary GBWUs the objective is to increase current values of safe harbour quantity and quality.

The results of the resource selection function (RSF), mortality risk and safe harbour analyses are presented in Table 15 and Table 16. The open route density analysis results are presented in Table 17 and Table 18.

Figure 28. Grizzly Bear Watershed Units

Grizzly Bear Unit	Habitat	Area Km Sq	Current Mean	Future Mean	Difference +/-	% Change
		Resource	Selection Fund	ction (max)		
G42	Core	537.3	7.54	7.88	0.34	4.5%
G44	Core	728.6	8.02	8.22	0.20	2.5%
G50	Core	232.1	7.98	8.48	0.50	6.3%
G58	Core	107.0	7.51	7.57	0.06	0.8%
G28	Secondary	58.0	6.46	7.64	1.18	18.3%
G31	Secondary	204.2	6.66	7.74	1.08	16.2%
G36	Secondary	376.7	7.05	7.32	0.27	3.8%
G37	Secondary	477.8	6.19	6.51	0.32	5.2%
G40	Secondary	539.9	5.46	5.66	0.20	3.7%
G47	Secondary	475.7	8.01	8.12	0.11	1.4%
G51	Secondary	289.6	5.94	5.96	0.02	0.3%
			Mortality Risl	ζ		
G42	Core	537.3	6.29	6.64	0.35	5.6%
G44	Core	728.6	5.76	5.97	0.21	3.6%
G50	Core	232.1	3.29	3.67	0.38	11.6%
G58	Core	107.0	4.50	4.52	0.02	0.4%
G28	Secondary	58.0	3.60	4.49	0.89	24.7%
G31	Secondary	204.2	5.91	6.67	0.76	12.9%
G36	Secondary	376.7	6.44	6.78	0.34	5.3%
G37	Secondary	477.8	6.45	6.51	0.06	0.9%
G40	Secondary	539.9	5.12	5.37	0.25	4.9%
G47	Secondary	475.7	7.54	7.70	0.16	2.1%
G51	Secondary	289.6	6.18	6.20	0.02	0.3%
			Safe Harbour			
G42	Core	537.3	75.45	78.77	3.33	4.4%
G44	Core	728.6	80.22	82.17	1.95	2.4%
G50	Core	232.1	79.84	84.76	4.92	6.2%
G58	Core	107.0	75.15	75.73	0.58	0.8%
G28	Secondary	58.0	64.60	76.43	11.83	18.3%
G31	Secondary	204.2	66.64	77.44	10.80	16.2%
G36	Secondary	376.7	70.53	73.18	2.65	3.8%
G37	Secondary	477.8	61.92	65.09	3.17	5.1%
G40	Secondary	539.9	54.60	56.63	2.02	3.7%
G47	Secondary	475.7	80.09	81.23	1.14	1.4%
G51	Secondary	289.6	59.45	59.56	0.11	0.2%

Table 15. RSF, Mortality Risk and Safe Harbour Summary – Grande Cache Population

Table 16. RSF, Mortality Risk and Safe Harbour Summary – Yellowhead Population

Grizzly Bear Unit	Habitat	Area Km Sq	Current Mean	Future Mean	Difference +/-	% Change
Resource Selection Function (max)						
Y53	Core	230.6	5.05	5.64	0.59	11.7%
Y56	Core	691.7	7.49	7.85	0.36	4.8%
Y61	Core	624.5	7.14	7.92	0.78	10.9%
--------------	-----------	-------	----------------	-------	------	-------
Y69	Core	138.1	7.18	7.68	0.50	7.0%
Y70	Core	343.4	6.83	6.89	0.06	0.9%
Y57	Secondary	642.8	4.41	5.04	0.63	14.3%
Y63	Secondary	495.1	6.27	6.51	0.24	3.8%
		Ν	Iortality Risk			
Y53	Core	230.6	5.04	5.55	0.51	10.1%
Y56	Core	691.7	6.59	6.83	0.24	3.6%
Y61	Core	624.5	5.74	6.10	0.36	6.3%
Y69	Core	138.1	4.09	4.35	0.26	6.4%
Y70	Core	343.4	4.02	4.04	0.02	0.5%
Y57	Secondary	642.8	5.82	6.32	0.50	8.6%
Y63	Secondary	495.1	6.99	7.08	0.09	1.3%
Safe Harbour						
Y53	Core	230.6	50.45	56.39	5.94	11.8%
Y56	Core	691.7	74.87	78.45	3.59	4.8%
Y61	Core	624.5	71.45	79.15	7.71	10.8%
Y69	Core	138.1	71.76	76.82	5.05	7.0%
Y70	Core	343.4	68.29	68.93	0.64	0.9%
Y57	Secondary	642.8	44.07	50.42	6.35	14.4%
Y63	Secondary	495.1	62.70	65.12	2.43	3.9%

 Table 17. Open Route Density – Grande Cache Grizzly Bear Population

Grizzly Bear Unit	Habitat	Road Length (Km) Current	Area (Km Sq)	Road Density Km/Km Sq
G42	Core	354.6	537.3	0.66
G44	Core	335.6	728.6	0.46
G50	Core	131.1	232.1	0.56
G58	Core	67.6	107.0	0.63
Core Total		889.0	1605.0	0.55
G28	Secondary	23.0	58.0	0.40
G31	Secondary	140.1	204.2	0.69
G36	Secondary	326.5	376.7	0.87
G37	Secondary	463.9	477.8	0.97
G40	Secondary	382.2	539.9	0.71
G47	Secondary	340.9	475.7	0.72
G51	Secondary	164.0	289.6	0.57
Secondary Total		1840.6	2421.9	0.76

Table 18. Open Route Density – Yellowhead Grizzly Bear Population

Grizzly Bear Unit	Habitat	Road Length (Km) Current	Area (Km Sq)	Road Density Km/Km Sq
Y53	Core	131.0	230.6	0.57
Y56	Core	493.1	691.7	0.71
Y61	Core	333.3	624.5	0.53
Y69	Core	44.1	138.1	0.32

MPB Forest Management: Technical Document #3 - Annual Allowable Cut Projection

Y70	Core	200.8	343.4	0.58	
Core Tota	al	1202.3	2028.3	0.59	
¥57	Secondary	350.7	642.8	0.55	
Y63	Secondary	324.2	495.1	0.65	
Secondary Total		674.9	1137.9	0.59	

Figure 29. Grizzly Bear Safe Harbour (current)

Future

Change from Current

Figure 30. Grizzly Bear Safe Harbour (future)