# Determining the AAC for The Weyerhaeuser Edson FMA Component#2: Landbase Allocations

Forest Management Agreement Area FMA #9700035

November 24, 2004

| 1 | INTROD   | U <b>CTION</b>                                                      | 1        |
|---|----------|---------------------------------------------------------------------|----------|
| 2 | DATA LA  | YERS AND METHODS                                                    | 2        |
|   | 2.1 AV   | I inventory background                                              | 2        |
|   | 2.2 Too  | ls used                                                             |          |
|   | 2.3 GIS  | processing                                                          |          |
|   | 2.4 Adr  | ninistrative designations                                           |          |
|   | 2.5 Nor  | n-harvesting type dispositions                                      | 4        |
|   | 2.5.1    | Landuse dispositions                                                | 4        |
|   | 2.5.2    | Grazing dispositions                                                | 6        |
|   | 2.5.3    | Provincial PSPs                                                     | 7        |
|   | 2.6 Pro  | hibited Areas                                                       | 7        |
|   | 2.6.1    | Private land                                                        | 7        |
|   | 2.6.2    | Parks                                                               | 8        |
|   | 2.7 Eco  | logical and cultural feature designations                           | 8        |
|   | 2.7.1    | Natural subregions                                                  | 8        |
|   | 2.7.2    | Watershed basins                                                    | 8        |
|   | 2.7.3    | Ecosite                                                             | 9        |
|   | 2.7.4    | Integrated resource plans (IRP) and eastern slopes integrated plans | s (ESIP) |
|   |          | 9                                                                   |          |
|   | 2.7.5    | Historic resources                                                  | 9        |
|   | 2.8 Lan  | dscape disturbances                                                 | 9        |
|   | 2.8.1    | Forest fires                                                        | 10       |
|   | 2.8.2    | Linear disturbances (not captured as a linear disposition)          | 10       |
|   | 2.8.3    | On going update process                                             | 10       |
|   | 2.8.4    | Cutblocks                                                           | 11       |
|   | 2.8.5    | Planned Blocks                                                      | 19       |
|   | 2.9 Ope  | erational Parameters                                                |          |
|   | 2.9.1    | Steep/sensitive slopes and isolated stands                          |          |
|   | 2.9.2    | Watercourse buffers                                                 |          |
|   | 2.9.3    | Subjective deletions and ecosite deletions                          |          |
|   | 2.10 Def | ining the forested landscape                                        |          |
|   | 2.10.1   | Landbase, broad cover group, story of primary management, and s     | tand age |
|   | assignme | ent                                                                 |          |
|   | 2.10.2   | Ecosite Stratification                                              |          |
|   | 2.10.3   | Yield curve assignment                                              |          |
|   | 2.10.4   | Seral stages and over-mature forests within the FMA                 |          |
|   | 2.10.5   | The deletion hierarchy                                              |          |
|   | 2.11 Sun | nmary of SAS output files                                           |          |
| 3 | FINAL R  | ESULTS                                                              | 31       |
| 4 | REFERE   | NCES                                                                |          |
| 5 | APPEND   | IX                                                                  |          |
|   | 5.1 Dat  | a Library                                                           |          |

| 5.2     | Exhaustive list of Yield Curves                                          | 58 |
|---------|--------------------------------------------------------------------------|----|
| 5.3     | Individual input data layers                                             | 62 |
| 5.4     | Additions to the landbase netdown since the November 24, 2004 submission | 63 |
| 5.4.1   | Corrections to coding of the subjective deletion criteria                | 63 |
| 5.4.2   | 2 Changes based on using 100m stream buffers                             | 64 |
| 5.4.3   | 3 Changes to assigning first species to cutblocks                        | 64 |
| 5.4.4   | Input from operational foresters                                         | 66 |
| 5.4.5   | 5 Marginal Stands                                                        | 69 |
| 5.4.6   | 6 Assigning Piece Size Strata                                            | 70 |
| 5.4.7   | 7 Woodstock Input files                                                  | 71 |
| 5.5     | Preparing data for input into Woodstock/Stanley                          | 76 |
| 5.6     | GIS Processing Document (data and documentation provided by Silvacom     |    |
| Ltd.)   | 78                                                                       |    |
| 5.7     | Regeneration Study (data and documentation provided by Timberline Forest |    |
| Invento | bry Consultants)                                                         | 83 |

## 1 Introduction

In support of the Detailed Forest Management Plan (DFMP) this document explains the process of using inventory data to summarize the Weyerhaeuser Edson Forest Management Agreement (FMA) landbase. This is the second component of a three part technical series (first component: *Stand Yield Protections*, third component: *Timber Supply Modeling*) used to estimate the sustainable annual allowable cut (AAC) for the Weyerhaeuser Edson FMA.

A Weyerhaeuser core value is to manage forestlands for the sustainable production of raw materials while protecting water quality, fish and wildlife habitat, soil productivity, and cultural, historical, aesthetic values. The landbase allocation process considered these values when delineating the operable landbase. The overall goal of this document is to provide data that can be used as input into the timber supply modeling process.

The area of the Edson FMA straddles nearly 510,000 ha of the Lower and Upper Foothills natural regions of Alberta (Figure 1). Four forest management units (FMUs) make up the area of the Edson FMA: E1, E2, W5, and W6.



Figure 1-1Weyerhaeuser Edson: Forest Management Area

## 2 Data layers and methods

Various data sources were used to provide the final results for this report, which include:

- Alberta Vegetation Inventory (AVI)
- SiteLogix ecosite assignments
- Fourth order watershed boundaries
- ARIS silviculture records
- Boundaries of Weyerhaeuser's harvest design areas (HDAs)
- Grazing Dispositions
- Historic Resources (archeological potential)
- Provincial natural sub-region boundary
- ESIP zones
- Linear Dispositions and other polygonal dispositions
- Cutlines
- Private Land
- Parks
- Water course data
- Historical cutblocks
- Future planned cutblocks
- Historical Fire Boundaries
- Pioneer PNT area

The start date to be used for the TSA modeling is May 1, 2004, therefore the most current data that was available was used for all layers provided. To assist the auditing process when landbase data fields are referenced they will be referenced in *BOLD ITALICS* in the form *[FILE:FIELD]* (if no file is indicated then the start file *FMA\_2004* is to be assumed).

## 2.1 AVI inventory background

Weyerhaeuser Company completed an AVI standard forest inventory (Version 2.0) that covered the entire Edson Forest Management Area (FMA).

The FMU W6 inventory was based on aerial photography which was taken in 1995 and was approved by the provincial government in 1996; whereas for E1, E2, and W5 the aerial photography was taken in 1998 and approved by the provincial government in 2004.

All fields from the approved AVI layer were included in the final netdown. The AVI field names used were consistent with the AVI standards manual (Alberta Environmental Protection 1991). The AVI layer is considered the key data in the netdown process as it enables various forest cover types to be identified, defined, and located.

## 2.2 Tools used

Two software types were used to process the netdown data. All spatial data was handled through ARCGIS 9.0, and all netdown and data processing was done using SAS 8.2. FoxPro 6.0 was also used intermittently for translating data between the two former software platforms. In addition FoxPro 6.0 assisted in querying and error checking data base files.

## 2.3 GIS processing

The process of overlaying all spatial GIS layers was completed by Silvacom Ltd. (see appendix 5.6 for technical details). All spatial data sources are described in this section.

### 2.4 Administrative designations

Administrative designations are legal boundaries that include:

**Forest Management Agreement** (FMA) [*FMA*] and the **Forest Management Unit** (FMU) boundaries [*FMU*] – Considerable effort was taken to ensure that Edson FMA and FMU boundaries were correctly portrayed. The FMA, and FMU boundaries used as an input layer were based on cross-referencing information provided from Silvacom with Alberta Provincial Government officials and Weyerhaeuser employees.

Weyerhaeuser Land Management Units (LMU) *[LMU]* and Harvest Design Areas (HDA) *[Workarea]* – LMUs and HDAs are areas internally defined by Weyerhaeuser to assist with operational activities. HDAs will be used during the TSA modeling to control locations of harvesting activities and LMUs are used during the landbase netdown to provide information for assigning the expected regeneration forest type on cutblocks (section 2.8.4).

## 2.5 Non-harvesting type dispositions

There are numerous non-industrial forestry management activities that occur within the Edson FMA. Therefore any dispositions within the FMA that do not allow for complete integration with forest harvesting activities were identified and removed from the harvestable landbase.

#### 2.5.1 Landuse dispositions

Land use dispositions include activities such as roads, pipelines, and various types of easements (including: electrical, and vegetation control). Sometimes this information is captured in the AVI inventory process as either anthropogenic vegetated land or anthropogenic non-vegetated land. However, due to the continually changing nature and location of human activities across the landscape, separate spatial layers (Section 5.3) that specifically captured these disturbances were overlaid against the AVI layer to ensure increased accuracy.

Linear type disturbances were estimated by an average disturbance width applied (Table 2-1) as a buffer. To simplify processing, a single field *[LU\_LINE]* was used that flagged polygons (using a 1 or 0) as being part of a linear disposition or not. If more detailed information on the specific types of linear dispositions is desired, then the input spatial layer file (lu\_line.e00) will need to be referenced. All linear dispositions were included within the total FMA area (although technically that area is outside the FMA) but were removed from the FMA net harvestable landbase.

| Type of Disposition         | Disposition | <b>Total Disturbance</b> |
|-----------------------------|-------------|--------------------------|
|                             | Code        | Width* (m)               |
| Disposition reservations    | DRS         | 20                       |
| License of occupation       | LOC         | 20                       |
| Pipeline installation lease | PIL         | 15                       |
| Rural electrification       | REA         | 10                       |
| association easement        |             |                          |
| Vegetation control easement | VCE         | 15                       |
| Easement                    | EZE         | 15                       |
| Miscellaneous lease         | MLL         | 20                       |
| Pipeline agreement          | PLA         | 20                       |
| Private land sale           | PLS         | 15                       |
| Right-of-entry agreement    | ROE         | 20                       |
| Forestry road               | FRD         | 20                       |
| Mineral surface lease       | MSL         | 20                       |
| Roadway                     | RDS         | 20                       |
| Registered roadway          | RRD         | 20                       |

 Table 2-1 Types of linear dispositions and total buffer width applied

\* - Total Disturbance widths includes disturbance on both sides of the buffered line delineating the centre of the disturbance. Therefore, a pipeline agreement (PLA) has a 7.5m buffer applied and a total expected disturbance width of 15m.

Polygon type dispositions were also applied by simply overlaying their boundaries (tda.e00) onto the AVI layer. Unlike linear dispositions, polygonal landuse dispositions were individually identified in the netdown processed database *[LANDUSE]* (Table 2-2). More specifically the pioneer protective notation PNT *[PNT]* and Disposition Reservations *[DRS]* type dispositions were assigned individual fields to allow for tracking of each individual disposition number. The Pioneer PNT (PNT990220) *[Pioneer]* was individually flagged because (during the modeling process) harvest activities will be prohibited in that area for the first 10 years of the harvest sequence. All polygon dispositions (except for PNTs and GEOs) were removed from the FMA net harvestable landbase. GEOs are typically only in effect for 1 year therefore these areas were included in the net harvestable landbase. PNTs are included in the net landbase and will be dealt with on an operational basis.

| DRS – Disposition reservation        | • PLA – Pipeline agreement              |
|--------------------------------------|-----------------------------------------|
| • EZE – Easement                     | • PRI – Unknown Code                    |
| GEO - Geophysical     exploration    | • REC – Recreation lease                |
| • ISP - Industrial Sample Plot       | • ROE – Right-of-entry agreement        |
| • LOC – License of occupation        | • SMC – Surface material licence        |
| • MLL – Miscellaneous lease          | • SME – Surface material exploration    |
| • MLP – Miscellaneous permit         | • SML – Surface material lease          |
| • MSL – Mineral surface lease        | • VCE - Vegetation Control<br>Easements |
| PIL – Pipeline installation<br>lease | • WDL - Water Development lease         |
| • PNT – Protective Notation          |                                         |

**Table 2-2 Polygon Type Dispositions** 

#### 2.5.2 Grazing dispositions

In the Edson FMA there is significant land area dedicated to grazing dispositions. Four types of grazing dispositions are located within the Edson FMA: grazing license (FGL), grazing lease (GRL), grazing permit (GRP), and grazing reserves (GRR). Each individual grazing disposition are individually identified on the landbase *[GRAZING]*.

Each of the grazing dispositions types were handled differently:

- Grazing Reserves (GRR) Not part of the FMA and were not included in the total FMA area (meaning the area to which the net down is completed upon).
- Grazing Leases (GRL) and Grazing Permits (GRP) Not considered part of the FMA. However, lease/permit areas were included in the total FMA area because both the coniferous and deciduous volumes on grazing leases/permits are allocated for harvest through quota certificates (or deciduous timber allocations) and are chargeable against the FMA AAC.

In instances where a GRL or GRP was issued after an FMA commenced (July 1, 1997), the FMA holder is entitled to compensation from the applicant.

Forest Grazing Licenses (FGL) – Considered within the FMA if the licence was issued after July 1, 1997 (the date of commencement for the Forests Act – Forest Management Agreement (O.C. 257/97)). Licenses issued prior to July 1, 1997 were not considered part of the FMA. However, these areas were included in the total FMA area because both the coniferous and deciduous volumes were allocated for harvest through quota certificates (or deciduous timber allocations) and are chargeable against the FMA AAC. According to the data used in the landbase netdown, no licenses have been issued after July 1, 1997 (therefore all grazing licenses are not considered part of the FMA but are included in the total FMA area).

The grazing disposition deciduous volumes (excluding grazing reserves and incidental deciduous volumes in W5F) are 100% allocated to Weyerhaeuser. Weyerhaeuser has agreed to wave the coniferous volume rights in the dispositions (other operators are allocated this volume by Alberta Sustainable Resource Development (SRD)) with the agreement that Weyerhaeuser will be able to make up this volume from within the FMA.

#### 2.5.3 Provincial PSPs

All provincial PSPs **[PSP]** were considered within the FMA but were marked as a deletion category therefore they do not contribute volume to the FMA.

## 2.6 Prohibited Areas

Prohibited Areas are areas that are not included within the FMA which includes private land, provincial parks and natural areas.

#### 2.6.1 Private land

All land area marked as under private title status *[STATUS]* was removed from the total FMA area.

#### 2.6.2 Parks

Since the last DFMP three Special Places 2000 candidate sites (Obed Lake, Fickle Lake, and Sundance Valley) having area within the Weyerhaeuser Edson FMA boundary were given full provincial park status. These parks were marked out spatially on the GIS processed landbase *[SP2000]*. They are considered outside the FMA and will not contribute any volume to the FMA AAC, however because they are within the boundary of the FMA their contributions to old-growth strategies will still be tracked.

Weyerhaeuser has agreed to buffer the Sundance Valley site 500m *[SUN500M]* on both sides of the valley. This buffer area is still considered part of the FMA and will contribute volume to the FMA AAC, however, this area will be maintained in the netdown landbase to provide operational planners with information required to make special considerations when operating these areas.

#### 2.7 Ecological and cultural feature designations

The Edson FMA has several important ecological and cultural features within the FMA.

#### 2.7.1 Natural subregions

The provincial coverage of natural subregions was used to assign areas within the FMA to either the Lower or Upper Foothills *[NSN]*.

#### 2.7.2 Watershed basins

Fourth order watershed basins were delineated *[WTRSHED]* on the landbase. This coverage does not impact the netdown however, during the TSA modeling it will be used to report on harvesting activities within each basin.

#### 2.7.3 Ecosite

Site quality is an important factor when determining if a forest stand can produce a merchantable timber. Therefore, each AVI polygon was assigned to an ecosite *[ECOSITE]* using the data from an ecosite classification project developed for the Weyerhaeuser Edson FMA in July 2000 (called – SiteLogix, Geographic Dynamics Corporation, 2000). For the most part the project used the same ecosite assignment protocol as the *Field Guide to Ecosites of West-central Alberta (Beckingham et al. 1996)*. Sometimes SiteLogix would assign a complex ecosite call naming two ecosites (i.e. *ECOSITE=* 'LF-e/f'). In this situation, the stand was assigned to the first ecosite in the complex.

#### 2.7.4 Integrated resource plans (IRP) and eastern slopes integrated plans (ESIP)

Some areas with the Edson FMA come under the jurisdiction of ESIP zones. ESIP and IRP zones were included within the landbase *[ESIP* and *IRP\_NAME]*. Normally "Prime Protection" ESIP areas are removed from the harvestable landbase, however, within the Edson FMA there were no areas assigned this designation. Therefore, these designations were of no concern in the TSA process however they were included to provide important information to operational planners.

#### 2.7.5 Historic resources

The historic resources coverage predicts the archeological potential of a site *[ARCH\_POT]*. Resources are estimated from Low to High with areas marked "high" potential being the most likely locations to contain archeological historical findings. This coverage was not used in the netdown nor will it be referenced in the modeling stage. However, it was included so extra care could be taken during operations in areas of "high" potential.

### 2.8 Landscape disturbances

Natural and man-caused disturbances can impact the amount of timber available for harvest and the AAC. These disturbances were included the netdown process as separate coverages.

#### 2.8.1 Forest fires

The forest fire coverage (fire\_all.e00) estimates the historical boundary of fires that have occurred within the Edson FMA landbase since the 1930s. In the netdown database each decade of fire activity (starting at the 1930s) was assigned its own field *[FIRE1930, FIRE1940, FIRE1950, FIRE1960, FIRE1970, FIRE1980, FIRE1990, FIRE2000]* where each area burnt by individual fires of that decade are discernable.

Almost all fires since the 30s were either too small (in area) or occurred too long ago to be of concern (except for the Chip Lake fire of 1998). These fire areas were treated the same as nonburn areas. The Chip Lake fire *[CL\_FIRE]* will be treated somewhat differently. The fire occurred in 1998 therefore the aerial photography captured the pre-harvest forest cover type. Netdown deletion rules will be applied to the Chip Lake fire area the same as non-burn areas. Therefore, in the netdown the Chip Lake fire is of no consequence. However, in the modeling step different regeneration lag rules will be applied depending upon if salvage logging has occurred. Salvage logging will be indicated by the cutblock layer, any post 1998 cutblocks within the Chip Lake fire boundary will be assumed to be from salvage activities *[CL\_SAL]*.

#### 2.8.2 Linear disturbances (not captured as a linear disposition)

The Edson FMA is a working forest with a number of non-industrial forestry activities occurring. In an attempt to capture the harvesting of timber (and the resultant reduction in operable landbase) caused by these other activities Weyerhaeuser maintains a spatial coverage of linear disturbances across the FMA. These cutlines *[CUTLINES]* are often not captured as a linear disposition. Therefore, a total width of 8m was applied to these disturbances and the area was removed from the operable landbase.

#### 2.8.3 On going update process

There are regular updates to Weyerhaeuser's GIS data for changes caused by cutblocks and landuse. These updates do not impact the data associated within this DFMP because the results

stated within this document represent a-point-in-time analysis. When the process to complete the next DFMP is engaged the captured landbase changes will be implemented into the next plan. Therefore, the update procedure is provided for information purposes only.

Cutblocks are typically updated once a year. (Blocks are flown with leaf on - anytime in summer June - Sept). The digitized updated cutblocks are added into the "master file" and placed within the cutblock layer and stored on Silvacom Online. As for landuse updates, all changes are added to the Silvacom Online Landuse layer almost three weeks after a survey plan is consented to.

#### 2.8.4 Cutblocks

A number of data sources contributed to define cutblocks. Weyerhaeuser maintains a spatial cutblock coverage *[CUTBLK]* and the W6 quota holders also provided a spatial cutblock coverage *[QUOT\_BLK]*. Both coverages provided (when possible) an opening number (Weyerhaeuser = *[CUT\_NUM]* : Quota = *[QB\_NUM]*) that could be linked to an ARIS data set *[File: ALLARIS:OPEN\_NUM]*. In addition, the quota coverage also provided the operator name *[QB\_OP]*.

Accurately assigning all current cutblocks to either the coniferous or deciduous landbase and to the proper broad cover group was a complex issue. Cutblock landbase designations were based either on the silviculture records (ARIS landbase designation) or the AVI forest cover type or sometimes the historical harvesting history (see *historical harvesting ratio* section below). Likewise, broad cover groups (BCG) were assigned either by ARIS or AVI or the results from a study of regenerated cutblocks that was conducted in 2000 (Table 2-5).

Cutblocks were identified by two data sources. Two GIS *spatial cutblock layers* (cutblks.e00 and quot\_blks.e00) were the primary (and assumed most accurate) source of information. Each polygon was linked (when possible) to the representative ARIS record by ARIS opening number. The secondary source of cutblocks information was the AVI "CC" modifier.



#### Figure 2-1 Flow diagram for assigning landbase, broad cover group, and stand age to cutblock polygons

#### BCG Assignment Orders (lists the hierarchy of data sources referenced)

 1 1. ARIS
 2. AVI SoPM
 3. Coniferous Landbase: 70 coniferous/30 deciduous or Deciduous Landbase:

| 70% deci | iduous/ 30% coniferent | ous.           |                               |
|----------|------------------------|----------------|-------------------------------|
| 2 –      | 1. AVI SoPM            | 2. Regen Study |                               |
| 3 –      | 1. ARIS                | 2. AVI SoPM    | <ol><li>Regen Study</li></ol> |

HHR - Historical Harvesting Ratio (See Section below)

#### Landbase Assignment Orders (lists the hierarchy of data sources referenced)

| 1 – | 1. ARIS | 2. AVI SoPM,       | 3. HHR      |
|-----|---------|--------------------|-------------|
| 2 – | 1. ARIS | 2. HHR             |             |
| 3 – | 1. ARIS | 2. Assumed to be C | Coniferous. |

**Regen Study** – Timberline Forest Inventory Consultants, 2000. *Analysis of regenerated cutblock data, Weyerhaeuser Canada* (See table 1).

#### Historical harvest ratio (HHR)

When information was lacking to assign a landbase designation to a cutblock, landbase was assigned based on the HHR of coniferous and deciduous dominated stands harvested in each

LMU. The steps of this process are as follows:

- 1. Obtain all valid spatial cutblock polygons (separated by LMU) which have been assigned as either either a coniferous or deciduous cutblock.
- 2. Since all cutblocks prior to 1983 are assumed to be coniferous, only those cutblocks from harvested from 1983 to 2004 are included in the ratio.
- 3. Calculate the percentage of area belonging to coniferous cutblocks versus deciduous cutblocks.
- 4. Round the percentages to the nearest integer for both coniferous *[HHR\_CON]* and deciduous *[HHR\_DEC]* cutblock frequency.
- 5. Each AVI stand is assigned a number between 0 and 99 to function as the flag variable (or random number to compare to the coniferous integer).
- 6. If the flag variable was less than the coniferous integer, the cutblock was designated as coniferous and if not the cutblock was designated as deciduous.

#### Table 2-3. The historical harvesting ratio (HHR) by land management unit (LMU)\*

|                | Area Harvested from 1983 to 2004 (Hectares) |            |       | HHR        |             |
|----------------|---------------------------------------------|------------|-------|------------|-------------|
| LMU            | Deciduous                                   | Coniferous | Total | %Deciduous | %Coniferous |
| Beaver Meadows | 1,884                                       | 1,911      | 3,795 | 50%        | 50%         |
| Carrot Creek   | 1,431                                       | 1,518      | 2,948 | 49%        | 51%         |
| Cynthia        | 2,892                                       | 5,788      | 8,680 | 33%        | 67%         |
| Edson          | 3,958                                       | 2,419      | 6,377 | 62%        | 38%         |
| Moose Creek    | 2,082                                       | 3,712      | 5,793 | 36%        | 64%         |
| Wolf Lake      | 875                                         | 6,169      | 7,044 | 12%        | 88%         |

\* - SAS Code used to derived HHR is available to the Alberta Government Upon Request

#### Assigning landbase, broad cover group and crown closure to cutblocks

A total of 11 cutblock rules *[HAR\_RULE]* were used in an attempt to best assign each cutblock to a representative landbase, broad cover group, and density (Figure 2-1). A fully stocked cutblock is assumed to be comparable to a "C" crown closure AVI call. Often blocks were assumed to regenerate to fully stocked however, each cut rule has a unique set of criteria for assigning crown closure.

**Cutblock Rule 1** – Rule 1 cutblocks did not have a polygon present in the spatial cutblock coverage but did have an AVI "CC" modifier. The AVI stand call was neither a productive forest cover type nor had a valid "CC" modifier year. Therefore these blocks did not provide enough evidence to be assigned to the net landbase and were classified as an "unidentified opening" for tracking purposes only *[UNI\_OP]*.

Crown Closure - Considered to not be part of the net harvestable landbase therefore no crown closure value was assigned.

**Cutblock Rule 2** – Rule 2 cutblocks did not have a polygon present in the spatial cutblock coverage but had an AVI "CC" modifier with a valid productive forest cover type. The overstory was not remnant *[REMAN]* (remnant overstory is defined as an "A" or "B" density overstory with an understory density greater than the overstory density); therefore the stand landbase, composition, and density were defined by the AVI overstory call and the stand age was assigned based on the overstory origin.

Crown Closure - Crown closure was always assigned by the AVI overstory.

**Cutblock Rule 3** – Rule 3 cutblocks did not have a polygon present in the spatial cutblock coverage but had an AVI "CC" modifier with a valid productive forest cover type. The overstory was remnant (defined as an "A" or "B" density overstory with an understory density greater than the overstory density); therefore the stand landbase, composition, and density were defined by the AVI understory call and the stand age was assigned based on the understory origin.

Crown Closure - Crown closure was always assigned by the AVI understory.

**Cutblock Rule 4** – Rule 4 cutblocks had neither a polygon present in the spatial cutblock coverage nor was assigned to a valid AVI productive forest cover type. However, an AVI "CC" modifier and modifier year was assigned. Thus, it was assumed that when a "CC" modifier year was assigned, the stand could be confidently defined as a cutblock. Due to no valid ARIS or AVI data being assigned, the landbase could only be assigned by the HHR and the Timberline regenerated cutblock study was used the assign the stand to a BCG.

Crown Closure - Due to there being no ARIS data or AVI forest cover group all cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Cutblock Rule 5** – Rule 5 cutblocks had a polygon present in the spatial cutblock coverage and were harvested after the aerial photography was taken (1995 for W6, 1998 for E1, E2, and W5). The landbase and BCG were primarily assigned by ARIS, however because the pre-harvest stands were captured by the photography, if no ARIS information was available the AVI stand calls were used with confidence. As a last resort landbase was assigned by the HHR and BCG to a 70/30 mixedwood either conifer dominated or deciduous dominated depending upon the landbase assignment. The rationale for the 70/30 BCG is because that is the middle value between 50/50 and 0/100. The regeneration study is not expected to provide a good estimate in post-95 cutblocks because of the change in regeneration standards.

Crown Closure - All cutblocks are assumed to be fully stocked and thus have a "C" crown closure (except on grazing dispositions see below).

**Cutblock Rule 6** – Rule 6 cutblocks had a polygon present in the spatial cutblock coverage and were harvested after 1995 and were assigned by ARIS to either the coniferous landbase or a coniferous/mixedwood broad cover group. In 1995 the regeneration standards used on coniferous/mixedwood stands had changed to a stricter standard; therefore it was assumed that post-95 blocks would regenerate to fully stocked status. Both the landbase and the BCG were assigned by ARIS.

Crown Closure - All cutblocks are assumed to be fully stocked and thus have a "C" crown closure (except on grazing dispositions see below).

**Cutblock Rule 7** – Rule 7 cutblocks had a polygon present in the spatial cutblock coverage and were harvested after 1991. In 1991 the system of assigning BCG in ARIS (previously SMRS) had changed. If possible the cutblock landbase was assigned by ARIS; otherwise HHR was used. BCG was assigned by the Timberline regenerated cutblock study was used. The rationale for this assignment is that quota blocks for this period do not require tending and will maintain current levels of hardwood stocking as exhibited in the Timberline report.

Crown Closure - If there is either a valid ARIS BCG or a valid AVI forest cover group the cutblock is assumed to be fully stocked ("C" crown closure - except on grazing dispositions see below). Otherwise the cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Cutblock Rule 8** – Rule 8 cutblocks had a polygon present in the spatial cutblock coverage and were harvested in 1983 or later. The year 1983 was when deciduous harvesting operations officially commenced. The landbase calls were assigned by ARIS, if there was no valid landbase assignment present, HHR was used. The BCG was based on the results from the Timberline regenerated cutblock study.

Crown Closure - If there is a valid AVI forest cover group the cutblock is assumed to be fully stocked ("C" crown closure - except on grazing dispositions see below). Otherwise the cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Cutblock Rule 9** – Rule 9 cutblocks had a polygon present in the spatial cutblock coverage and were harvested pre-1983. The landbase calls were assigned by ARIS, if there was no landbase assignment in ARIS, the block was assumed to be from the coniferous landbase. The BCG was based on the results from the Timberline regenerated cutblock study.

Crown Closure - If there is a valid AVI forest cover group the cutblock is assumed to be fully stocked ("C" crown closure - except on grazing dispositions see below). Otherwise the cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Cutblock Rule 10** – Rule 10 cutblocks had a polygon present in the spatial cutblock coverage that was not assigned a valid harvest year. The landbase calls were assigned by ARIS, if there was no landbase assignment in ARIS, AVI was used, and as a last resort the HHR was used. The BCG was assigned by ARIS, however if no ARIS BCG call was present, AVI was used, and as a last resort the regeneration study was used.

Crown Closure - If there was a valid ARIS BCG the cutblock is assumed to be fully stocked ("C" crown closure - except on grazing dispositions see below). Otherwise, crown closure calls were assigned by the AVI story of primary management (SoPM). If both these options are exhausted

then cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Cutblock Rule 11** – Rule 11 cutblocks had a polygon present in the spatial cutblock coverage but there was no valid ARIS opening number associated. Therefore, the landbase calls were assigned by AVI forest cover group, otherwise HHR was used. The BCG was assigned by the AVI forest cover group, otherwise as a last resort the regeneration study was used.

Crown Closure - Crown closure calls were assigned by the AVI story of primary management (SoPM). If there was no valid AVI forest cover group the cutblocks were assigned a *Low Density Modifier* and assumed to have a crown closure of "A".

**Grazing Disposition Exception for Crown Closure** – It has been suggested that cutblocks regenerating on grazing dispositions (within the Edson FMA) are less likely to be fully stocked (see Timberline Regeneration report in the appendix tables 6-14, 6-15, and 6-16 for supporting evidence). Therefore, as per the exceptions in the cutblock rules described above coniferous cutblocks located on grazing dispositions will be assigned to "B" crown closure 50% of the time and deciduous cutblocks located on grazing dispositions will be assigned to "B" crown closure 40% of the time.

| Harvest | Landbase   | Broad Cover Group | Area (ha) |
|---------|------------|-------------------|-----------|
| Rule    | Assignment | Assignment        |           |
| R01     | NA         | NA                | 0         |
| R02     | AVI_O      | AVI_O             | 230       |
| R03     | AVI_U      | AVI_U             | 414       |
| R04     | NA         | NA                | 0         |
| R05     | ARIS       | ARIS              | 13,119    |
| R05     | AVI_O      | AVI_O             | 1,940     |
| R05     | AVI_U      | AVI_U             | 1,018     |
| R05     | HHRAT      | 70_30             | 31        |
| R06     | ARIS       | ARIS              | 1,452     |
| R07     | ARIS       | LMU_C             | 12,907    |
| R08     | ARIS       | LMU_A             | 1,790     |
| R08     | ARIS       | LMU_C             | 3,258     |
| R09     | ARIS       | LMU_A             | 4,276     |
| R09     | ARIS       | LMU_C             | 8,836     |
| R09     | CONIF      | LMU_C             | 21        |
| R11     | AVI_O      | AVI_O             | 3,689     |
| R11     | AVI_U      | AVI_U             | 1,413     |

Table 2-4 Harvest rules applied to the to the FMA by area

| Harvest | Landbase   | Broad Cover Group | Area (ha) |
|---------|------------|-------------------|-----------|
| Rule    | Assignment | Assignment        |           |
| R11     | HHRAT      | LMU_A             | 335       |

ARIS – ARIS record, AVI\_O – AVI overstory, AVI\_U – AVI understory, CONIF – assumed conferous, HHRAT – historical harvesting ratio, LMU\_C – Regeneration study assumed to be fully stocked ("C" crown closure), LMU\_A – Regeneration study assumed to have low density ("A" crown closure), 70\_30 – 70/30 Mixed stand (Landbase assignment determines the lead species type)

| Table 2-5. Edson FMA historical cutblock regeneration study stocking percentage (from |
|---------------------------------------------------------------------------------------|
| Timberline 2000 see Appendix) by LMU converted to AVI stand stocking percentage       |

| а            | b   | с                          | d          | e             | f                                | g           |
|--------------|-----|----------------------------|------------|---------------|----------------------------------|-------------|
|              |     | Median Stocking Percentage |            | ng Percentage | Stocking Percentage Converted to |             |
|              |     |                            |            |               | AVI Stand Composition Percentage |             |
| Landbase     | LMU | Ν                          | Coniferous | Deciduous     | Coniferous                       | Deciduous   |
|              |     |                            |            |               | Composition                      | Composition |
| Deciduous    | BM  | 19                         | 0%         | 85%           | 0%                               | 100%        |
| (based on    | CC  | 10                         | 50%        | 90%           | 40%                              | 60%         |
| table 3.2 in | CY  | 20                         | 27%        | 93%           | 20%                              | 80%         |
| Timberline   | EU  | 35                         | 27%        | 93%           | 20%                              | 80%         |
| report see   | MC  | 9                          | 50%        | 100%          | 30%                              | 70%         |
| appendix)    | WL  | 15                         | 22%        | 100%          | 20%                              | 80%         |
| Coniferous   | BM  | 11                         | 69%        | 81%           | 50%                              | 50%         |
| (based on    | CC  | 4                          | 87%        | 85%           | 50%                              | 50%         |
| table 3.3 in | CY  | 27                         | 87%        | 87%           | 50%                              | 50%         |
| Timberline   | EU  | 25                         | 87%        | 68%           | 60%                              | 40%         |
| report see   | MC  | 23                         | 92%        | 61%           | 60%                              | 40%         |
| appendix)    | WL  | 12                         | 84%        | 57%           | 60%                              | 40%         |

a, b, c, d, e - obtained from Timberline 2000 Edson regenerated cutblock report.

f = d/(d+e) - rounded to the nearest 10% class

g = e/(d+e) – rounded to the nearest 10% class

#### **Regenerating Stand Age Order**

There were four possible methods used to assign cutblock age:

- 1. If the cutblock had a valid cut year: Cutblock age = 2004 ARIS cut year
- 2. If the stand BCG was defined by the AVI SoPM then: Cutblock age= 2004 AVI origin
- 3. Cutblock age=2004 AVI "CC" modifier year
- 4. If overstory was not remnant then: Cutblock age= 2004-AVI Overstory Origin
- 5. If understory was not remnant then: Cutblock age= 2004-AVI Understory Origin
- 6. Cutblock age= 1

The above list is the order of precedence for assigning the ages so for example a regenerating stand is only assumed to be 1 year old if no ARIS cut year or AVI modifier year are available.

#### Horizontal stands cutblocks

There were some cases where a spatial cutblock polygon was located in an AVI horizontal stand. In the majority of cases this was due to slivers being formed when the cutblock coverage was intersected with the AVI coverage. However, for clean processing these cutblock areas cannot just be ignored. Therefore, just as with non-horizontal stands the entirety of each horizontal stand cutblock was assumed part of the cutblock. The assignment of regeneration landbase and stand composition to horizontal stands follows the same procedure as outlined in (Figure 2-1).

#### A note about ARIS AOP area versus net landbase area

The cutblocks are located on the landbase through GIS processing thus the area indicated by the spatial coverage must be used and <u>not</u> the ARIS AOP area. The main reason for this is that the landbase netdown is based on a spatial coverage and ARIS is not. Therefore, while the statistic may be of some interest, there is no reason to expect ARIS areas to match the overlaid spatial cutblock coverage.

#### 2.8.5 Planned Blocks

The Edson FMA has approximately 10 years of future planned blocks. Both Weyerhaeuser and the W6 quota holders provided planned blocks which were included as a spatial coverage within the net landbase (Weyerhaeuser = [PLAN\_BLK] : Quota=[PLAN\_QUOT]). Weyerhaeuser planned block coverage had an operator assigned [PB\_OP] and in a few instances had an opening number that could be linked to ARIS [PB\_NUM]. Quota holder blocks did not any opening numbers provide but did have an operator assigned [PQ\_OP]. During the TSA modeling component (component #3) planned blocks will be pre-blocked to be harvested in the first 10 years of harvest sequence. Please note as agreed to by Weyerhaeuser and Alberta SRD during the review of the November 24, 2004 draft submission additional planned blocks were included in the harvesting sequence (discussed in detail in section 5.5).

## 2.9 Operational Parameters

Issues dealing with forestry operations were also included in the netdown. This category discusses how steep/sensitive slopes, watercourse buffers, and non-merchantable stands were addressed during the netdown.

#### 2.9.1 Steep/sensitive slopes and isolated stands

In the Edson FMA, Weyerhaeuser planning staff (N. Volk and P. Scott) reviewed the occurrence of steep (45%) slopes and found that they rarely occur. Therefore, this issue was not included within the landbase netdown but rather will be addressed during the operational planning stage. All merchantable stands within the FMA are accessible therefore no stands were deemed isolated.

#### 2.9.2 Watercourse buffers

An objective during harvesting activities is to protect water quality and water channel integrity. One method that has been shown to assist in achieving this goal is to leave riparian buffers. Ideally, the required buffer widths should be assessed separately for each watercourse by considering a variety of factors including: the potential for erosion (including mass slumping), the need to filter sediments, and the importance as fish and wildlife habitat. However, for the Edson FMA this level of detail was not available. Therefore, for the purposes of this project the standard procedure of assigning an average buffer width based on the watercourse category assigned was used.

Some larger water-bodies are captured directly in AVI but the most accurate tallying of watercourses requires overlaying a separate layer that specifically captures waterways. While the names differ the categories used for watercourse classification are similar as those used in the *Alberta: timber harvest planning and operating ground rules* (1994). Within the Edson FMA some lakes have been identified as critical trumpeter swan habitat (by Weyerhaeuser and Provincial Government officials), in those situations a buffer width of 200m was employed.

| Watercourse                                               | Description                     | <b>Buffer Width*</b> | Data File Field |
|-----------------------------------------------------------|---------------------------------|----------------------|-----------------|
| Classification                                            |                                 | Applied (m)          | Name            |
| (as defined by Alberta<br>Environmental Protection, 1994) |                                 |                      |                 |
| Large Permanent                                           | Major – Slope issues warranting | 100                  | [STRM100]       |
|                                                           | larges buffers                  |                      |                 |
| Large Permanent                                           | Major                           | 60                   | [STRM60]        |
| Small Permanent                                           | Perennial                       | 30                   | [STRM30]        |
| Intermittent                                              | Intermittent                    | 0                    |                 |
| Unknown                                                   | Indefinite, No designation      | 0                    |                 |
| Lakes                                                     | Greater than 4 ha               | 100                  | [LAKE]          |
|                                                           | Critical trumpeter swan habitat | 200                  | [LAKE200]       |

Table 2-6. Summary of watercourse classification and buffer width applied

\* - Buffer Widths are applied to both sides of each line representing a watercourse.

#### 2.9.2.1 Adding 100m buffers [STRM100]

In the file *FMA\_2004*, a buffer of 100m *[STRM100]* was applied to some river locations. The original intention was to ignore this data and use the 60m buffer rule to be consistent with the operating ground rules. However, upon consideration by Weyerhaeuser's operational foresters it was determined that in most cases due to deviations in the accuracy of the spatial steam data and the width of the stream bank it was advisable to use the 100m buffer length as a deletion when it was provided.

#### 2.9.3 Subjective deletions and ecosite deletions

Subjective and ecosite deletions are used to identify non-merchantable stands (regardless of age the stand will never be harvested). Subjective deletions are typically based on forest cover type characteristics and ecosite deletions focus on the site type the stand is located on. In the Edson FMA black spruce and larch tree species are indicative of stands that are non-merchantable and/or sites where successfully regeneration may be difficult. The following subjective deletion rules were applied to the landbase:

- Subjective Deletion 1 Story of Primary Management has greater than and equal to 80% black spruce composition.
- 2. Subjective Deletion 2 Story of Primary Management has greater than and equal to 10% larch composition.

3. Ecosite Deletion - Deciduous landbase stand on a "Poor" site.

Subjective/Ecosite deletions were not applied when a cutblock or planned block was present. The reason being if a stand has been harvested or planned it is obviously merchantable.

#### 2.10 Defining the forested landscape

This section outlines the rules used to define the Weyerhaeuser Edson FMA landscape.

## 2.10.1 Landbase, broad cover group, story of primary management, and stand age assignment

Each stand within the FMA was assigned to a landbase category (Table 2-9). For this report the term *landbase* [*STD\_LAND*] is defined by the volume type (coniferous or deciduous) that a stand is primarily managed for. Landbase is normally assigned based on the broad cover group (BCG) of the story of primary management (defined as the story which a stand is managed for either overstory [*O\_LAND*] or understory. [*U\_LAND*]) (Table 2-10). However, sometimes (mostly for cutblocks) landbase can be defined either legally or by silvicultural intent of the operator. For the Edson FMA landbase is an important distinct because there are several operators with differing jurisdictions over coniferous and deciduous volumes.

BCG **[STD\_COV]** is a description of stand composition which is usually assigned based on the story of primary management (SoPM). There are four BCG categories (C – Pure Coniferous, CD – Coniferous dominated mixedwood, DC – Deciduous dominated mixedwood, and D – Pure Deciduous). Based on the composition of coniferous species versus deciduous species (Table 2-8) the BCG of each stand overstory **[OS\_COV]** and understory **[US\_COV]** was assigned (when possible) (Table 2-8). The overall stand assignment was then designated by the SoPM.

The rules for determining SoPM **[STORY]** differ by FMU (Table 2-10). For E1, E2, and W5 the SoPM of all non-cutblock and non-horizontal polygons were designated on the overstory except when a polygon had a pure deciduous "A" crown closure overstory (**[OS\_COV]** = "DX" and **[OS\_CC]** = "A") with an understory having a valid forest cover group with a crown closure greater than "A". Under these circumstances the stand BCG, and age were based on the

understory, but the **landbase was still defined by the overstory**. Therefore, a stand can be designated to one landbase category while having a BCG that belongs to another category. In W6 the rules are somewhat different. The SoPM of all non-cutblock and non-horizontal polygons were designated based on the overstory except when a polygon had a pure deciduous (*[OS\_COV]* = "DX") overstory with a coniferous/mixedwood understory (*[US\_COV]* = "CX", "CD", "DC") forest cover group and a "B", "C", or "D" crown closure (*[U\_CC]*>"A"). Under these circumstances the **stand BCG, age, and landbase were based on the understory**.

Stand age *[STD\_AGE]* for non-cutblock stands = 2004-origin of SoPM. In the timber supply analysis will use 5 year periods so each stand will be placed into a 5 year category (Stand age class =Rounded up to nearest integer(Stand age/5)).

Cutblock assignment rules (section 2.8.4) can overrule the designations for landbase, BCG, and stand age described above.

| <b>Coniferous Species</b>     | Deciduous Species            |
|-------------------------------|------------------------------|
| Black spruce (SB)             | Trembling aspen (AW)         |
| Engelmann spruce (SE)         | White birch (BW)             |
| White spruce (SW)             | Balsalm poplar (PB)          |
| Lodgepole pine (PL)           | Non-descript deciduous (DE)* |
| Jack pine (PJ)                |                              |
| Pine – generic (P)            |                              |
| Balsalm fir (FB)              |                              |
| Alpine fir (FA)               |                              |
| Douglas fir (FD)              |                              |
| Larch (LT)                    |                              |
| Non-descript coniferous (CO)* |                              |

Table 2-7 Species groupings used in defining broad cover groups

\* - Only used for cutblocks when no species was present but a landbase designation is assigned.

| Broad cover group | Definition                 |
|-------------------|----------------------------|
| С                 | % coniferous $\geq 80$     |
| CD                | % coniferous > % deciduous |
|                   | and                        |
|                   | % coniferous < 80          |
| CD                | % coniferous = % deciduous |
|                   | and                        |

Table 2-8 Decision rules for broad cover group

|    | leading species = coniferous species |
|----|--------------------------------------|
| DC | % deciduous = % coniferous           |
|    | and                                  |
|    | leading species = deciduous species  |
| DC | % deciduous > % coniferous           |
|    | and                                  |
|    | % deciduous < 80                     |
| D  | % Deciduous $\geq 80$                |

## Table 2-9 Landbase designation\* rules by FMU

|            | Forest Management Unit |               |                |                                                                                                                           |  |
|------------|------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Landbase   | E1                     | E2            | W5             | W6                                                                                                                        |  |
| Coniferous | CX                     | CX            | CX<br>CD<br>DC | CX<br>CD<br>DC<br>D overstorys with CX, CD, or DC<br>understorys having B, C, or D crown<br>closure                       |  |
| Deciduous  | CD<br>DC<br>D          | CD<br>DC<br>D | D              | <b>D</b> having either no understory<br>or<br>an <b>A</b> crown closure <b>C</b> , <b>CD</b> , or <b>DC</b><br>understory |  |

\* - Note: ARIS records can overrule these landbase designations

#### Table 2-10 Description rules for story of primary management in non-cutblock and nonhorizontal polygons

| Story of<br>Primary | Forest Management Unit                                                                                                                                                            |                                                                                                                                                                           |  |  |  |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Management          |                                                                                                                                                                                   |                                                                                                                                                                           |  |  |  |  |
|                     | E1 , E2, W5, and W6                                                                                                                                                               | Additional Rule for W6 only                                                                                                                                               |  |  |  |  |
| Overstory<br>(OS)   | The landbase of all polygons are defined by the OS.                                                                                                                               | The landbase, BCG, and age of all polygons are defined by the OS, except (see understory):                                                                                |  |  |  |  |
|                     | The BCG, and age of all polygons are to be defined on the OS, except (see understory):                                                                                            |                                                                                                                                                                           |  |  |  |  |
| Understory<br>(US)  | The BCG, and age of polygons are defined by<br>the US when all the following are true:<br>1. OS is "A" density and pure deciduous<br>( <b>0_CC</b> ="A" and <b>OS_COV</b> = "DX") | The landbase, BCG, and age of polygons are<br>defined by the US when all the following are<br>true:<br>1. OS is pure deciduous ( <b>OS_COV</b> = " <b>DV</b> ")           |  |  |  |  |
|                     | <ul> <li>US crown closure is greater than "A" (U_CC&gt;"A")</li> </ul>                                                                                                            | <ol> <li>US has a valid forest C, CD, or<br/>DC, cover group (US_COV="CX"<br/>or "CD" or "DC")</li> <li>US crown closure is greater than<br/>"A" (U_CC&gt;"A")</li> </ol> |  |  |  |  |

#### **Horizontal Stands**

Horizontal stands are defined in the *Alberta Vegetation Inventory Standards Manual* as "Stands...composed of numerous homogeneous stands within other distinctly different homogeneous stands, but both or each individual stand are too small to delineate...". Therefore, horizontal stands are processed somewhat differently than non-horizontal cover groups. Although the different parts of a horizontal stand are located in the overstory and understory fields they are not to be understood as overstory and understory but rather separate "mini-stands" within the polygon. The following rules for delineating horizontal stands were used:

# Horizontal stands that had a valid forest cover group for both the overstory and understory fields:

- a. if the overstory proportion of the stand was 50% or greater, the overstory was defined as the SoPM *[STORY]*.
- b. if the understory proportion of the stand was greater than 50%, the understory was defined as the SoPM.

#### Stands that had only one valid forest cover group:

- a. if the overstory was the only valid forest cover group then the SoPM was defined as the overstory.
- b. if the understory was the only valid forest cover group then the SoPM was defined as the understory.

All horizontal stands were expected to be managed only for the area assigned to the SoPM (except for cutblocks). Therefore, a 10 ha horizontal stand that is managed on the overstory call that is assigned a horizontal percentage of 7 (which means 70%) would contribute 7 ha to the landbase area.

#### 2.10.2 Ecosite Stratification

Site quality was a stratum variable used in projecting future yields.

Each polygon was assigned to a site quality category (good, medium, or poor) based on the SiteLogix ecosite call was assigned to a site quality category of good, medium or poor *[ST\_SITE]* (Table 2-11- see component report #1 for a detailed description of this process).

| Stand Type   | NSR | Site quality | SiteLogix ecosite call             |
|--------------|-----|--------------|------------------------------------|
| Coniferous   | LF  | Good         | E, F                               |
|              |     | Medium       | C, D, I,                           |
|              |     | Poor         | A, B, G, H, J, K, L, M, N          |
|              | UF  | Good         | D, E, F                            |
|              |     | Medium       | С, Н, Ј                            |
|              |     | Poor         | A, B, G, I, K, L, M, N             |
| Deciduous LF |     | Good         | E, F, I                            |
|              |     | Medium       | -                                  |
|              |     | Poor*        | A, B, C, D, G, H, J, K, L, M, N    |
|              | UF  | Good         | E, F                               |
|              |     | Medium       | -                                  |
|              |     | Poor         | A, B, C, D, G, H, I, J, K, L, M, N |

Table 2-11. Summary of assumed site quality for coniferous and deciduous stands by ecosite call

\*All "poor" site deciduous landbase stands were deemed non-merchantable and removed from the net landbase.

- "X", "Y", "Z" ecosites are not forest ecosites. Therefore all polygons located on these ecosites will be deleted.

Traditionally TPR has been used for defining stands into the above categories. While there may be merit in using TPR it was viewed as a blunt method of determining ecosite. Therefore, for this report a process of using Ecosite along with subjective deletions replaced TPR.

#### 2.10.3 Yield curve assignment

Yield curves were produced for the Edson FMA (see component report #1). Yield curves were assigned based on the stratification used to develop the yield relationships. In total 158 yield curves were applied to the landbase (108 for coniferous dominated stands + 50 for deciduous dominated stands).

Yield Curve Assignment **[YIELDNUM]** was based on BCG **[STD\_COV]**, site quality **[ST\_SITE]**, crown closure **[STD\_CC]** and percentage coniferous composition **[STDPER\_CON]** (see appendix 5.2 – for an exhaustive list).

### 2.10.4 Seral stages and over-mature forests within the FMA

Tracking the distribution and prevalence of over-mature forest types across the landbase is one of the strategies that will be employed (during the TSA modeling) in an attempt to ensure that ecological values are met (others include removing riparian zones from the harvestable landbase and delaying harvesting activities in some locations). A total of six seral stages were identified *[SERAL]*.

For coniferous broad cover groups (*STD\_COV='CX' or 'CD'*):

| Early <b>[SERAL=1]</b>     | 0 to 10 years    |
|----------------------------|------------------|
| Immature [SERAL=2]         | 11 to 40 years   |
| Mature [SERAL=3]           | 41 to 90 years   |
| Late <b>[SERAL=4]</b>      | 91 to 120 years  |
| Very Late <i>[SERAL=5]</i> | 121 to 170 years |
| Over-mature [SERAL=6]      | 170+ years       |

For deciduous broad cover groups (*STD COV='DX' or 'DC'*):

| 0 to 10 years    |
|------------------|
| 11 to 40 years   |
| 41 to 70 years   |
| 71 to 110 years  |
| 111 to 170 years |
| 170+ years       |
|                  |

For both coniferous and deciduous broad cover groups "over-mature" was defined as the area in the late, very late, and over-mature seral stages. For coniferous BCGs age 90 was selected as the dividing line between mature and over-mature stages because the coniferous rotation age will be 90 years for the future TSA model (based on coniferous max MAI). Likewise, the deciduous rotation age of 70 years (based on deciduous max MAI) was the basis for the over-mature stages.

The estimated area of over-mature forest on the harvestable across the landscape will be tracked in the TSA model. All over-mature forest will be classified to one of following six over-mature forest cover groups *[OLDGROW]*:

- 1. Pure deciduous [OLDGROW='OLD\_DX']
- 2. Deciduous dominated mixedwood [OLDGROW='OLD\_DC']
- 3. Coniferous dominated mixedwood [OLDGROW='OLD\_CD']
- 4. Pure coniferous pine dominated pine species composition greater than and equal to 80% [OLDGROW='OLD\_PL']
- 5. Pure coniferous white spruce dominated white spruce composition greater than and equal to 80% [OLDGROW='OLD\_SW']
- 6. Pure coniferous white spruce/pine mix the first two cover type species are white spruce and pine (or pine and white spruce) with neither species composition is individually greater than and equal to 80% [OLDGROW='OLD\_PS']

Please note all stands will be evaluated to an "OLDGROW" category type regardless of stand age. The reason being, this is not a static category rather it changes over the planning horizon. Therefore, the *[OLDGROW]* and *[SERAL]* fields will have to be queried together to total the "over-mature" area in any one *[OLDGROW]* categories.

## 2.10.5 The deletion hierarchy

A given polygon may have several deletion types assigned to it. Therefore, a deletion hierarchy was applied from harder to softer deletions (the "harder" a deletion the more confident one can be in removing it from the net landbase). This method allows for a quick understanding of how much forested land is ultimately deleted for a given purpose.

The following is a listing of the deletion hierarchy (and a description of how they were applied) from harder to softer deletions *[DEL]*:

- 1. Anthropogenic non-vegetated land [DEL="AN"]
  - applied to entire landscape (including cutblocks)
- 2. Natural non-vegetated land [DEL="NV"]
  - applied to entire landscape (including cutblocks)
- Anthropogenic vegetated land [DEL="AV"]

   not applied to polygons identified within the Weyerhaeuser or Quota holder coverage as cutblocks ([CUTBLK=1 or QUOTA\_BLK=1]). It was assumed AVI was mistyped as a non-cutblock.
- 4. Non-forested vegetated land *[DEL="NF"]* not applied to polygons identified within the Weyerhaeuser or Quota holder coverage as cutblocks (*[CUTBLK=1 or QUOTA\_BLK=1]*). It was assumed AVI was mistyped as a non-cutblock.
- 5. Parks[DEL="SP"]

- applied to entire landscape (including cutblocks)

- 6. Prime protection areas (as defined by ESIP) [DEL="PR"]
  - applied to entire landscape (including cutblocks)
- 7. Government PSPs [DEL="PS"]
- applied to entire landscape (including cutblocks)
- 8. Disposition reservations [DEL="DR"]
  - applied to entire landscape (including cutblocks)
- 9. Legal landbase disposition [DEL="LP"]
  - applied to entire landscape (including cutblocks)
- 10. Linear dispositions [DEL="LU"]
  - applied to entire landscape (including cutblocks)
- 11. Non-disposition Cutlines [DEL="CT"]
  - not applied to ANY polygons identified as cutblocks (*[CUTIDENT=1]*) which ARIS indicates were harvested in 2000 and after (*[ARIS\_yc>=2000]*). As of 2000 it has been Weyerhaeuser Company policy to regenerate cutline areas within cutblocks.
- 12. Stream and lake buffers [DEL="LK" or "LS" or "ST"]
- not applied to polygons identified within the Weyerhaeuser or Quota holder coverage as cutblocks (*[CUTBLK=1 or QUOTA\_BLK=1]*). It was assumed that since harvesting and regeneration occurred in a given location in the past, the area would be available for harvest.
- 13. Unidentified Opening [DEL="UI"]- applied only to potential cutblocks
- 14. Invalid ecosites [DEL="XX"](occurs when [ECOLET='W', 'Y', or 'Z'])
   not applied to ANY polygons identified as cutblocks ([CUTIDENT=1]), the reason being if an area has been harvested, it is obviously on a harvestable ecosites type (it is assumed to be a "poor" site).
- 15. Non-merchantable deciduous ecosites [DEL="EC"]
  - applied only to polygons assigned to the deciduous landbase with a deciduous dominated cover type which are located on a "poor site"
- 16. Larch composition is 10% or more of the SoPM [DEL="LR"]
  - not applied to cutblocks or planned cutblocks.
- 17. Black spruce composition makes up 80% or more of the SoPM [DEL="SB"] not applied to cutblocks or planned cutblocks.
- Deletions which do not fit into one of the above categories that were identified by operations foresters [DEL="OP"]
  - not applied to cutblocks or planned cutblocks.

#### 2.11 Summary of SAS output files

Upon completion of running the netdown SAS program there were several output files (Figure 2-2).

SAS final Output Files

• *FMA\_finassign* – Final SAS output file that assigns all polygons to their netdown allocation and maintains all fields used during the netdown process (including all AVI fields).

Summary Tables

- FMAcon\_decsum Summary of landbase (coniferous or deciduous) area by FMU.
- Marg sum Summary of marginal stand area by FMU.
- Yieldtab12 Summary of landbase area assigned to each yield curve by FMU.
- *FMAbcg\_sum* Summary of broad cover group area by landbase designation and FMU.
- *Netdels* Summary of deletion areas by FMU.
- *FMAhar\_rule* Area assigned to each of the harvest rules (Table 2-4) throughout the FMA.
- *Lbagedist* Age class distribution by landbase and FMU.

Woodstock Input File (see Appendix 5.5 for more detail)

- *FMA\_GIS* This file takes the output *FMA\_finassign* file and places it in a format that can be quickly incorporated into Woodstock.
- *WS\_cc* The proportion of the operable landbase by crown closure.
- *WS site* The proportion of the operable landbase by site class.
- *WS\_oldgrow* Summary of operable landbase by seral stage, with emphasis on older seral stages.



Figure 2-2 Summary of SAS netdown program output files

## 3 Final Results

Table 3-1 Final Proposed Netdown - deletion areas are based on the hierarchy (section 2.10.5) – each polygon is assigned to only one deletion type

|                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Forest Management Units Area (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FMU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMA<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FMA                |
| У                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E1F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E2F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W5F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W6F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % Total            |
| rested Area Reductions                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Anthropogenic Non-Vegetated                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.45%              |
| Naturally Non-Vegetated                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,929                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5,813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14%              |
| Anthropogenic Vegetated                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6,979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.37%              |
| Non-Forest Vegetated                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21,006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.12%              |
|                                                 | Sub-Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5,660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20,918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41,164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.08%              |
| ions and Other Area Removals                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Parks (Previous SP2000 nomination sites)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3,477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.70%              |
| Prime Protection Area (Defined by ESIP)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00%              |
| Permanent Sample Plots                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.11%              |
| Disposition Reservation                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14%              |
| Disposition Polygonal                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.51%              |
| Disposition Linear                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5,250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10,388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.04%              |
| Non-Disposition Cutlines                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.76%              |
|                                                 | Sub-Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4,834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13,461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31,893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.26%              |
| ourse buffers / Operational Removals            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Stream buffers (30m, 60m, or 100m)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7,799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.53%              |
| Critical Swan Habitat                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07%              |
| Lake buffers                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 311                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 617                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1,562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.31%              |
| <b>Operations Foresters Identifed Deletions</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01%              |
| -                                               | Sub-Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3,006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>93</b> 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9,805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.92%              |
| ve and Ecosite Deletions                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| Unidentified Opening                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00%              |
| Invalid Ecosites (W,Y,Z)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00%              |
| Deciduous Poor Site Deletion                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17%              |
| Larch Subjective Deletion                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25,744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17,041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12,595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 52,354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107,734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.15%             |
| Black Spruce Subjective Deletion                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13,643                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3,609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12,729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37,333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.33%              |
| Non-managed portions of horizontal              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| stands                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09%              |
|                                                 | Sub-Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39,835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24,780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65,501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 146,396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.74%             |
| eletion Area                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53,170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46,105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26,585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103,398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 229,258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.01%             |
| Timber Harvestin                                | g Landbase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| us                                              | Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6,394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30,832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16,578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37,026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90,830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.83%             |
| onl                                             | Deciduous / Coniferous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8,577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16,329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.21%              |
| eci                                             | Coniferous / Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11,796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.32%              |
| Q                                               | Coniferous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 299                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14%              |
|                                                 | Sub-Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17,063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46,303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17,350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38,941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119,657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.49%             |
| str                                             | Coniforous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17 544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112 466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22 080/            |
| fero                                            | Coniferens / Desiduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 3 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.00 /0<br>6 169/ |
| finc                                            | Deciduous / Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5,195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,/90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17,382                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32,918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.40%<br>2.020/    |
| Ŭ                                               | Deciduous / Confierous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13,074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.90%              |
|                                                 | Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00%              |
|                                                 | Sub-Total =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37,106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20,890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15,328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87,134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 160,458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.50%             |
| arvestable Area                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 54,169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 67,193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32,678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 126,075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 280,115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.99%             |
| Fotol                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 113,298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59,263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 229,473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 509,373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100.00%            |
|                                                 | rested Area Reductions<br>Anthropogenic Non-Vegetated<br>Naturally Non-Vegetated<br>Anthropogenic Vegetated<br>Non-Forest Vegetated<br>ions and Other Area Removals<br>Parks (Previous SP2000 nomination sites)<br>Prime Protection Area (Defined by ESIP)<br>Permanent Sample Plots<br>Disposition Reservation<br>Disposition Polygonal<br>Disposition Linear<br>Non-Disposition Cutlines<br>ourse buffers / Operational Removals<br>Stream buffers (30m, 60m, or 100m)<br>Critical Swan Habitat<br>Lake buffers<br>Operations Foresters Identifed Deletions<br>ve and Ecosite Deletions<br>Unidentified Opening<br>Invalid Ecosites (W,Y,Z)<br>Deciduous Poor Site Deletion<br>Larch Subjective Deletion<br>Black Spruce Subjective Deletion<br>Non-managed portions of horizontal<br>stands<br>eletion Area<br>Timber Harvestin<br>Noggo<br>Operations Foresters | rested Area Reductions Anthropogenic Non-Vegetated Naturally Non-Vegetated Anthropogenic Vegetated Non-Forest Vegetated Non-Forest Vegetated Non-Forest Vegetated Sub-Total ions and Other Area Removals Parks (Previous SP2000 nomination sites) Prime Protection Area (Defined by ESIP) Permanent Sample Plots Disposition Reservation Disposition Reservation Disposition Cutlines Sub-Total ourse buffers / Operational Removals Stream buffers (30m, 60m, or 100m) Critical Swan Habitat Lake buffers Operations Foresters Identifed Deletions Critical Swan Habitat Lake buffers Operations Foresters Identifed Deletions Unidentified Opening Invalid Ecosites (W,Y,Z) Deciduous Poor Site Deletion Black Spruce Subjective Deletion Black Spruce Subjective Deletion Stands Sub-Total Critical Subjective Deletion Black Spruce Subjective Deletion Black Spruce Subjective Deletion Sub-Total Sub-Total Critical Sub-Total Critical Subjective Deletion Black Spruce Subjective Deletion Black Spruce Subjective Deletion Black Spruce Subjective Deletion Black Spruce Subjective Deletion Sub-Total Critical Sub-Total Critical Sub-Total Critical Sub-Total Critical Sub-Total Sub-Total Critical Sub-To | FRUU         y       EIF         rested Area Reductions       1,540         Anthropogenic Non-Vegetated       789         Anthropogenic Vegetated       1,313         Non-Forest Vegetated       1,853         Sub-Total       5,495         ions and Other Area Removals       65         Parks (Previous SP2000 nomination sites)       65         Permanent Sample Plots       89         Disposition Reservation       95         Disposition Reservation       95         Disposition Cutlines       2,747         Non-Disposition Cutlines       2,747         Non-Disposition Cutlines       2,747         Non-Disposition Cutlines       0         Stream buffers / Operational Removals       3111         Operations Foresters Identifed Deletions       0         Unidentified Opening       0         Invalid Ecosite (W,Y,Z)       0         Deciduous Poor Site Deletion       2,574         Black Sprace Subjective Deletion       2,574         Black Sprace Subjective Deletion       2,574         Black Sprace Subjective Deletion       2,537         Coniferous / Deciduous / Coniferous       5,131         Orereduous / Coniferous       5,131 | Forest Manage           FAUL         Forest Manage           FAUL         FMU         FMU           v         EIF         E2F           cstcd Area Reductions         1,540         2,627           Maturally Non-Vegetated         1,313         1,092           Non-Forest Vegetated         1,313         1,092           Non-Forest Vegetated         1,853         3,635           Parks (Previous SP2000 nomination sites)         65         3,477           Prime Protection Area (Defined by ESIP)         0         0         0           Permanent Sample Plots         89         81         1935           Disposition Reservation         95         2933         1935           Disposition Cutlines         2,747         3,454           Sub-Total         3,61         650           Ourse buffers / Operational Removals         311         617           Stream buffers (30m, 60m, or 100m)         2,695         1,339           Critical Swan Habitat         0         345           Lake buffers         0         0         2           Unidentified Opening         0         0         0           Iarch Subjective Deletion         89         356 | Forest Management Units           FRU         FRU         FRU         FRU         FRU           y         EIF         E2F         WSF           ested Area Reductions         1,540         2,627         709           Nathropogenic Non-Vegetated         1,313         1,022         1,102         3,133           Anthropogenic Vegetated         1,313         1,625         3,491         5,660           Non-Forst Vegetated         5,495         9,091         5,660         0         0         0           parks (Previous SP2000 nomination sites)         65         3,477         0         0         0         0         0           Permanet Sample Plots         89         81         744         0         361         650         491         0         0         0         0         0         0         0         0         361         650         491         0         345         0         345         0         345         0         345         0         345         0         345         0         36         59         0         36         59         0         36         59         16,33         6,59         1,310         6,57 | Forest Management Unix Area (ha)           FMU         FMU         FMU         FMU         FMU         FMU         FMU           seted Area Reductions         EIF         E2F         WSF         W6F           Anthropogenic Non-Vegetated         1,540         2,627         7709         2,490           Naturally Non-Vegetated         1,313         1,092         1,102         3,472           Non-Forest Vegetated         1,313         1,092         1,02         3,472           Non-Forest Vegetated         5,495         9,097         5,660         20,918           Fine Protection Area (Defined by ESIP)         0         0         0         0           Parks (Previous SP2000 nomination sites)         5         293         10         333           Disposition Reservation         95         293         10         335           Disposition Polygonal         361         650         491         1,072           Disposition Rolegonal         2,647         3,454         1,407         6,467           Sub-Total         4,834         9,890         3,708         13,461           Ourse buffers / Operational Removals         Sub-Total         3,06         22         52 |                    |



Figure 3-1 FMU E1F Age class distribution by operable coniferous and deciduous landbase



Figure 3-2 FMU E2F Age class distribution by operable coniferous and deciduous landbase


Figure 3-3 FMU W5F Age class distribution by operable coniferous and deciduous landbase



Figure 3-4 FMU W6F Age class distribution by operable coniferous and deciduous landbase

# 4 References

Alberta Environmental Protection, Resource Data Division, Data Acquisition Branch. 1991. Alberta Vegetation inventory standard manual (version 2.1).

# 5 Appendix

### 5.1 Data Library

 Table 5-1 Data library (provided by Silvacom Ltd.) - (Field No. field relates directly to FMA\_2004 table only)

| Field | Field     | Field     | Field | No. of   | Field Description                       |
|-------|-----------|-----------|-------|----------|-----------------------------------------|
| No.   | Name      | Type      | Width | Decimals | Field Description                       |
| 1.    | AREA      | Numeric   | 20    | 5        | Area in Square Metres                   |
| 2.    | PERIMETER | Numeric   | 20    | 5        | Perimeter of Polygon in Metres          |
| 3.    | GIS LINK  | Numeric   | 20    | 0        | Unique Spatial Identifier               |
|       | _         |           |       |          | FMA Identifier:                         |
|       |           |           | 1.0   | 0        | EDSON;                                  |
| 4.    | FMA       | Character | 10    | 0        | PERMIT;                                 |
|       |           |           |       |          | QUOTA.                                  |
| 5.    | TOWNSHIP  | Character | 8     |          | Township Range Meridian Label           |
|       |           |           |       |          | Forest Management Unit Code:            |
|       |           |           |       |          | E1;                                     |
|       |           |           |       |          | E2;                                     |
|       |           |           |       |          | E3;                                     |
|       |           |           |       |          | E4;                                     |
|       |           |           |       |          | E5;                                     |
|       |           |           |       |          | E6;                                     |
|       |           |           |       |          | E7;                                     |
|       |           |           |       |          | EO1;                                    |
|       |           |           |       |          | R1;                                     |
|       |           |           |       |          | R13;                                    |
| 6     | FMU       | Character | 8     |          | R3;                                     |
| 0.    |           |           |       |          | R4;                                     |
|       |           |           |       |          | RO1;                                    |
|       |           |           |       |          | W1;                                     |
|       |           |           |       |          | W10;                                    |
|       |           |           |       |          | W13;                                    |
|       |           |           |       |          | W2;                                     |
|       |           |           |       |          | W4;                                     |
|       |           |           |       |          | W5;                                     |
|       |           |           |       |          | W6;                                     |
|       |           |           |       |          | W8;                                     |
|       |           |           |       |          | w01;<br>w02                             |
|       |           | <u> </u>  |       |          | WO2.<br>Landscane Management Unit Name: |
|       |           |           |       |          | Reaver Meadows:                         |
|       |           |           |       |          | Carrot Creek                            |
|       |           |           |       |          | Cynthia.                                |
| 7.    | LMU       | Character | 25    |          | Edson:                                  |
|       |           |           |       |          | Moose Creek:                            |
|       |           |           |       |          | Permit;                                 |
|       |           |           |       |          | W13 (Quota);                            |
|       |           |           |       |          | Wolf Lake.                              |
|       |           | T         |       |          | Harvest Design Areas:                   |
|       |           |           |       |          | Big Rock;                               |
|       |           |           |       |          | Bigoray;                                |
| 8.    | WORKAREA  | Character | 20    |          | Brazeau Tower;                          |
|       |           |           |       |          | Broken Arm;                             |
|       |           |           |       |          | Broken Cabin;                           |
|       |           |           |       |          | Chip Lake;                              |

| Field | Field   | Field     | Field | No. of   | Field Description                                                 |
|-------|---------|-----------|-------|----------|-------------------------------------------------------------------|
| No.   | Name    | Туре      | Width | Decimals | Field Description                                                 |
|       |         |           |       |          | Coyote Creek;                                                     |
|       |         |           |       |          | Cricks Creek;                                                     |
|       |         |           |       |          | Deer Hill;<br>DTLW050008:                                         |
|       |         |           |       |          | DTLW050010;                                                       |
|       |         |           |       |          | DTLW130001;                                                       |
|       |         |           |       |          | DTLW130002;                                                       |
|       |         |           |       |          | East Bank;<br>Fasyford                                            |
|       |         |           |       |          | Erith:                                                            |
|       |         |           |       |          | Eta Lake;                                                         |
|       |         |           |       |          | Fickle Lake;                                                      |
|       |         |           |       |          | Granda;<br>Grand Trunk:                                           |
|       |         |           |       |          | Grande Prairie Trail;                                             |
|       |         |           |       |          | Hattonford;                                                       |
|       |         |           |       |          | Jack Knife;                                                       |
|       |         |           |       |          | Kathleen Lake DIP;<br>Key Hole:                                   |
|       |         |           |       |          | Lobstick;                                                         |
|       |         |           |       |          | Lodgepole;                                                        |
|       |         |           |       |          | Lodgepole DV;                                                     |
|       |         |           |       |          | Lost Elk Ridge;                                                   |
|       |         |           |       |          | MacKay,<br>McLeod Crossing                                        |
|       |         |           |       |          | Medicine Lodge;                                                   |
|       |         |           |       |          | Minnow Lake;                                                      |
|       |         |           |       |          | Nine Mile;                                                        |
|       |         |           |       |          | Nojack South;<br>North Brazeau                                    |
|       |         |           |       |          | North Dismal Creek;                                               |
|       |         |           |       |          | North Pembina;                                                    |
|       |         |           |       |          | North Rat Creek;                                                  |
|       |         |           |       |          | Obed Lake;<br>Oldman Creek:                                       |
|       |         |           |       |          | Paddy Creek:                                                      |
|       |         |           |       |          | Pembina;                                                          |
|       |         |           |       |          | Pioneer;                                                          |
|       |         |           |       |          | Poachers Creek;                                                   |
|       |         |           |       |          | Sang Lake:                                                        |
|       |         |           |       |          | Shiningbank East;                                                 |
|       |         |           |       |          | Sinkhole Lake;                                                    |
|       |         |           |       |          | South Dismal Creek;                                               |
|       |         |           |       |          | South Rat Creek:                                                  |
|       |         |           |       |          | Surprise Lake;                                                    |
|       |         |           |       |          | Svedberg;                                                         |
|       |         |           |       |          | Swanson;                                                          |
|       |         |           |       |          | Tom min,<br>Tower:                                                |
|       |         |           |       |          | Trout Creek;                                                      |
|       |         |           |       |          | Wolf Lake East;                                                   |
|       |         |           |       |          | Wolf Lake West;                                                   |
| 9     | LU LINE | Numeric   | 2     | 0        | Zeta Lake.<br>Identifier for Area of Buffered Linear Dispositions |
| 1.    | LO_DIGE | Tumerre   | 2     | 0        | Landuse Dispositions:                                             |
|       |         |           |       |          | EZE;                                                              |
|       |         |           |       |          | GEO;                                                              |
|       |         |           |       |          | ISP;                                                              |
| 10.   | LANDUSE | Character | 3     |          | MLL:                                                              |
|       |         |           |       |          | MLP;                                                              |
|       |         |           |       |          | MSL;                                                              |
|       |         |           |       |          | PIL;                                                              |
|       |         |           |       |          | PLA;                                                              |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|---------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | PRI;<br>REC;<br>ROE;<br>SMC;<br>SME;<br>SML;<br>VCE;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11.          | PNT           | Character     | 10             |                    | WDL.<br>New Area for PNT990220:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 12           | PIONEER       | Numeric       | 2              | 0                  | PN 1990220.<br>Identifier for Named Area for PNT990220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13.          | DRS           | Character     | 10             |                    | Disposition Reservation:<br>DRS020047;<br>DRS020049;<br>DRS020050;<br>DRS1370;<br>DRS1371;<br>DRS1371;<br>DRS1372;<br>DRS1374;<br>DRS1374;<br>DRS1374;<br>DRS1375;<br>DRS1376;<br>DRS1376;<br>DRS1380;<br>DRS1380;<br>DRS1381;<br>DRS1382;<br>DRS1382;<br>DRS1384;<br>DRS1384;<br>DRS1385;<br>DRS1384;<br>DRS1385;<br>DRS1386;<br>DRS1386;<br>DRS1387;<br>DRS1388;<br>DRS1584;<br>DRS1552;<br>DRS1552;<br>DRS1555;<br>DRS1555;<br>DRS1555;<br>DRS1555;<br>DRS1556;<br>DRS1557;<br>DRS1556;<br>DRS1557;<br>DRS1558;<br>DRS1558;<br>DRS1558;<br>DRS1558;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1559;<br>DRS1577;<br>DRS158;<br>DRS1559;<br>DRS1577;<br>DRS158;<br>DRS1577;<br>DRS158;<br>DRS1577;<br>DRS158;<br>DRS1577;<br>DRS158;<br>DRS1577;<br>DRS158;<br>DRS1577;<br>DRS158;<br>DRS159;<br>DRS1577;<br>DRS158;<br>DRS159;<br>DRS1577;<br>DRS158;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS159;<br>DRS2006;<br>DRS2006;<br>DRS2007;<br>DRS850013;<br>DRS850013;<br>DRS850219;<br>DRS850224;<br>DRS850259;<br>DRS850057; |

| Field | Field   | Field     | Field    | No. of   | Field Description                        |
|-------|---------|-----------|----------|----------|------------------------------------------|
| No.   | Name    | Туре      | Width    | Decimals | Field Description                        |
|       |         |           |          |          | DRS860058;                               |
|       |         |           |          |          | DRS860059;                               |
|       |         |           |          |          | DK88600/2;<br>DR8860125:                 |
|       |         |           |          |          | DRS860140:                               |
|       |         |           |          |          | DRS860141;                               |
|       |         |           |          |          | DRS860142;                               |
|       |         |           |          |          | DRS860143;                               |
|       |         |           |          |          | DRS860214;                               |
|       |         |           |          |          | DR\$860217,<br>DR\$860276                |
|       |         |           |          |          | DRS870001;                               |
|       |         |           |          |          | DRS870008;                               |
|       |         |           |          |          | DRS870009;                               |
|       |         |           |          |          | DRS870010;                               |
|       |         |           |          |          | DRS870010;<br>DRS870069                  |
|       |         |           |          |          | DRS870134:                               |
|       |         |           |          |          | DRS870150;                               |
|       |         |           |          |          | DRS870159;                               |
|       |         |           |          |          | DRS890102;                               |
|       |         |           |          |          | DR\$890108;<br>DR\$890110                |
|       |         |           |          |          | DRS890110;                               |
|       |         |           |          |          | DRS890112;                               |
|       |         |           |          |          | DRS890113;                               |
|       |         |           |          |          | DRS890142;                               |
|       |         |           |          |          | DRS890144;                               |
|       |         |           |          |          | DR \$900107;<br>DR \$900108:             |
|       |         |           |          |          | DRS900110;                               |
|       |         |           |          |          | DRS900114;                               |
|       |         |           |          |          | DRS900115;                               |
|       |         |           |          |          | DRS900119;                               |
|       |         |           |          |          | DRS910036;<br>DRS010050:                 |
|       |         |           |          |          | DRS910039,<br>DRS910061                  |
|       |         |           |          |          | DRS910070;                               |
|       |         |           |          |          | DRS920004;                               |
|       |         |           |          |          | DRS920005;                               |
|       |         |           |          |          | DRS940045;<br>DPS040077                  |
|       |         |           |          |          | DRS940097,<br>DRS940099                  |
|       |         |           |          |          | DRS960;                                  |
|       |         |           |          |          | DRS970002;                               |
|       |         |           |          |          | DRS980008;                               |
|       |         |           | <u> </u> |          | DK5980011.<br>Grazing Leases and Permits |
|       |         |           |          |          | FGL000002;                               |
|       |         |           |          |          | FGL790012;                               |
|       |         |           |          |          | FGL800017;                               |
|       |         |           |          |          | FGL800019;                               |
|       |         |           |          |          | FGL820003;<br>FGL820022                  |
|       |         |           |          |          | FGL830005;                               |
|       |         |           |          |          | FGL840001;                               |
| 14.   | GRAZING | Character | 10       |          | FGL840023;                               |
|       |         |           |          |          | FGL870014;                               |
|       |         |           |          |          | FGL880012;<br>EGL880015                  |
|       |         |           |          |          | FGL880024:                               |
|       |         |           |          |          | FGL890003;                               |
|       |         |           |          |          | FGL890012;                               |
|       |         |           |          |          | FGL890020;                               |
|       |         |           |          |          | FGL890025;                               |
|       |         | 1         |          | 1        | FGL890027;                               |

| Field | Field | Field | Field | No. of   | Field Description         |
|-------|-------|-------|-------|----------|---------------------------|
| No.   | Name  | Туре  | Width | Decimals |                           |
|       |       |       |       |          | FGL890030;                |
|       |       |       |       |          | FGL900001;                |
|       |       |       |       |          | FGL900007;                |
|       |       |       |       |          | FGL900023,                |
|       |       |       |       |          | FGL910015:                |
|       |       |       |       |          | FGL910016;                |
|       |       |       |       |          | FGL920014;                |
|       |       |       |       |          | FGL930025;                |
|       |       |       |       |          | FGL940004;                |
|       |       |       |       |          | FGL940013;<br>FGL 940021: |
|       |       |       |       |          | FGL950006                 |
|       |       |       |       |          | FGL950008;                |
|       |       |       |       |          | FGL950016;                |
|       |       |       |       |          | FGL950018;                |
|       |       |       |       |          | FGL950022;                |
|       |       |       |       |          | FGL960001;                |
|       |       |       |       |          | FGL960007;<br>FGL960014:  |
|       |       |       |       |          | FGL960014,                |
|       |       |       |       |          | FGL960019;                |
|       |       |       |       |          | FGL960021;                |
|       |       |       |       |          | FGL960023;                |
|       |       |       |       |          | FGL960024;                |
|       |       |       |       |          | GRL16097;<br>CDI 16454;   |
|       |       |       |       |          | GRI 16540                 |
|       |       |       |       |          | GRL16585:                 |
|       |       |       |       |          | GRL16827;                 |
|       |       |       |       |          | GRL16927;                 |
|       |       |       |       |          | GRL16972;                 |
|       |       |       |       |          | GRL1/013;<br>CPI 24501;   |
|       |       |       |       |          | GRL36280 <sup>-</sup>     |
|       |       |       |       |          | GRL37186:                 |
|       |       |       |       |          | GRL37225;                 |
|       |       |       |       |          | GRL37469;                 |
|       |       |       |       |          | GRL37478;                 |
|       |       |       |       |          | GRL3/6/8;<br>GPL 27827:   |
|       |       |       |       |          | GRL37990                  |
|       |       |       |       |          | GRL38204;                 |
|       |       |       |       |          | GRL38299;                 |
|       |       |       |       |          | GRL38504;                 |
|       |       |       |       |          | GRL38603;                 |
|       |       |       |       |          | GRL38/18;<br>GRL38748     |
|       |       |       |       |          | GRI 38777                 |
|       |       |       |       |          | GRL38819;                 |
|       |       |       |       |          | GRL38838;                 |
|       |       |       |       |          | GRL38955;                 |
|       |       |       |       |          | GRL38967;                 |
|       |       |       |       |          | GRL39265;<br>CBL20275     |
|       |       |       |       |          | GRI 30270-                |
|       |       |       |       |          | GRL39359:                 |
|       |       |       |       |          | GRL39414;                 |
|       |       |       |       |          | GRL39454;                 |
|       |       |       |       |          | GRL39567;                 |
|       |       |       |       |          | GRL39579;                 |
|       |       |       |       |          | GRI 30700-                |
|       |       |       |       |          | GRI 39884:                |
|       |       |       |       |          | GRL39887;                 |
|       |       |       |       |          | GRL39901;                 |

| Field | Field | Field | Field | No. of   | Field Description          |
|-------|-------|-------|-------|----------|----------------------------|
| NO.   | Name  | туре  | wiath | Decimais | •                          |
|       |       |       |       |          | GRL39951;                  |
|       |       |       |       |          | GRL40008;<br>GPL40020:     |
|       |       |       |       |          | GRI 40030,                 |
|       |       |       |       |          | GRL40135;                  |
|       |       |       |       |          | GRL40248;                  |
|       |       |       |       |          | GRL40252;                  |
|       |       |       |       |          | GRL40372;                  |
|       |       |       |       |          | GRL40396;<br>CDI 40524;    |
|       |       |       |       |          | GRI 40556                  |
|       |       |       |       |          | GRL40586:                  |
|       |       |       |       |          | GRL40602;                  |
|       |       |       |       |          | GRL40640;                  |
|       |       |       |       |          | GRL40779;                  |
|       |       |       |       |          | GRL40829;                  |
|       |       |       |       |          | GKL40835;<br>CPL40852:     |
|       |       |       |       |          | GRI 40932,<br>GRI 40926    |
|       |       |       |       |          | GRL780188;                 |
|       |       |       |       |          | GRL790524;                 |
|       |       |       |       |          | GRL800691;                 |
|       |       |       |       |          | GRL810453;                 |
|       |       |       |       |          | GRL820372;<br>CDL820424;   |
|       |       |       |       |          | GRL 820512                 |
|       |       |       |       |          | GRL830091:                 |
|       |       |       |       |          | GRL830277;                 |
|       |       |       |       |          | GRL830324;                 |
|       |       |       |       |          | GRL830436;                 |
|       |       |       |       |          | GRL840026;                 |
|       |       |       |       |          | GRI 840120;<br>GRI 840528: |
|       |       |       |       |          | GRL850351:                 |
|       |       |       |       |          | GRL850430;                 |
|       |       |       |       |          | GRL850440;                 |
|       |       |       |       |          | GRL860021;                 |
|       |       |       |       |          | GRL860328;<br>GPL860481    |
|       |       |       |       |          | GRI 890044 <sup>.</sup>    |
|       |       |       |       |          | GRL890120;                 |
|       |       |       |       |          | GRL920022;                 |
|       |       |       |       |          | GRL960009;                 |
|       |       |       |       |          | GRL960073;                 |
|       |       |       |       |          | GRL960107/;<br>GRL960102:  |
|       |       |       |       |          | GR1970004                  |
|       |       |       |       |          | GRL970035;                 |
|       |       |       |       |          | GRL970062;                 |
|       |       |       |       |          | GRP787879;                 |
|       |       |       |       |          | GRP787904;                 |
|       |       |       |       |          | GRP/8/909;<br>CDD787021.   |
|       |       |       |       |          | GRP787929                  |
|       |       |       |       |          | GRP788018;                 |
|       |       |       |       |          | GRP788237;                 |
|       |       |       |       |          | GRP830043;                 |
|       |       |       |       |          | GRP840064;                 |
|       |       |       |       |          | GRP840066;<br>GPP850070-   |
|       |       |       |       |          | GRP890012                  |
|       |       |       |       |          | GRP950003;                 |
|       |       |       |       |          | GRP950004;                 |
|       |       |       |       |          | GRP950005;                 |
|       |       |       |       |          | GRP970002;                 |
|       | 1     |       |       | 1        | UKK8890;                   |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                               |
|--------------|---------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | GRR8922.                                                                                                                                                                                                                                                                                                                                                        |
| 15.          | STATUS        | Character     | 16             |                    | Private Land:<br>LEASE;<br>TITLE.                                                                                                                                                                                                                                                                                                                               |
| 16.          | SP2000        | Character     | 18             |                    | Special Places 2000 Areas:<br>FICKLE LAKE;<br>OBED LAKE;<br>SUNDANCE.                                                                                                                                                                                                                                                                                           |
| 17.          | SUN500M       | Numeric       | 2              | 0                  | Identifier for Buffered Sundance Area - 500 Metres                                                                                                                                                                                                                                                                                                              |
| 18.          | ARCH_POT      | Character     | 4              |                    | Archeological Potential of Areas within Historical Layer:<br>High;<br>Low;<br>Mod;<br>NA.                                                                                                                                                                                                                                                                       |
| 19.          | СТР           | Character     | 7              |                    | Coniferous Timber Permit Identifier:<br>W060072;<br>W060073;<br>W060074;<br>W060076.                                                                                                                                                                                                                                                                            |
| 20.          | CUT_NUM       | Character     | 11             |                    | Opening Number for Cutblocks                                                                                                                                                                                                                                                                                                                                    |
| 21.          | CUTBLK        | Numeric       | 2              | 0                  | Identifier for Cutblocks                                                                                                                                                                                                                                                                                                                                        |
| 22.          | QB_OP         | Character     | 10             |                    | Operator Name for Quota Holder Cutblocks:<br>ANC – Alberta Newsprint;<br>BR – Blue Ridge Lumber;<br>MW – Millar Western.                                                                                                                                                                                                                                        |
| 23.          | QB NUM        | Character     | 13             |                    | Opening Number for Quota Holder Blocks                                                                                                                                                                                                                                                                                                                          |
| 24.          | QUOT_BLK      | Numeric       | 2              | 0                  | Identifier for Quota Holder Blocks                                                                                                                                                                                                                                                                                                                              |
| 25.          | PB_NUM        | Character     | 11             |                    | Opening Number for Planned Blocks                                                                                                                                                                                                                                                                                                                               |
| 26.          | PB_OP         | Character     | 10             |                    | Operator Name for Planned Cutblocks:<br>ETP – Edson Timber Products;<br>MTU – Miscellaneous Timber Users;<br>WEYR – Weyerhaeuser.                                                                                                                                                                                                                               |
| 27.          | PLAN BLK      | Numeric       | 2              | 0                  | Identifier for Planned Blocks                                                                                                                                                                                                                                                                                                                                   |
| 28.          | PQ_OP         | Character     | 4              |                    | Operator for Planned Quota Blocks:<br>ANC – Alberta Newsprint;<br>BR - Blue Ridge;<br>MW – Millar Western;<br>WEY – Weyerhaeuser.                                                                                                                                                                                                                               |
| 29.          | PLAN_QUOT     | Numeric       | 2              | 0                  | Identifier for Planned Quota Blocks                                                                                                                                                                                                                                                                                                                             |
| 30.          | STRM30        | Numeric       | 2              | 0                  | Identifier for Stream Buffers - 30 metres                                                                                                                                                                                                                                                                                                                       |
| 31.          | STRM60        | Numeric       | 2              | 0                  | Identifier for Stream Buffers - 60 metres                                                                                                                                                                                                                                                                                                                       |
| 32.          | STRM100       | Numeric       | 2              | 0                  | Identifier for Stream Buffers - 100 metres                                                                                                                                                                                                                                                                                                                      |
| 33.          | LAKE          | Numeric       | 2              | 0                  | Identifier for Lake Buffers - 100 metres                                                                                                                                                                                                                                                                                                                        |
| 34.          | SWAN200       | Numeric       | 2              | 0                  | Identifier for Lakes Associated with Trumpeter Swan<br>Habitat (Buffered 200m)                                                                                                                                                                                                                                                                                  |
| 35.          | WTRSHED       | Character     | 50             |                    | <pre>watersnees:<br/>Athabasca_Ord7;<br/>Bigoray_Ord4;<br/>Brazeau_Ord7;<br/>Carrot_Ord4;<br/>Dismal_Ord4;<br/>Edson_Ord4;<br/>Edson_Ord5;<br/>ElkR_Ord5;<br/>Embarras_Ord5;<br/>Erith_Ord6;<br/>Groat_Ord4;<br/>Groat_Ord4;<br/>January_Ord4;<br/>Lambert_Ord4;<br/>Lambert_Ord4;<br/>Lobstick_Ord4;<br/>Lobstick_Ord5;<br/>McLeod_Ord7;<br/>Moose_Ord4;</pre> |

| Field | Field    | Field     | Field | No. of   | Field Description                    |
|-------|----------|-----------|-------|----------|--------------------------------------|
| No.   | Name     | Туре      | Width | Decimals | Field Description                    |
|       |          |           |       |          | North Saskatchewan_Ord8;             |
|       |          |           |       |          | Obed_Ord4;<br>Oldman_Ord4:           |
|       |          |           |       |          | Paddle_Ord4;                         |
|       |          |           |       |          | Paddle_Ord5;                         |
|       |          |           |       |          | Paddy_Ord4;<br>Pembina_Ord5;         |
|       |          |           |       |          | Pembina Ord6;                        |
|       |          |           |       |          | Poison_Ord4;                         |
|       |          |           |       |          | Prest_Ord4;<br>PatE_Ord4:            |
|       |          |           |       |          | Rate_Ord5;                           |
|       |          |           |       |          | Raven_Ord4;                          |
|       |          |           |       |          | Sundance_Ord4;                       |
|       |          |           |       |          | Unnamed Ord4#01:                     |
|       |          |           |       |          | Unnamed_Ord4#02;                     |
|       |          |           |       |          | Unnamed_Ord4#03;                     |
|       |          |           |       |          | Unnamed_Ord4#04;<br>Unnamed_Ord4#05  |
|       |          |           |       |          | Unnamed Ord4#06;                     |
|       |          |           |       |          | Unnamed_Ord4#07;                     |
|       |          |           |       |          | Unnamed_Ord4#08;                     |
|       |          |           |       |          | Unnamed_Ord4#10;                     |
|       |          |           |       |          | Unnamed_Ord4#11;                     |
|       |          |           |       |          | Unnamed_Ord4#12;                     |
|       |          |           |       |          | Unnamed_Ord4#13;<br>Unnamed_Ord4#14: |
|       |          |           |       |          | Unnamed Ord4#15:                     |
|       |          |           |       |          | Unnamed_Ord4#17;                     |
|       |          |           |       |          | Unnamed_Ord4#18;                     |
|       |          |           |       |          | Unnamed_Ord4#19;<br>Unnamed_Ord4#22: |
|       |          |           |       |          | Unnamed_Ord4#22;                     |
|       |          |           |       |          | Unnamed_Ord4#25;                     |
|       |          |           |       |          | Unnamed_Ord4#26;                     |
|       |          |           |       |          | Unnamed_Ord4#27;<br>Unnamed_Ord4#28: |
|       |          |           |       |          | Unnamed_Ord4#29;                     |
|       |          |           |       |          | Unnamed_Ord4#30;                     |
|       |          |           |       |          | Unnamed_Ord4#31;<br>Unnamed_Ord4#23; |
|       |          |           |       |          | Unnamed_Ord4#35;                     |
|       |          |           |       |          | Unnamed_Ord4#35;                     |
|       |          |           |       |          | Unnamed_Ord4#36;                     |
|       |          |           |       |          | Unnamed_Ord4#37;<br>Unnamed_Ord4#38: |
|       |          |           |       |          | Unnamed_Ord4#42;                     |
|       |          |           |       |          | Unnamed_Ord4#43;                     |
|       |          |           |       |          | Unnamed_Ord4#44;<br>Unnamed_Ord5#01: |
|       |          |           |       |          | Unnamed Ord5#02;                     |
|       |          |           |       |          | Unnamed_Ord5#03;                     |
|       |          |           |       |          | Unnamed_Ord5#04;                     |
|       |          |           |       |          | Unnamed_Urdb;<br>WolfN_Ord4:         |
|       |          |           |       |          | WolfN_Ord5.                          |
| 36.   | CUTLINES | Numeric   | 2     | 0        | Identifier for Cutline Buffers       |
|       |          |           |       |          | Integrated Resource Plan Name:       |
|       |          | ~         |       |          | COAL BRANCH:                         |
| 37.   | IRP_NAME | Character | 26    |          | COLD CREEK;                          |
|       |          |           |       |          | WHITECOURT- SWAN HILLS;              |
| 20    | IDD STAT | Character | 0     |          | YELLOWHEAD NORTH.                    |
| 38.   | IKP_SIAI | Cnaracter | 0     | 1        | integrated Resource Plan Status:     |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|---------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | Approved;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 39.          | IRP_TYPE      | Character     | 12             |                    | Integrated Resource Plan Type:<br>Regional;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 40.          | IRP_CODE      | Character     | 3              |                    | Integrated Resource Plan Code:<br>BRP;<br>CBR;<br>CCK;<br>WSH;<br>YI.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 41.          | FIRE1930      | Character     | 12             |                    | Fires for 1930's:<br>REF-0033-36;<br>REF-0137-40;<br>REF-0139-40;<br>REF-0140-40;<br>REF-0142-40;<br>REF-0143-40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42.          | FIRE1940      | Character     | 12             |                    | Fires for 1940's:         REF-0225-41;         REF-0226-41;         REF-0227-41;         REF-0230-41;         REF-0231-41;         REF-0231-41;         REF-0231-41;         REF-0231-41;         REF-0231-41;         REF-0230-41;         REF-0246-41;         REF-0250-41;         REF-0250-41;         REF-0250-41;         REF-0250-41;         REF-0250-41;         REF-0260-41;         REF-0301-41;         REF-0301-41;         REF-0300-41;         REF-0424-44; |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                           |
|--------------|---------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | REF-0649-47;<br>REF-0726-49;<br>REF-0727-49;<br>REF-0728-49;<br>REF-0803-49;<br>REF-0807-49;<br>REF-0807-49;<br>REF-0812-49;<br>REF-0812-49;                                                                                                                                                                                                |
| 43.          | FIRE1950      | Character     | 12             |                    | Fires for 1950's:<br>36-1-56;<br>5-1-56;<br>5-3-56;<br>5-3-56;<br>5-7-58;<br>5-9-58;<br>6-17-59;<br>6-2-56;<br>6-3-57;<br>6-5-56;<br>6-5-58;<br>6-6-56;<br>6-7-56;<br>6-8-56;<br>7-1-56;<br>7-2-56;<br>7-2-56;<br>9-3-56;<br>9-4-57;<br>9-4-57;<br>9-4-57;<br>9-4-57;<br>9-4-57;<br>9-4-57;<br>REF-0886-51;<br>REF-0938-53;<br>REF-0941-53. |
| 44.          | FIRE1960      | Character     | 12             |                    | Fires for 1960 s:         DE4-010-61;         DE4-034-61;         DW1-009-68;         DW2-010-68;         DW2-011-68;         DW2-013-68;         DW2-017-68;         DW2-018-68;         DW2-018-68;         DW2-018-68;         DW2-010-68;                                                                                               |
| 45.          | FIRE1970      | Character     | 12             |                    | Fires for 1970's<br>Fires for 1980's                                                                                                                                                                                                                                                                                                        |
| 46.          | FIRE1980      | Character     | 12             |                    | DE4-008-87;<br>DW2-024-88.                                                                                                                                                                                                                                                                                                                  |
| 47.          | FIRE1990      | Character     | 12             |                    | Fires for 1990's:<br>N02-007-1998;<br>N02-017-1998;<br>N02-020-1998;<br>N02-020-1998;<br>N02-021-1998;<br>N02-022-1998;<br>N03-034-1998;<br>P04-006-2000.                                                                                                                                                                                   |
| 48.          | FIRE2000      | Character     | 12             |                    | Fires for 2000's:<br>EWF-002-2003;<br>EWF-007-2003;<br>EWF-019-2001;<br>EWF-029-2001;<br>EWF-053-2003;<br>EWF-070-2003;                                                                                                                                                                                                                     |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                     |
|--------------|---------------|---------------|----------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | RWF-038-2001;<br>RWF-049-2003;<br>RWF-058-2001;<br>WWF-012-2001.                                                                                      |
| 49.          | ESIP          | Character     | 18             |                    | Eastern Slopes Integrated Plan:<br>Agriculture;<br>Critical Wildlife;<br>Facility;<br>General Recreation;<br>Industrial;<br>Multiple Use;<br>No ESIP. |
| 50.          | NSN           | Character     | 20             |                    | Natural Sub-Regions:<br>Central Mixedwood;<br>Dry Mixedwood;<br>Lower Foothills;<br>Upper Foothills.                                                  |
| 51.          | NRN           | Character     | 16             |                    | Natural Regions:<br>Boreal Forest;<br>Foothills.                                                                                                      |
| 52.          | PSP           | Numeric       | 2              | 0                  | Identifier for Permanent Sample Plots                                                                                                                 |
| 53.          | FORSTKEY      | Character     | 10             |                    | AVI Polygon ID Composed of PID, MER, TWP, RGE                                                                                                         |
| 54.          | PID           | Numeric       | 4              | 0                  | AVI Polygon ID Number by Township                                                                                                                     |
| 55.          | MER           | Numeric       | 2              | 0                  | Meridian:<br>5.                                                                                                                                       |
| 56.          | TWP           | Numeric       | 3              | 0                  | Township:<br>47;<br>48;<br>49;<br>50;<br>51;<br>52;<br>53;<br>54;<br>55;<br>56;<br>57;<br>58;<br>59;<br>60.                                           |
| 57.          | RGE           | Numeric       | 2              | 0                  | Range:<br>8;<br>9;<br>10;<br>11;<br>12;<br>13;<br>14;<br>15;<br>16;<br>17;<br>18;<br>19;<br>20;<br>21;<br>22.                                         |
| 59.          |               |               |                |                    |                                                                                                                                                       |
| 59.          | MOISTURE      | Character     | 1              |                    | Moisture Regime Identified as Follows:<br>A – Aquatic;<br>D – Dry;<br>M – Mesic;<br>W – Wet.                                                          |
| 60.          | HEIGHT        | Numeric       | 2              | 0                  | Height (m)                                                                                                                                            |
| 61.          | SP1           | Character     | 2              |                    | Species 1 Identified as Follows:<br>A – Unspecified Deciduous;<br>AW – Trembling Aspen;                                                               |

| Field<br>No. | Field<br>Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                          |
|--------------|---------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |               |               |                |                    | BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;                                                                                                                                                                                   |
|              |               |               |                |                    | PJ – Jack Pine;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce.                                                                                                                                                                                        |
| 62.          | SP1PER        | Numeric       | 2              | 0                  | Species 1 Percent                                                                                                                                                                                                                                                          |
| 63.          | SP2           | Character     | 2              |                    | Species 2 Identified as Follows:A – Unspecified Deciduous;AW – Trembling Aspen;BW – White Birch;FB – Balsam Fir;LT – Larch;P – Pine;PB – Balsam Poplar;PJ – Jack Pine;PL – Lodgepole Pine;SB – Black Spruce;SW – White Spruce.                                             |
| 64.          | SP2PER        | Numeric       | 2              | 0                  | Species 2 Percent                                                                                                                                                                                                                                                          |
| 65.          | SP3           | Character     | 2              |                    | Species 3 Identified as Follows:<br>A – Unspecified Deciduous;<br>AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PJ – Jack Pine;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce. |
| 66.          | SP3PER        | Numeric       | 2              | 0                  | Species 3 Percent                                                                                                                                                                                                                                                          |
| 67.          | SP4           | Character     | 2              |                    | Species 4 Identified as Follows:<br>AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce.                                                  |
| 68.          | SP4PER        | Numeric       | 2              | 0                  | Species 4 Percent                                                                                                                                                                                                                                                          |
| 69.          | SP5           | Character     | 2              |                    | Species 5 identified as Follows:<br>AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>SB – Black Spruce;<br>SW – White Spruce.                                                                          |
| 70.          | SP5PER        | Numeric       | 2              | 0                  | Species 5 Percent                                                                                                                                                                                                                                                          |
| 71.          | STRUCTURE     | Character     | 1              |                    | Stand Structure Identified as Follows:<br>C – Complex;<br>H – Horizontal;<br>M – Multi-storey.                                                                                                                                                                             |
| 72.          | HORPER        | Numeric       | 2              | 0                  | Stand Structure Value                                                                                                                                                                                                                                                      |
| 73.          | ORIGIN        | Numeric       | 4              | 0                  | Origin                                                                                                                                                                                                                                                                     |
| 74.          | TPR           | Character     | 1              |                    | 1 Imber Productivity Rating Identified as Follows:<br>G – Good;<br>M – Medium;                                                                                                                                                                                             |

| Field<br>No. | Field<br>Name           | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------|-------------------------|---------------|----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                         |               |                |                    | F – Fair;                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 75.          | СС                      | Character     | 1              |                    | U = Unproductive.<br>Crown Closure Identified as Follows:<br>A = 6 = 30% Crown Closure;<br>B = 31 = 50% Crown Closure;<br>C = 51 = 70% Crown Closure;<br>D = 71 = 100% Crown Closure;                                                                                                                                                                                                                                      |
| 76.          | MODIFIER1               | Character     | 2              |                    | Stand Modifier 1 Identified as Follows:<br>AK – Animal kill;<br>BU – Burn;<br>CC – Clearcut;<br>CL – Clearing;<br>CW – Abandoned wellsite;<br>DT – Discolored / dead tops;<br>FL – Flooded;<br>FT – Fire tower;<br>IK – Insect kill;<br>MT – Microwave tower;<br>PI – Pipeline;<br>RW – Railway;<br>SC – Scarified;<br>SN – Snags;<br>ST – Scattered timber;<br>TH – Thinned;<br>TL – Transmission line;<br>WF – Windfall. |
| 77.          | EXTENT1<br>VEAR1        | Numeric       | 2              | 0                  | Extent of Modification 1                                                                                                                                                                                                                                                                                                                                                                                                   |
| 79.          | MODIFIER2               | Character     | 2              |                    | Stand Modifier 2 Identified as Follows:<br>BU – Burn;<br>CC – Clearcut;<br>CL – Clearing;<br>GR – Grazing;<br>IK – Insect kill;<br>PI – Pipeline;<br>PL – Planted;<br>SC – Scarified;<br>SN – Snags;<br>ST – Scattered timber;<br>TH – Thinned;<br>TL – Transmission line;<br>WF – Windfall.                                                                                                                               |
| 80.          | EXTENT2                 | Numeric       | 2              | 0                  | Extent of Modification 2                                                                                                                                                                                                                                                                                                                                                                                                   |
| 81.          | YEAR2<br>NONFORTYP<br>E | Character     | 2              | 0                  | Year of Modification 2<br>Naturally Non-Forested Vegetated Land Identified as<br>Follows:<br>BR – Bryophytes / mosses;<br>HF – Herbaceous forbs;<br>HG – Herbaceous grassland;<br>SC – Closed shrubs;<br>SO – Open shrubs.                                                                                                                                                                                                 |
| 83.          | NONFORCL                | Numeric       | 2              | 0                  | Non-Forested Natural Vegetated Land Shrub Closure                                                                                                                                                                                                                                                                                                                                                                          |
| 84.          | NATNONVEG               | Character     | 3              |                    | Naturally Non-Vegetated Land Identified as Follows:<br>NMB – Recent burn;<br>NMC – Cutbank;<br>NMS – Sand;<br>NWF – Flooded;<br>NWL – Lake or pond;<br>NWR – River.                                                                                                                                                                                                                                                        |
| 85.          | ANTHVEG                 | Character     | 3              |                    | Anthropogenic Vegetated Land Identified as Follows:<br>CA – Annual crops;<br>CIP – Pipeline;<br>CIW – Geophysical activity (wellsite);<br>CP – Cropland (perennial);<br>CPR – Perennial crops (with SO or SC N.F.TYPE).                                                                                                                                                                                                    |

| Field<br>No. | Field<br>Name  | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                    |
|--------------|----------------|---------------|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 86.          | ANTHNONVE<br>G | Character     | 3              |                    | Anthropogenic Non-Vegetated Land Identified as<br>Follows:<br>AIE – Peat extractions;<br>AIF – Farm;<br>AIG – Gravel or borrow pit;<br>AIH – Permanent right-of-way;<br>AII – Industrial sites;<br>AIW – Water reservoir;<br>ASC – City, town, village;<br>ASR – Ribbon development. |
| 87.          | INTERPRETE     | Character     | 2              |                    | Interpreter's Initials                                                                                                                                                                                                                                                               |
| 88.          | REFSOURCE      | Character     | 1              |                    | Reference Source Identified as Follows:<br>A – Air call;<br>F – Field plot;<br>I – Interpreted TPR;<br>P – PSP;<br>S – Supplementary photography;<br>V – Volume plot                                                                                                                 |
| 89.          | REFYEAR        | Numeric       | 4              | 0                  | Reference Year                                                                                                                                                                                                                                                                       |
| 90.          | U_MOISTURE     | Character     | 1              |                    | Moisture Regime Identified as Follows:<br>A – Aquatic;<br>D – Dry;<br>M – Mesic;<br>W – Wet.                                                                                                                                                                                         |
| 91.          | U_HEIGHT       | Numeric       | 2              | 0                  | Height (m)                                                                                                                                                                                                                                                                           |
| 92.          | U_SP1          | Character     | 2              |                    | AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PJ – Jack Pine;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce.                                                                             |
| 93.          | U_SP1PER       | Numeric       | 2              | 0                  | Species 1 Percent                                                                                                                                                                                                                                                                    |
| 94.          | U_SP2          | Character     | 2              |                    | Species 2 Identified as Follows:<br>A – Unspecified Deciduous;<br>AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PJ – Jack Pine;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce.           |
| 95.          | U_SP2PER       | Numeric       | 2              | 0                  | Species 2 Percent                                                                                                                                                                                                                                                                    |
| 96.          | U_SP3          | Character     | 2              |                    | Species 3 Identified as Follows:<br>A – Unspecified Deciduous;<br>AW – Trembling Aspen;<br>BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PJ – Jack Pine;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce.           |
| 97.          | U_SP3PER       | Numeric       | 2              | 0                  | Species 3 Percent                                                                                                                                                                                                                                                                    |
| 98.          | U_SP4          | Character     | 2              |                    | Species 4 Identified as Follows:<br>AW – Trembling Aspen;                                                                                                                                                                                                                            |

| Field<br>No. | Field<br>Name  | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                               |
|--------------|----------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                |               |                |                    | BW – White Birch;<br>FB – Balsam Fir;<br>LT – Larch;<br>P – Pine;<br>PB – Balsam Poplar;<br>PL – Lodgepole Pine;<br>SB – Black Spruce;<br>SW – White Spruce                                                                                                                                                                                                     |
| 99.          | U_SP4PER       | Numeric       | 2              | 0                  | Species 4 Percent                                                                                                                                                                                                                                                                                                                                               |
| 100.         | U_SP5          | Character     | 2              |                    | Species 5 Identified as Follows:         AW – Trembling Aspen;         BW – White Birch;         FB – Balsam Fir;         LT – Larch;         P – Pine;         PB – Balsam Poplar;         PL – Lodgepole Pine;         SB – Black Spruce;         SW – White Spruce.                                                                                          |
| 101.         | U_SP5PER       | Numeric       | 2              | 0                  | Species 5 Percent                                                                                                                                                                                                                                                                                                                                               |
| 102.         | U_STRUCTUR     | Character     | 1              |                    | Stand Structure Identified as Follows:<br>H – Horizontal;<br>M – Multi-storey.                                                                                                                                                                                                                                                                                  |
| 103.         | U_HORPER       | Numeric       | 2              | 0                  | Stand Structure Value                                                                                                                                                                                                                                                                                                                                           |
| 104.         | U_ORIGIN       | Numeric       | 4              | 0                  | Origin                                                                                                                                                                                                                                                                                                                                                          |
| 105.         | U_TPR          | Character     | 1              |                    | Timber Productivity Rating Identified as Follows:<br>G – Good;<br>M – Medium;<br>F – Fair;<br>U – Unproductive.                                                                                                                                                                                                                                                 |
| 106.         | U_CC           | Character     | 1              |                    | Crown Closure Identified as Follows:<br>A - 6 - 30% Crown Closure;<br>B - 31 - 50% Crown Closure;<br>C - 51 - 70% Crown Closure;<br>D - 71 - 100% Crown Closure.                                                                                                                                                                                                |
| 107.         | U_MOD1         | Character     | 2              | 0                  | Stand Modifier 1 Identified as Follows:<br>AK – Animal kill;<br>BU – Burn;<br>CC – Clearcut;<br>CL – Clearing;<br>CW – Abandoned wellsite;<br>DT – Discolored / dead tops;<br>FL – Flooded;<br>MT – Microwave tower;<br>RW – Railway;<br>SC – Scarified;<br>SN – Snags;<br>ST – Scattered timber;<br>TH – Thinned;<br>TL – Transmission line;<br>WF – Windfall. |
| 108.         | U_EXTENT1      | Numeric       | 2              | 0                  | Extent of Modification 1                                                                                                                                                                                                                                                                                                                                        |
| 1109.        | U_MOD2         | Character     | 2              | 0                  | Y ear of Modification 1<br>Stand Modifier 2 Identified as Follows:<br>BU – Burn;<br>CC – Clearcut;<br>CL – Clearing;<br>GR – Grazing;<br>PL – Planted;<br>SC – Scarified;<br>SN – Snags;<br>TH – Thinned.                                                                                                                                                       |
| 111.         | U_EXTENT2      | Numeric       | 2              | 0                  | Extent of Modification 2                                                                                                                                                                                                                                                                                                                                        |
| 112.         | U_YEAR2        | Numeric       | 4              | 0                  | Year of Modification 2                                                                                                                                                                                                                                                                                                                                          |
| 113.         | U_NONFORT<br>Y | Character     | 2              |                    | Non-Forested Natural Vegetated Land Type Identified as<br>Follows:                                                                                                                                                                                                                                                                                              |

| Field<br>No. | Field<br>Name  | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                           |
|--------------|----------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                |               |                |                    | BR – Bryophytes / mosses;<br>HF – Herbaceous forbs;<br>HG – Herbaceous grass;<br>SC – Closed shrubs;<br>SO – Open shrubs.                                                                                                   |
| 114.         | U_NONFORC<br>L | Numeric       | 2              | 0                  | Non-Forested Natural Vegetated Land Shrub Closure                                                                                                                                                                           |
| 115.         | U_NATNONV<br>E | Character     | 3              |                    | Naturally Non-Vegetated Land Identified as Follows:<br>NMC – Cutbank;<br>NMS – Sand;<br>NWF – Flooded;<br>NWL – Lake or pond;<br>NWR – River.                                                                               |
| 116.         | U_ANTHVEG      | Character     | 3              |                    | Anthropogenic Vegetated Land Identified as Follows:<br>CA – Annual crops;<br>CIP – Pipeline;<br>CIW – Geophysical activity (wellsite);<br>CP – Cropland (perennial);<br>CPR – Perennial crops (with SO or SC N.F.TYPE).     |
| 117.         | U_ANTHNON<br>V | Character     | 3              |                    | Anthropogenic Non-Vegetated Land Identified as<br>Follows:<br>AIF – Farm;<br>AIG – Gravel or borrow pit;<br>AIH – Permanent right-of-way;<br>AII – Industrial sites;<br>AIW – Water reservoir;<br>ASR – Ribbon development. |
| 118.         | U INTERPRE     | Character     | 2              |                    | Interpreter's Initials                                                                                                                                                                                                      |
| 119.         | U_REFSOURC     | Character     | 1              |                    | Reference Source Identified as Follows:<br>A – Air call;<br>F – Field plot;<br>I – Interpreted TPR.                                                                                                                         |
| 120.         | U_REFYEAR      | Numeric       | 4              | 0                  | Reference Year                                                                                                                                                                                                              |
| 121.         | ECOSITE        | Character     | 8              |                    | Ecosite Code                                                                                                                                                                                                                |
| 122.         | MISS_AVI       | Numeric       | 2              | 0                  | Area Inside FMA Without AVI                                                                                                                                                                                                 |

Table 5-2. Data library - (for netdown defined fields – Alphabetical order by Field Name)

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                     |
|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AGE5YR     | Numeric       | 3              | 0                  | 5 year period (in anticipation 5 year periods will be used during the TSA modeling)                                                                                   |
| AREAHA     | Numeric       | 20             | 10                 | Area in hectares                                                                                                                                                      |
| ARIS_BCG   | Character     | 3              |                    | ARIS record broad cover group designation<br>CX – Pure Coniferous<br>CD – Coniferous Dominated Mixedwood<br>DC – Deciduous Dominated Mixedwood<br>DX – Pure Deciduous |
| ARIS_LB    | Character     | 3              |                    | ARIS record landbase designation<br>CON – Coniferous<br>DEC – Deciduous                                                                                               |
| ARIS_OP    | Character     | 4              |                    | ARIS Operator<br>ANC – Alberta Newsprint<br>BR – Blue Ridge<br>ETP<br>MTU<br>MW – Millar Western<br>TP<br>WEY/WEYR – Weyerhaeuser                                     |
| ARIS_YC    | Numeric       | 8              | 0                  | Year cut according to ARIS records                                                                                                                                    |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                |                    | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AVI_STY    | Character     | 1              |                    | Story of Primary Management (SoPM) based strictly on AVI<br>O - Overstory<br>U - Understory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AVI_YC     | Numeric       | 7              | 0                  | Year cut accord to AVI "CC" modifier<br>Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| BCGAGN     | Character     | 5              |                    | Cutblock broad cover group assignment method<br>70/30 – Assumed 70/30 mixedwood coniferous or deciduous<br>dominance depends on landbase assignment<br>ARIS ARIS records<br>AVI_O – AVI overstory<br>AVI_U – AVI understory<br>LMU_A – Regeneration study (with an "A" crown closure)<br>LMU_C – Regeneration study (with a "C" crown closure)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CL_FIRE    | Character     | 1              |                    | Chip Lake Fire Identifier<br>Y – Within 1998 Chip Lake Fire Boundaries<br>BLANK – Not part of 1998 Chip Lake Fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CL_SAL     | Character     | 1              |                    | Chip Lake salvage block<br>Y – Chip Lake salvage block<br>N – Not a Chip Lake salvage block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CONTR_LB   | Numeric       | 2              | 0                  | Landbase contributing to the harvestable land area<br>0 – not part of the harvestable landbase<br>1 – part of the harvestable landbase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CONYIELD   | Numeric       | 4              | 0                  | Coniferous Yield Curve Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CUTIDENT   | Numeric       | 2              | 0                  | Cutblock Identifier (amalgamation of all cutblock identifier<br>fields)<br>0 – Not a Cutblock<br>1 – Cutblock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DECYIELD   | Numeric       | 4              | 0                  | Deciduous Yield Curve Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEL        | Character     | 2              |                    | <ul> <li>Polygon deletion assignment</li> <li>BLANK – not deleted (part of the harvestable landbase)</li> <li>AN – Anthropogenic non-vegetated land</li> <li>AV – Anthropogenic vegetated land</li> <li>CT – Non-disposition cutlines</li> <li>DR – Disposition Reservation</li> <li>EC – Deciduous ecosites deletion</li> <li>LP – Polygonal disposition</li> <li>LK – Riparian buffer - Lake</li> <li>LR - Larch subjective deletion</li> <li>LS – Riparian buffer – Trumpeter Swan critical habitat</li> <li>LU – Linear disposition</li> <li>NF – Non-forested vegetated land</li> <li>NV – Natural non-vegetated land</li> <li>NV – Natural non-vegetated land</li> <li>PS – PSP</li> <li>PR - "Prime Protection" ESIP zones.</li> <li>SB – Black spruce subjective deletion</li> <li>SP – Park (Old Special Places 2000 nomination sites)</li> <li>ST – Riparian buffer - Stream</li> <li>UI – Unidentified opening</li> <li>XX – Non-valid ecosites</li> </ul> |
| GRAZ_TYPE  | Character     | 3              |                    | Grazing Disposition type<br>FGL – Grazing License<br>GRL – Grazing Lease<br>GRP – Grazing Permit<br>GRR – Grazing Reserve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HAR_AGE    | Numeric       | 7              | 0                  | Cutblock age assignment<br>Age in Years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| HAR_CC     | Character     | 1              |                    | Cutblock crown closure assignment based on harvesting<br>rules<br>A, B, C, D – As per AVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HAR_LAND   | Character     | 3              |                    | Cutblock landbase assignment based on harvesting rules<br>CON – Coniferous<br>DEC – Deciduous<br>HHR – Historical harvesting ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HAR_RULE   | Character     | 3              |                    | Cutblock Harvest Rule Assignment (see section 2.8.3)<br>R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HARPER_CON | Numeric       | 4              | 0                  | Composition of cutblock that are coniferous species as<br>defined by harvesting rules<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                        |
| HARPER_DEC | Numeric       | 4              | 0                  | Composition of cutblock that are deciduous species as<br>defined by harvesting rules<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                         |
| HHR_CON    | Numeric       | 4              | 0                  | Percentage of Cutblocks assigned to the Coniferous landbase from 1983 to 2004                                                                                                                                                                                                                                                                                                                                                                                                           |
| HHR_DEC    | Numeric       | 4              | 0                  | Percentage of Cutblocks assigned to the Deciduous landbase from 1983 to 2004                                                                                                                                                                                                                                                                                                                                                                                                            |
| HHR_LAND   | Character     | 1              |                    | HHR identifier<br>Y – Polygon landbase assigned by HHR<br>BLANK - Polygon landbase not assigned by HHR                                                                                                                                                                                                                                                                                                                                                                                  |
| HHR_VAR    | Numeric       | 4              | 0                  | HHR "random" variable assigned to each stand<br>0 to 99                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| LBAGN      | Character     | 5              |                    | Cutblock landbase assignment method<br>ARIS ARIS records<br>AVI_O – AVI overstory<br>AVI_U – AVI understory<br>CONIF – Assumed coniferous<br>HHRAT – Historical harvesting ratio                                                                                                                                                                                                                                                                                                        |
| LMU_CODE   | Character     | 2              | 0                  | LMU Code<br>BM – Beaver Meadows<br>CC – Carrot Creek<br>CY – Cynthia<br>EU – Edson Unit<br>MC – Moose Creek<br>WL – Wolf Lake                                                                                                                                                                                                                                                                                                                                                           |
| MARG_OP    | Numeric       | 1              | 0                  | Identifier of Potential Marginal Stands<br>1 – Potential marginal stand<br>0 – Not a marginal stand                                                                                                                                                                                                                                                                                                                                                                                     |
| NET_AREA   | Numeric       | 20             | 10                 | Area (hectares) from stand assigned to the landbase                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NSR        | Character     | 2              |                    | Natural Subregion<br>LF – Lower Foothills<br>UF – Upper Foothills                                                                                                                                                                                                                                                                                                                                                                                                                       |
| O_LAND     | Character     | 3              |                    | Overstory landbase assignment<br>CON – Coniferous<br>DEC – Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OLDGROW    | Character     | 6              |                    | Potential Over-mature Category<br>OLD_DX – stand potentially over-mature pure deciduous<br>OLD_DC – stand potentially over-mature deciduous<br>dominated mixedwood<br>OLD_CD – stand potentially over-mature coniferous<br>dominated mixedwood<br>OLD_PL – stand potentially over-mature pine dominated<br>pure coniferous<br>OLD_SW – stand potentially over-mature spruce dominated<br>pure coniferous<br>OLD_PS - stand potentially over-mature pine/spruce mixed<br>pure coniferous |
| OPEN_NUM   | Character     | 11             |                    | Final ARIS opening number assigned to a cutblock                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OPS_DEL    | Character     | 0<br>1         |                    | Operational Stand Assignment Code<br>Operational Deletion<br>Y – Operational Deletion                                                                                                                                                                                                                                                                                                                                                                                                   |
| OPS_LOCK   | Character     | 6              |                    | Operational Lock<br>LOCK 4                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| OPS_SQ     | Character     | 1              |                    | Operational Sequence<br>Y – Operational Sequence                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OPS_SQCP   | Numeric       | 1              | 0                  | Period Sequenced<br>1 – Period 1                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OS_AGE     | Numeric       | 7              | 0                  | Overstory age<br>Age in years                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OS_COV     | Character     | 2              |                    | Overstory Broad Cover Group<br>CX – Pure Coniferous<br>CD – Coniferous Dominated Mixedwood<br>DC – Deciduous Dominated Mixedwood                                                                                                                                                                                                                                                                                                                                                        |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                |                    | DX – Pure Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PB_OPER2   | Character     | 14             |                    | Operator for Planned Blocks as defined by Weyerhaeuser<br>Operations Foresters:<br>CCTL – Cold Creek Timber Limited<br>MTU – Miscellaneous Timber Users                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PER_CON    | Numeric       | 4              | 0                  | Composition of overstory species that are coniferous as<br>defined by AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PER_DEC    | Numeric       | 4              | 0                  | Composition of overstory species that are deciduous as<br>defined by AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PER_LARCH  | Numeric       | 4              | 0                  | Composition of overstory that is larch as defined by AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PER_SB     | Numeric       | 4              | 0                  | Composition of overstory that is black spruce as defined by<br>AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PHOTOYEAR  | Number        | 7              | 0                  | Year of Aerial Photography<br>1995 – W6<br>1998 – E1, E2, and W5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PLANNED    | Numeric       | 2              | 0                  | Planned block identified<br>0 – polygon not planned for harvest<br>1 – polygon planned to be harvested within the first 15 years<br>of the harvesting sequence                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PLANNER    | Character     |                |                    | Planned operator<br>ANC – Alberta Newsprint<br>BR – Blue Ridge<br>ETP<br>MTU<br>MW – Millar Western<br>TP<br>UNK - Unknown<br>WEY/WEYR – Weyerhaeuser                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PRIME      | Numeric       | 8              | 0                  | Identifier for "Prime Protection" ESIP zones.<br>0 - OUT<br>1 - IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| REMAN      | Character     | 1              |                    | Cutblock Remnant Stand Identifier<br>Y – Overstory remnant stand<br>N – Overstory not a remnant stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SEQ_NUM    | Numeric       | 8              |                    | Sequential number assigned to each stand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SEQCHAR    | Character     | 2              |                    | Sequential number assigned to each stand as a character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| SERAL      | Numeric       | 2              | 0                  | Seral Stage<br>If STD_COV='CX' or 'CD'<br>1 – Early (stand 0 to 10 years old)<br>2 – Immature (stand 11 to 40 years old)<br>3 – Mature (stand 40 to 90 years old)<br>4 – Late (stand 90 to 120 years old)<br>5 – Very Late (stand 120 to 170 years old)<br>6 – Over-mature (stand 170+ years old)<br>If STD_COV='DX' or 'DC'<br>1 – Early (stand 0 to 10 years old)<br>2 – Immature (stand 11 to 40 years old)<br>3 – Mature (stand 40 to 70 years old)<br>4 – Late (stand 70 to 110 years old)<br>5 – Very Late (stand 110 to 170 years old)<br>6 – Over-mature (stand 170+ years old) |
| ST_SITE    | Character     | 3              |                    | <ul> <li>Final stand site assignment</li> <li>LFG – Lower foothills Good</li> <li>LFM – Lower foothills Medium</li> <li>LFP – Lower foothills Poor</li> <li>UFG – Lower foothills Good</li> <li>UFM – Lower foothills Medium</li> <li>UFP – Lower foothills Poor</li> <li>XXX – Non-valid Ecosite assignment (Sitelogix W, Y, Z)</li> <li>Unique Identifier for each AVI stand</li> </ul>                                                                                                                                                                                               |
| STANDKEY   | Numeric       | 11             | 0                  | =mer*1.000.000,000+twp*1.000.000+rge*10.000+pid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| STD_AGE    | Numeric       | 7              | 0                  | Final stand age assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                              |
|------------|---------------|----------------|--------------------|----------------------------------------------------------------|
|            |               |                |                    | Age in Years                                                   |
| STD CC     | Character     | 1              |                    | Final stand crown closure assignment                           |
| 515_00     | Character     | 1              |                    | A, B, C, D – As per AVI                                        |
|            |               |                |                    | Final Stand broad cover group assignment                       |
| STD COV    | Character     | 2              |                    | CA – Pure Configerous<br>CD – Conjferous Dominated Mixedwood   |
| 51D_COV    | Character     | 2              |                    | DC – Deciduous Dominated Mixedwood                             |
|            |               |                |                    | DX – Pure Deciduous                                            |
|            |               |                |                    | Final stand landbase assignment                                |
| STD_LAND   | Character     | 3              |                    | CON – Coniferous                                               |
|            |               |                |                    | DEC – Deciduous                                                |
| STD LARCH  | Numeric       | 4              | 0                  | Composition of final stand designation that is farch as        |
| SID_LARCH  | Numeric       | 4              | 0                  | 0 to 10                                                        |
|            |               |                |                    | Composition of final stand designation that is black spruce as |
| STD_SB     | Numeric       | 4              | 0                  | defined by AVI                                                 |
|            |               |                |                    | 0 to 10                                                        |
| CTD CD1    | Chamatan      | 2              |                    | First Species of the final stand designation (as per stand AVI |
| S1D_SP1    | Character     | 2              |                    | non-descript deciduous species                                 |
|            |               |                |                    | First Species of the final stand designation (as per stand AVI |
| STD_SP1PER | Numeric       | 4              | 0                  | codes)                                                         |
| STD SP2    | Character     | 2              |                    | Second Species of the final stand designation (as per stand    |
| 510_512    | Character     | 2              |                    | AVI codes)                                                     |
| STDDED CON | Numeria       | 4              | 0                  | Final Stand composition that is contributed by coniferous      |
| SIDPER_CON | Numeric       | 4              | 0                  | species<br>0 to 10                                             |
|            |               |                |                    | Final Stand composition that is contributed by deciduous       |
| STDPER DEC | Numeric       | 4              | 0                  | species                                                        |
| _          |               |                |                    | 0 to 10                                                        |
|            |               |                |                    | Story of Primary Management (SoPM)                             |
|            |               |                |                    | A – Stand Managed on understory but defined to a landbase      |
| STORY      | Character     | 1              |                    | C = Cutblock defined by the Cutblock rules (section 2.8.3)     |
|            |               |                |                    | O – Overstory                                                  |
|            |               |                |                    | U – Understory (A traditional "switch" stand)                  |
|            |               |                |                    | FMU                                                            |
| Theme1     | Character     | 2              |                    |                                                                |
| ThemeT     | Character     | 2              |                    | W5                                                             |
|            |               |                |                    | W6                                                             |
|            |               |                |                    | Natural Subregion as defined by the provincial data sets.      |
| Theme2     | Character     | 2              |                    | LF – Lower Foothills                                           |
|            |               |                |                    | UF – Upper Foothills                                           |
|            |               |                |                    | onerational/planning designation that divides FMUs into        |
|            |               |                |                    | harvest compartments.                                          |
|            |               |                |                    | BIGROK - Big Rock                                              |
|            |               |                |                    | BIGORY - Bigoray                                               |
|            |               |                |                    | BROCAB - Broken Cabin<br>CHIPLK Chip Lake                      |
|            |               |                |                    | COYOTE - Covote Creek                                          |
|            |               |                |                    | CRICKS - Cricks Creek                                          |
|            |               |                |                    | DEERHL - Deer Hill                                             |
| Theme3     | Character     | 8              |                    | EASTBK - East Bank                                             |
|            |               |                |                    | EASYFD - Easyford<br>ERITHY - Erith                            |
|            |               |                |                    | ETALAK - Eta Lake                                              |
|            |               |                |                    | FICKLE - Fickle Lake                                           |
|            |               |                |                    | GRANAD - Granada                                               |
|            |               |                |                    | GRANDT - Grand Trunk                                           |
|            |               |                |                    | GKANDE - Grande Prairie Trail<br>HATTON - Hattonford           |
|            |               |                |                    | KEYHOL - Key Hole                                              |
|            |               |                |                    | LOBSTK - Lobstick                                              |
|            | 1             |                |                    | LODGEP - Lodgepole                                             |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------|---------------|----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                |                    | LOSTER - Lost Elk Ridge<br>MACKAY - MacKay<br>MCLEOD - McLeod Crossing<br>MEDICI - Medicine Lodge<br>NINEML - Nine Mile<br>NMINNW – North Minnow<br>NOJACK - Nojack South<br>PEMBIN - North Pembina<br>NRATCK - North Rat Creek<br>OBEDLK - Obed Lake<br>OLDMAN - Oldman Creek<br>PADDYC - Paddy Creek<br>PADDYC - Paddy Creek<br>PIONER - Pioneer<br>RODNEY - Rodney Creek<br>SANGLK - Sang Lake<br>SHININ - Shiningbank East<br>SINKHL - Sinkhole Lake<br>SMINNW – South Minnow<br>SRATCK - South Mat Creek<br>SUNDAN - Sundance Creek<br>SUNDAN - Sundance Creek<br>SVEDBG - Svedberg<br>SWANSN - Swanson<br>TOMHIL - Tom Hill<br>TOWERX - Tower<br>TROUTC - Trout Creek |
| Theme4     | Character     | 3              |                    | Grazing disposition<br>GRZ – Grazing Allocated<br>NOT – No Grazing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Theme5     | Character     | 1              |                    | Site<br>G – Good<br>M – Medium<br>P – Poor<br>X – Not assigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Theme6     | Character     | 3              |                    | Landbase<br>CON – Coniferous Landbase<br>DEC – Deciduous Landbase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Theme7     | Character     | 4              |                    | Yield Curve Assignment<br>C1 to C111 – Coniferous dominated yield curve<br>D1 to D50 – Deciduous dominated yield curve<br>NONE – Not assigned to a yield curve (land that does not<br>support forests)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Theme8     | Character     | 1              |                    | Crown class<br>A – "A" density crown closure<br>B – "B" density crown closure<br>C – "C" density crown closure<br>D – "D" density crown closure<br>N – Not crown closure designated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Theme9     | Character     | 6              |                    | Old Growth Categories<br>OLD_DX – Pure Deciduous<br>OLD_DC – Deciduous dominated mixedwood<br>OLD_CD – Coniferous dominated mixedwood<br>OLD_PL – Pure Coniferous: Pine composition greater than<br>and equal to 80%<br>OLD_SW – Pure Coniferous: White Spruce composition<br>greater than and equal to 80%<br>OLD_PS – Pure Coniferous: White Spruce / Pine are the first<br>two species with the composition of either species not<br>greater than 79%<br>OLD_CX – Pure Coniferous: All other pure coniferous<br>stands that do not fit into any of the other old growth<br>categories (OLD_PL, OLD_SW, or OLD_PS)<br>Deletion                                            |
| Theme10    | Character     | 2              |                    | DL – Stand is a deletion and is not part of the harvestable landbase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                |                    | NO – In the harvestable landbase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Theme 11   | Character     | 2              |                    | Chip Lake Fire<br>NN – Not part of the Chip Lake Fire<br>FN – Areas within the Chip Lake Fire Zone and <u>not</u> salvaged<br>were assumed to be destroyed in the fire.<br>FS – Areas within the Chip Lake Fire Zone and salvage<br>harvested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Theme12    | Character     | 4              |                    | Operator<br>ANC – Alberta Newsprint Company<br>BR – Blue Ridge Lumber<br>CCTL – Cold Creek Timber Limited<br>EDF – EDFOR<br>ETP – Edson Timber Products<br>MW – Millar Western<br>WEY - Weyerhaeuser<br>MTU – The MTU (Miscellaneous Timber User) designation<br>was used in three of the FMUs (E2, W5, and W6). However,<br>in each FMU a different user is being referred to.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Theme13    | Character     | 4              |                    | Regeneration Tracker<br>SR – Sufficiently restocked (typically indicates fire origin)<br>RSR – Regenerating stand – sufficiently restocked<br>PSR – Operationally planned and sufficiently restocked<br>NSR - <u>Not</u> sufficiently restocked<br>NOS – No stocking category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Theme14    | Character     | 3              |                    | <ul> <li>Piece Size Strata</li> <li>P1 – Piece Stratum 1: Coniferous dominated stands (C, or CD) – Good/Medium Sites – Lower/Upper Foothills – All crown closures (Understory managed stands not included)</li> <li>P2 – Piece Stratum 2: Deciduous dominated stands (D, or DC) – Good Sites – Lower/Upper Foothills – All crown closures (Understory managed stands not included)</li> <li>P3 – Piece Stratum 3: Poor Site (Both coniferous and deciduous dominated stands) – Lower/Upper Foothills – All crown closures (Understory managed stands not included)</li> <li>P3 – Piece Stratum 3: Poor Site (Both coniferous and deciduous dominated stands) – Lower/Upper Foothills – All crown closures (Understory managed stands not included)</li> <li>P4 – Piece Stratum 4: Understory managed stands (Switch stands) only – All Sites – Lower/Upper Foothills – All crown closures</li> <li>NA – Not assigned to a piece size stratum</li> </ul> |
| U_LAND     | Character     | 3              |                    | Understory landbase assignment<br>CON – Coniferous<br>DEC – Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNI_OP     | Numeric       | 2              | 0                  | Unidentified Opening Identifier<br>0 - Not an unidentified opening<br>1 – Unidentified opening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UPER_CON   | Numeric       | 4              | 0                  | Composition of understory species that are coniferous as<br>defined by AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UPER_DEC   | Numeric       | 4              | 0                  | Composition of understory species that are deciduous as<br>defined by AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UPER_LARCH | Numeric       | 4              | 0                  | Composition of understory that is larch as defined by AVI 0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UPER_SB    | Numeric       | 4              | 0                  | Composition of understory that is black spruce as defined by<br>AVI<br>0 to 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| US_AGE     | Numeric       | 7              | 0                  | Understory age<br>Age in years                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| US_COV     | Character     | 2              |                    | Understory Broad Cover Group<br>CX – Pure Coniferous<br>CD – Coniferous Dominated Mixedwood<br>DC – Deciduous Dominated Mixedwood<br>DX – Pure Deciduous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Workab     | Character     | 8              |                    | Work area (abbreviation)<br>BIGROK - Big Rock<br>BIGORY - Bigoray<br>BROCAB - Broken Cabin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------|---------------|----------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |               |                |                    | CHIPLK - Chip Lake<br>COYOTE - Coyote Creek<br>CRICKS - Cricks Creek<br>DEERHL - Deer Hill<br>EASTBK - East Bank<br>EASTFD - Easyford<br>ERITHX - Erith<br>ETALAK - Eta Lake<br>FICKLE - Fickle Lake<br>GRANAD - Granada<br>GRANDT - Grand Trunk<br>GRANDE - Grande Prairie Trail<br>HATTON - Hattonford<br>KEYHOL - Key Hole<br>LOBSTK - Lobstick<br>LODGEP - Lodgepole<br>LOSTER - Lost Elk Ridge<br>MACKAY - MacKay<br>MCLEOD - McLeod Crossing<br>MEDICI - Medicine Lodge<br>NINEML - Nine Mile<br>NMINNW - North Minnow<br>NOJACK - Nojack South<br>PEMBIN - North Pembina<br>NRATCK - North Rat Creek<br>OBEDLK - Obed Lake<br>OLDMAN - Oldman Creek<br>PADDYC - Paddy Creek<br>SANGLK - Sang Lake<br>SHININ - Shiningbank East<br>SINKHL - Sinkhole Lake<br>SMINNW - South Minnow<br>SRATCK - South Rat Creek<br>SUNDAN - South Minnow<br>SRATCK - South Rat Creek<br>SANGLK - Sang Lake<br>SHINN - Shiningbank East<br>SINKHL - Sinkhole Lake<br>SWIDAN - South Minnow<br>SRATCK - South Rat Creek<br>SWIDAN - South Minnow<br>SRATCK - South Rat Creek<br>SWINNW - South Minnow<br>SRATCK - South Rat Creek<br>SWIDAN - Sundance Creek<br>SWINNW - South Minnow<br>SRATCK - South Rat Creek<br>SWINNW - Swanson<br>TOMHIL - Tom Hill<br>TOWERX - Tower<br>TROUTC - Trout Creek<br>ZETALK - Zeta Lake |
| WTR2       | Character     | 12             |                    | Watershed Name<br>Athabasca<br>Bear<br>Bigoray<br>Cairn<br>Carrot<br>Carrot Tower<br>Chevron<br>Chip<br>Coyote<br>Cricks<br>Cynthia<br>Deer Hill<br>East Pembina<br>Edson<br>Edson North<br>Embarras<br>Erith<br>Fairless<br>Fickle<br>Graham<br>Granada<br>Groat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Preduction     Type     Width     Decimals     Feat Description       Rel Main Main     Half Mon<br>Hardlack     Half Mon<br>Hardlack       Hardlack     Hardlack       Hardlack     Hardl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E-11 Name  | Field     | Field | No. of   | F: 14 D                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|-------|----------|------------------------|
| WTRAB       Character       6       Field Monon         WTRAB       Character       6       Field Monon         WTRAB       Character       6       Field Monon         WTRAB       Karacter       Karacter       Karacter         Karacter       Karacter       Karacter       Karacter         Karacter       Karacter       Karacter       Karacter         Karacter       Karacter       Karacter       Karacter         Karacter <td< th=""><th>Field Name</th><th>Туре</th><th>Width</th><th>Decimals</th><th>Field Description</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Field Name | Туре      | Width | Decimals | Field Description      |
| WTRAB Chameter 6 4 For the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Half Moon              |
| WTRAB Character 6 6 6 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |       |          | Hanlan                 |
| WTRAB Character 6 6 6 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td></td> <td></td> <td>Hardluck</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |       |          | Hardluck               |
| WTRAB       Character       6       6       Labstick         WTRAB       Character       6       6       Labstick         WTRAB       Character       6       Feedbace       Content         WTRAB       Character       6       Feedbace       Content       Content         WTRAB       Character       6       Feedbace       Content       Content       Content         WTRAB       Character       6       Feedbace       Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |       |          | Kathleen               |
| WTRAB Character 6 Mason MacLeod Mason MacLeod Mainer Mannow MocLeod Miller Mannow Moose Obded Oldman Paddy Pembina Poison Rally Rat North Rat South Raven Sang Shiningbank Sinkhole Slide Swartz Tom Hill Trout West Rta Witerlish Zeta Witerlish Zeta Mater Raven Sartz Tom Hill Trout West Rta Milerlish Zeta Mater Raven Case Case Case Case Case Case Case Case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |           |       |          | Ladd                   |
| WTRAB Character 6 Manual Number of Control o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Lobstick               |
| WIRAB       Character       6       Method<br>Miller         WIRAB       Character       6       Method<br>Minnow<br>Moose<br>Obed<br>Oldman<br>Paddle<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Paddly<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pethon<br>Pet |            |           |       |          | Mason                  |
| WTRAB Character 6 A Character A Solution A Character A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | McLeod                 |
| WTRAB Character 6 A Paint of the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Miller<br>Minnow       |
| WTRAB Character 6 6 6 FRITT FATR CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          | Moose                  |
| WIRAB Character 6 A Character A character of the second control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Obed                   |
| <ul> <li>WTRAB</li> <li>Character</li> <li>6</li> <li>Faddle</li> <li>Paddy</li> <li>Pembina</li> <li>Poison</li> <li>Rally</li> <li>Rath North</li> <li>Rate South</li> <li>Raven</li> <li>Sang</li> <li>Shiningbank</li> <li>Shiningbank</li> <li>Shiningbank</li> <li>Sinkole</li> <li>Slide</li> <li>Sundance</li> <li>Swartz</li> <li>Toon Hill</li> <li>Trout</li> <li>Wetshed Abbreviation</li> <li>ATM</li> <li>BEAR</li> <li>BIGO</li> <li>CARR</li> <li>CARR</li> <li>CARR</li> <li>CARR</li> <li>CARR</li> <li>CARR</li> <li>CHEV</li> <li>CHP</li> <li>COYO</li> <li>CRIC</li> <li>CYNT</li> <li>DEER</li> <li>EPEM</li> <li>EDSO</li> <li>EDSN</li> <li>EDSN</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |       |          | Oldman                 |
| WTRAB Character 6 6 6 Filter A Character F ATR F TCK GRAM GROA HALP HARA GRAM GROA HALP HARA HAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Paddle                 |
| WTRAB Character 6 A Final A Character A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |       |          | Paddy<br>Rembina       |
| WTRAB Character 6 6 For Park Rate South Rate South Rate South Raven Sang Shiningbank Shinkhole Silde Sundance Swartz Tom Hill Trout West Eta Witefish Zeta Zeta Zeta Bilde Silde Silde South Rate Sout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Poison                 |
| WTRAB Character 6 A Provide Abbreviation A pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Rally                  |
| WTRAB Character 6 A Part A Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Rat North              |
| WTRAB Character 6 A For the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Rat South              |
| WTRAB       Character       6       6       Saningbank<br>Shiningbank<br>Sinkhole<br>Sundance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swandance<br>Swan                                                                                                                                                                          |            |           |       |          | Raven                  |
| WTRAB Character 6 6 6 EDSN EDSN EDSN EDSN EDSN EDSN EDSN EDSN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |           |       |          | Sang                   |
| WTRAB       Character       6       6       Slide       Sundance         Swattz       Tom Hill       Trom Hill       Trom Hill         VTRAB       R       BAR       BEAR         BEAR       BEAR       BEAR         BEAR       CARR       CARR         CARR       CARR       CARR         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |           |       |          | Sinkhole               |
| WTRAB       Character       6       Sundance       Swartz         WTRAB       Character       6       Swartz       Tom Hill         Trout       West Eta       Whitefish       Zeta         Zeta       Zeta       Zeta       Zeta         BEAR       BEAR       BEAR         BIGO       CAR       CAR         CART       CHIP       COYO         CRIC       CYNT       DEER         EPEM       BDO       EDSN         BMBA       ENT       FAIR         FAIR       FIT       FAIR         HMAL       HALF       HANL         HAT       HAT       HAT         BUD       LOBS       MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |           |       |          | Slide                  |
| WTRAB Character 6 6 ERIT FAIR EDSN EMBA ERIT FAIR FICK GRAH GRAN GROA HALF HALL FICK GRAM MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | Sundance               |
| WTRAB Character 6 6 FERM EEEM EEEM EEEM EEEM EEEM EEEM EEEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |           |       |          | Swartz                 |
| WTRAB Character 6 6 ERIT FIGURE PERM<br>Work E Eta<br>Whitefish<br>Zeta<br>Watershed Abbreviation<br>ATHA<br>BEAR<br>BIGO<br>CAIR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>COYO<br>CHEV<br>CHIP<br>COYO<br>CVIC<br>CYNT<br>DEER<br>EPEM<br>EDSO<br>EDSN<br>EMBA<br>ENFA<br>ENFA<br>ENFA<br>ERIT<br>FICK<br>GRAH<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOSS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           |       |          | Tom Hill<br>Trout      |
| WTRAB Character 6 6 6 6 6 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | West Eta               |
| WTRAB     Character     6     Zeta       WTRAB     Character     6     Carr<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR<br>CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |           |       |          | Whitefish              |
| WTRAB Character 6 6 ERIT FAIR<br>FAIR<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>GRAN<br>HAD<br>HAD<br>HAD<br>HAD<br>HAD<br>HAD<br>HAD<br>HAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |           |       |          | Zeta                   |
| WTRAB Character 6 6 6 ERIT FAIR EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | Watershed Abbreviation |
| WTRAB Character 6 6 ERIT FAIR FICK GRAH GRAN GROA HALF HANL HARD HINT KATH LADD LOBS MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |           |       |          | ATHA                   |
| WTRAB Character 6 6 CAIR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR<br>CARR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |       |          | BIGO                   |
| WTRAB Character 6 6 CARR<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART<br>CART        |            |           |       |          | CAIR                   |
| WTRAB Character 6 6 CART<br>CHEV<br>COYO<br>CRIC<br>CYNT<br>DEER<br>EPEM<br>EDSO<br>EDSN<br>EDSN<br>EMBA<br>EMBA<br>ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAH<br>GRAH<br>GRAH<br>GRAH<br>GRAH<br>HALF<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL<br>HANL        |            |           |       |          | CARR                   |
| WTRAB Character 6 6 CHEV<br>CYNT<br>DEER<br>EPEM<br>EDSO<br>EDSN<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |       |          | CART                   |
| WTRAB Character 6 6 ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GRAA<br>GRAN<br>GRAA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |           |       |          | CHEV                   |
| WTRAB Character 6 6 ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAA<br>GRAA<br>GRAA<br>HALF<br>HANL<br>HAPD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |       |          | COYO                   |
| WTRAB Character 6 6 CYNT<br>DEER<br>EPEM<br>EDSO<br>EDSN<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA<br>EMBA        |            |           |       |          | CRIC                   |
| WTRAB Character 6 6 EPEM<br>EDSO<br>EDSN<br>EMBA<br>ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |       |          | CYNT                   |
| WTRAB Character 6 6 EPEM<br>EDSO<br>EDSN<br>EMBA<br>ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |       |          | DEER                   |
| WTRAB Character 6 6 ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GRAN<br>GRAN<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |           |       |          | EPEM                   |
| WTRAB Character 6 EMBA<br>EMBA<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | EDSO                   |
| WTRAB Character 6 ERIT<br>FAIR<br>FICK<br>GRAH<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |           |       |          | EMBA                   |
| FAIR<br>FICK<br>GRAH<br>GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WTRAB      | Character | 6     |          | ERIT                   |
| FICK<br>GRAH<br>GRAN<br>GRAN<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          | FAIR                   |
| GRAH<br>GRAN<br>GRAN<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | FICK                   |
| GRAN<br>GROA<br>HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          | GRAH                   |
| HALF<br>HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          | GROA                   |
| HANL<br>HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | HALF                   |
| HARD<br>HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          | HANL                   |
| HINT<br>KATH<br>LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | HARD                   |
| LADD<br>LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | HINT                   |
| LOBS<br>MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |           |       |          |                        |
| MASO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | LOBS                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |           |       |          | MASO                   |
| MCLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | MCLE                   |
| MILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | MILL                   |
| MINN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |       |          | MINN                   |

| Field Name | Field<br>Type | Field<br>Width | No. of<br>Decimals | Field Description                                     |  |
|------------|---------------|----------------|--------------------|-------------------------------------------------------|--|
|            | турс          | withth         | Deemais            |                                                       |  |
|            |               |                |                    | ORED                                                  |  |
|            |               |                |                    |                                                       |  |
|            |               |                |                    | PADD                                                  |  |
|            |               |                |                    | PADI                                                  |  |
|            |               |                |                    | PEMB                                                  |  |
|            |               |                |                    | PUIS                                                  |  |
|            |               |                |                    |                                                       |  |
|            |               |                |                    | RATN                                                  |  |
|            |               |                |                    | RAIS                                                  |  |
|            |               |                |                    | RAVE                                                  |  |
|            |               |                |                    | SANG                                                  |  |
|            |               |                |                    | STIN                                                  |  |
|            |               |                |                    | SINC                                                  |  |
|            |               |                |                    | SUND                                                  |  |
|            |               |                |                    | SUND<br>SWAD                                          |  |
|            |               |                |                    | DOMU                                                  |  |
|            |               |                |                    |                                                       |  |
|            |               |                |                    | WEST                                                  |  |
|            |               |                |                    | WHIT T                                                |  |
|            |               |                |                    | ZETA                                                  |  |
|            |               |                |                    | Vield curve number assigned to stand (see yield curve |  |
|            |               |                |                    | document)                                             |  |
|            |               |                |                    | Character#1: C - Coniferous Vield Curve               |  |
| YIELDNUM   | Character     | 4              |                    | D = Deciduous Vield Curve                             |  |
|            |               |                |                    | Character#2 to #4: Vield Curve Number                 |  |
|            |               |                |                    | (Example C $23 - $ Coniferous Vield Curve #23)        |  |
|            |               |                |                    | Vield Type                                            |  |
| VIEI DTVPE | Character     | 3              |                    | CON Conjerous                                         |  |
| TIELDTIFE  | Character     | 5              |                    | DEC Deciduous                                         |  |
|            |               |                |                    | DEC - Deciduous                                       |  |

## 5.2 Exhaustive list of Yield Curves

| Yield<br>Number | Broad<br>Cover     | Site       | Crown<br>Closure | Coniferous<br>Composition | Operable<br>Area |
|-----------------|--------------------|------------|------------------|---------------------------|------------------|
| [YIELDNUM]      | Group<br>[STD_COV] | [ST_SITE]  | [STD_CC]         | [STDPER_CON]              | [NETAREA]        |
|                 |                    | Coniferous | Dominated        | Yields                    |                  |
| C1              | CD                 | LFG        | А                | 5                         | 1,268            |
| C2              | CD                 | LFG        | А                | 6                         | 3,793            |
| C3              | CD                 | LFG        | А                | 7                         | 1,302            |
| C4              | СХ                 | LFG        | А                | 8                         | 1,183            |
| C5              | CX                 | LFG        | А                | 9                         | 2,422            |
| C6              | СХ                 | LFG        | А                | 10                        | 3,321            |
| C7              | CD                 | LFG        | В                | 5                         | 460              |
| C8              | CD                 | LFG        | В                | 6                         | 1,744            |
| C9              | CD                 | LFG        | В                | 7                         | 1,816            |
| C10             | СХ                 | LFG        | В                | 8                         | 2,088            |
| C11             | CX                 | LFG        | В                | 9                         | 2,244            |
| C12             | CX                 | LFG        | В                | 10                        | 2,058            |
| C13             | CD                 | LFG        | С                | 5                         | 6,497            |
| C14             | CD                 | LFG        | С                | 6                         | 9,616            |
| C15             | CD                 | LFG        | С                | 7                         | 5,676            |

| Yield<br>Number | Broad<br>Cover | Site      | Crown<br>Closure | Coniferous<br>Composition | Operable<br>Area |
|-----------------|----------------|-----------|------------------|---------------------------|------------------|
|                 | Group          |           |                  |                           |                  |
|                 | [STD_COV]      | [ST_SITE] | [STD_CC]         | [STDPER_CON]              | [NETAREA]        |
| C16             |                | LFG       | C                | 8                         | 5,141            |
| 017             | CX             | LFG       | C                | 9                         | 8,786            |
| C18             | CX             | LFG       | C                | 10                        | 2,130            |
| C19             | CD             | LFG       | D                | 5                         | 126              |
| C20             | CD             | LFG       | D                | 6                         | 377              |
| 021             | CD             | LFG       | D                | /                         | 804              |
| 022             |                | LFG       | D                | 8                         | 1,143            |
| 023             |                | LFG       | D                | 9                         | 2,462            |
| 024             |                | LFG       | D                | 10                        | 703              |
| C25             | CD             |           | A                | 5                         | 24               |
| C26             | CD             |           | A                | 6                         | 243              |
| C27             | CD             |           | A                | /                         | 347              |
| C28             | CX             |           | A                | 8                         | 492              |
| C29             | CX             |           | A                | 9                         | 1,234            |
| C30             | CX             |           | A                | 10                        | 2,162            |
| C31             | CD             |           | В                | 5                         | 8                |
| C32             | CD             |           | В                | 6                         | 219              |
| C33             | CD             | LFM       | В                | 7                         | 809              |
| C34             | CX             | LFM       | В                | 8                         | 803              |
| C35             | CX             | LFM       | В                | 9                         | 2,323            |
| C36             | СХ             | LFM       | В                | 10                        | 4,338            |
| C37             | CD             | LFM       | С                | 5                         | 99               |
| C38             | CD             | LFM       | С                | 6                         | 1,462            |
| C39             | CD             | LFM       | С                | 7                         | 1,290            |
| C40             | CX             | LFM       | С                | 8                         | 2,164            |
| C41             | CX             | LFM       | С                | 9                         | 9,984            |
| C42             | CX             | LFM       | С                | 10                        | 16,938           |
| C43             | CD             | LFM       | D                | 5                         | 0                |
| C44             | CD             | LFM       | D                | 6                         | 46               |
| C45             | CD             | LFM       | D                | 7                         | 126              |
| C46             | CX             | LFM       | D                | 8                         | 168              |
| C47             | CX             | LFM       | D                | 9                         | 2,181            |
| C48             | CX             | LFM       | D                | 10                        | 6,121            |
| C49             | CD             | LFP       | A, B, C, D       | 5                         | 156              |
| C50             | CD             | LFP       | A, B, C, D       | 6                         | 656              |
| C51             | CD             | LFP       | A, B, C, D       | 7                         | 604              |
| C52             | СХ             | LFP       | A, B, C, D       | 8                         | 589              |
| C53             | СХ             | LFP       | A, B, C, D       | 9                         | 3,301            |
| C54             | CX             | LFP       | A, B, C, D       | 10                        | 6,250            |
| C55             | CD             | UFG       | Α                | 5                         | 12               |
| C56             | CD             | UFG       | A                | 6                         | 242              |

| Yield<br>Number | Broad<br>Cover | Site | Crown<br>Closure | Coniferous<br>Composition | Operable<br>Area |
|-----------------|----------------|------|------------------|---------------------------|------------------|
|                 | Group          |      |                  | ISTORED CONI              |                  |
|                 |                |      |                  |                           | [NETAREA]<br>81  |
| C58             | CX             |      | Δ                | 8                         | 183              |
| C59             | CX             |      | Δ                | 9                         | 62               |
| C60             | CX             | UEG  | Δ                | 10                        | 334              |
| C61             | CD             | UFG  | B                | 5                         | 31               |
| C62             | CD             | UFG  | B                | 6                         | 154              |
| C63             | CD             | UFG  | B                | 7                         | 217              |
| C64             | CX             | UFG  | B                | 8                         | 309              |
| C65             | CX             | UFG  | В                | 9                         | 383              |
| C66             | СХ             | UFG  | В                | 10                        | 906              |
| C67             | CD             | UFG  | С                | 5                         | 40               |
| C68             | CD             | UFG  | С                | 6                         | 1,066            |
| C69             | CD             | UFG  | С                | 7                         | 598              |
| C70             | СХ             | UFG  | С                | 8                         | 792              |
| C71             | СХ             | UFG  | С                | 9                         | 3,156            |
| C72             | СХ             | UFG  | С                | 10                        | 3,153            |
| C73             | CD             | UFG  | D                | 5                         | 10               |
| C74             | CD             | UFG  | D                | 6                         | 49               |
| C75             | CD             | UFG  | D                | 7                         | 140              |
| C76             | CX             | UFG  | D                | 8                         | 125              |
| C77             | CX             | UFG  | D                | 9                         | 696              |
| C78             | CX             | UFG  | D                | 10                        | 1,389            |
| C79             | CD             | UFM  | А                | 5                         | 0                |
| C80             | CD             | UFM  | А                | 6                         | 0                |
| C81             | CD             | UFM  | А                | 7                         | 11               |
| C82             | CX             | UFM  | А                | 8                         | 56               |
| C83             | CX             | UFM  | А                | 9                         | 213              |
| C84             | CX             | UFM  | А                | 10                        | 326              |
| C85             | CD             | UFM  | В                | 5                         | 0                |
| C86             | CD             | UFM  | В                | 6                         | 3                |
| C87             | CD             | UFM  | В                | 7                         | 15               |
| C88             | CX             | UFM  | В                | 8                         | 0                |
| C89             | CX             | UFM  | В                | 9                         | 41               |
| C90             | CX             | UFM  | В                | 10                        | 59               |
| C91             | CD             | UFM  | С                | 5                         | 0                |
| C92             | CD             | UFM  | С                | 6                         | 70               |
| C93             | CD             | UFM  | С                | 7                         | 27               |
| C94             | CX             | UFM  | С                | 8                         | 113              |
| C95             | CX             | UFM  | С                | 9                         | 350              |
| C96             | CX             | UFM  | С                | 10                        | 48               |
| C97             | CD             | UFM  | D                | 5                         | 0                |

| Yield          | Broad                | Site      | Crown      | Coniferous                 | Operable<br>Area |
|----------------|----------------------|-----------|------------|----------------------------|------------------|
| Number         | Group                |           | Closule    | Composition                | Alea             |
| [YIELDNUM]     | [STD_COV]            | [ST_SITE] | [STD_CC]   | [STDPER_CON]               | [NETAREA]        |
| C98            | CD                   | UFM       | D          | 6                          | 0                |
| C99            | CD                   | UFM       | D          | 7                          | 3                |
| C100           | CX                   | UFM       | D          | 8                          | 1                |
| C101           | CX                   | UFM       | D          | 9                          | 11               |
| C102           | CX                   | UFM       | D          | 10                         | 71               |
| C103           | CD                   | UFP       | A, B, C, D | 5                          | 0                |
| C104           | CD                   | UFP       | A, B, C, D | 6                          | 8                |
| C105           | CD                   | UFP       | A, B, C, D | 7                          | 8                |
| C106           | СХ                   | UFP       | A, B, C, D | 8                          | 0                |
| C107           | СХ                   | UFP       | A, B, C, D | 9                          | 97               |
| C108           | СХ                   | UFP       | A, B, C, D | 10                         | 35               |
| C109           | Switch<br>Stand (CD) | LFG/UFG   | A, B, C, D | Understory Based<br>0 to10 | 9,607            |
| C110           | Switch<br>Stand (CD) | LFM/UFM   | A, B, C, D | Understory Based<br>0 to10 | 196              |
| C111           | Switch<br>Stand (CD) | LFP/UFP   | A, B, C, D | Understory Based           | 81               |
| Total Conifere | ous Dominate         | d Stand   | 1          |                            | 157,881          |
| Alca           |                      | Deciduous | Dominated  | Yields                     |                  |
| D1             | DX                   | LFG       | A          | 0                          | 1.568            |
| D2             | DX                   | LFG       | A          | 1                          | 446              |
| D3             | DX                   | LFG       | A          | 2                          | 1,365            |
| D4             | DC                   | LFG       | A          | 3                          | 2,150            |
| D5             | DC                   | LFG       | А          | 4                          | 1,700            |
| D6             | DC                   | LFG       | А          | 5                          | 402              |
| D7             | DX                   | LFG       | В          | 0                          | 6,233            |
| D8             | DX                   | LFG       | В          | 1                          | 4,709            |
| D9             | DX                   | LFG       | В          | 2                          | 2,696            |
| D10            | DC                   | LFG       | В          | 3                          | 2,903            |
| D11            | DC                   | LFG       | В          | 4                          | 1,852            |
| D12            | DC                   | LFG       | В          | 5                          | 883              |
| D13            | DX                   | LFG       | С          | 0                          | 21,316           |
| D14            | DX                   | LFG       | С          | 1                          | 19,835           |
| D15            | DX                   | LFG       | С          | 2                          | 16,522           |
| D16            | DC                   | LFG       | С          | 3                          | 9,053            |
| D17            | DC                   | LFG       | С          | 4                          | 6,513            |
| D18            | DC                   | LFG       | С          | 5                          | 1,978            |
| D19            | DX                   | LFG       | D          | 0                          | 7,095            |
| D20            | DX                   | LFG       | D          | 1                          | 4,362            |
| D21            | DX                   | LFG       | D          | 2                          | 1,423            |
| D22            | DC                   | LFG       | D          | 3                          | 718              |

| Yield<br>Number                      | Broad<br>Cover<br>Group | Site      | Crown<br>Closure | Coniferous<br>Composition | Operable<br>Area |
|--------------------------------------|-------------------------|-----------|------------------|---------------------------|------------------|
| [YIELDNUM]                           | [STD_COV]               | [ST_SITE] | [STD_CC]         | [STDPER_CON]              | [NETAREA]        |
| D23                                  | DC                      | LFG       | D                | 4                         | 334              |
| D24                                  | DC                      | LFG       | D                | 5                         | 157              |
| D25                                  | DX                      | UFG       | А                | 0                         | 53               |
| D26                                  | DX                      | UFG       | А                | 1                         | 48               |
| D27                                  | DX                      | UFG       | А                | 2                         | 135              |
| D28                                  | DC                      | UFG       | А                | 3                         | 149              |
| D29                                  | DC                      | UFG       | А                | 4                         | 5                |
| D30                                  | DC                      | UFG       | А                | 5                         | 32               |
| D31                                  | DX                      | UFG       | В                | 0                         | 144              |
| D32                                  | DX                      | UFG       | В                | 1                         | 179              |
| D33                                  | DX                      | UFG       | В                | 2                         | 114              |
| D34                                  | DC                      | UFG       | В                | 3                         | 325              |
| D35                                  | DC                      | UFG       | В                | 4                         | 119              |
| D36                                  | DC                      | UFG       | В                | 5                         | 129              |
| D37                                  | DX                      | UFG       | С                | 0                         | 358              |
| D38                                  | DX                      | UFG       | С                | 1                         | 1,013            |
| D39                                  | DX                      | UFG       | С                | 2                         | 615              |
| D40                                  | DC                      | UFG       | С                | 3                         | 579              |
| D41                                  | DC                      | UFG       | С                | 4                         | 538              |
| D42                                  | DC                      | UFG       | С                | 5                         | 258              |
| D43                                  | DX                      | UFG       | D                | 0                         | 61               |
| D44                                  | DX                      | UFG       | D                | 1                         | 20               |
| D45                                  | DX                      | UFG       | D                | 2                         | 157              |
| D46                                  | DC                      | UFG       | D                | 3                         | 33               |
| D47                                  | DC                      | UFG       | D                | 4                         | 93               |
| D48                                  | DC                      | UFG       | D                | 5                         | 10               |
| D49                                  | DX                      | LFP/UFP   | A, B, C, D       | 0 to 2                    | 362              |
| D50                                  | DC                      | LFP/UFP   | A, B, C, D       | 3 to 5                    | 490              |
| Total Deciduous Dominated Stand Area |                         |           |                  |                           |                  |

## 5.3 Individual input data layers

File name and description

avi.e00 – AVI ctp.e00 – coniferous timber permit cutblks.e00 – cutblocks data provided by Weyerhaeuser Company cutlines.e00 – non-dispositions cutlines drs.e00 – dispositions reservations ecosites.e00 – SiteLogix esip.e00 – Eastern Slopes Policy zones fire\_all.e00 – fire history

fma.e00 – FMA fmu.e00 - FMU grazing.e00 – grazing dispositions hda.e00 – harvest design areas (work areas) historical.e00 – historical resources index.e00 – township grid irp zones.e00 – Integrated Resource Plan zones lmu.e00 - LMUlu line.e00 – linear dispositions p blk.e00 – Weyerhaeuser planned block pioneer.e00 – Pioneer PNT pg blk.e00 – Quota holder planned blocks private.e00 – private land psp.e00 – PSPs quot blks.e00 – cutblocks data provide by Quota holders sp2000.e00 – old sp2000 sites (now parks) sub regions.e00 – Provincial defined natural regions sun 500m.e00 – 500m buffer around Sundance Valley park tda.e00 – polygon and linear dispositions water buff.e00 – water course buffers watershed.e00 – fourth order watersheds

# 5.4 Additions to the landbase netdown since the November 24, 2004 submission

On April 1, 2005 Weyerhaeuser received written notification from Sustainable Resource Development of an agreement-in-principle with the document that was submitted on November 24, 2005. This document replicates the process used in the previous submission. However, some coding has been added that enables for easier input of information into the modeling process (Woodstock/Stanley). There also have been some minor updates to the coding based on information that came apparent after the previous submission. Each of these additions/updates are discussed in detail below.

#### 5.4.1 Corrections to coding of the subjective deletion criteria

Pure black spruce stands were to be identified as subjective deletions (inoperable sites) by the following AVI criteria used in section 2.9.3:

Subjective Deletion 1 – Story of Primary Management has greater than and equal to 80% black spruce composition.

The original coding:

If STD\_SP1=SB and sp1per>=8 and cutident<1 and plan\_quot<1 and plan\_blk<1 then del=SB

Was replaced with (see line 729 in the code):

If STD  $SB \ge 8$  and cutident <1 and plan quot <1 and plan blk < 1 then del = SB

The original coding was very close to the intent of subjective deletion 1 however the evaluation of the stand black spruce stand composition should have been made on the story of primary management (see section 2.10) not on the overstory only. Therefore, the field that evaluates the amount of black spruce within the story of primary management [STD\_SB] was used instead. Switching to the new code had the following minimal impact on the net operable landbase:

E1 = + 175 ha E2 = + 94 ha W5 = - 4 ha W6 = + 1 ha

#### 5.4.2 Changes based on using 100m stream buffers

In the GIS file *FMA\_2004*, a buffer of 100m *[STRM100]* was applied to some river locations. The original intention was to ignore this data and use 60m buffers to be consistent with the operating ground rules. However, upon consideration by Weyerhaeusers operational foresters it was determined that in most cases (due to deviations in the accuracy of the spatial steam data and the width of the stream bank) it was operationally more realistic to use the 100m buffer length as a deletion when it was provided.

Therefore, the following code was added to the program:

if strm100=1 and cutblk<1 and quot\_blk<1 THEN DEL=ST;

This had moderate impact upon the netdown with an additional 1,285ha being assigned as stream buffers within the FMA (E1= -700 ha, E2= - 270ha, W5= -75ha, W6= -240ha). However, the actual impact on the net landbase was significantly less because a large portion of this area had already been deleted for other reasons.

#### 5.4.3 Changes to assigning first species to cutblocks

Assigning first species to a cutblock can be a difficult task because the AVI call sometimes accurately represents the post harvest block type and sometimes the call represents retention patches. Additionally, in some instances ARIS records were used in addition to AVI data as a descriptor of what is growing on cutblocks (Section 2.8.4).

For the November 24, 2004 submission it was assumed that the first species of the AVI overstory was representative of the first species of the cutblock  $[STD\_SP1=SP1]$ . However, upon review it appears that this strategy (while being sufficient in a number of cases) resulted in some instances where retention patches were used to assign the first species of a cutblock. Therefore, it was possible for ARIS to indicate that a stand was regenerating as a pure coniferous stand  $[STD\_COV=CX]$  but then assign the stand a deciduous first species from AVI. To fix this problem, the code that assigned first species for cutblocks by the first species of the overstory  $[STD\_SP1=SP1]$  was removed. First species for cutblocks is now assigned based on the landbase call to either a generic "CO" for the coniferous landbase  $[if std\_sp1= and$ 

std\_land=CON then std\_sp1=CO;] or "DE" for the deciduous landbase [if std\_sp1= and std land=DEC then std sp1=DE;].

This change has <u>no impact on non-cutblock stands</u>. The only further impact to the netdown caused by this change is that some 50% coniferous/50% deciduous mixedwoods stands were moved to a "CD" cover group from a "DC" cover group (and vice versa). This change doses not impact stand landbase assignment as that was independent of this process. For example a Coniferous landbase stand assigned the "DC" 50/50 yield curve "D24" is now a Coniferous landbase stand assigned the "CD" 50/50 yield curve "C19". To summarize by FMU:

- E1 0.2 ha from CD to DC
- E2 10.8 ha from CD to DC
- W5 721.2 ha from DC to CD
- W6 2,892.9 ha from DC to CD

There is little change in E1 and E2. However, for W5 and W6 there has been some moderately significant shift (total of 3,614 ha) from DC to CD cover groups from the previous run. The vast majority of this data 3,549 ha came from harvest rules 7, 8, and 9 (Section 2.8.4). Since all cutblocks prior to 1983 are assumed to be coniferous unless otherwise explicitly stated by ARIS it is credible to assume that there would be a bias towards coniferous dominated stands. However, for cutblocks harvested from 1983 to 1995 it is somewhat more difficult to understand how these areas should be assigned. Therefore, the HHRs (historical harvesting ratio) for stand records harvested between the years 1983 and 1995 (Table 5-3 and Table 5-4) were compared to the landbase netdown area from the net landbase.

| Land            | Area (ha) | CX and CD stands | DX and DC stands |
|-----------------|-----------|------------------|------------------|
| Management Unit | Harvested |                  |                  |
| Beaver Meadows  | 2,205     | 1,222            | 983              |
| Wolf Lake       | 1,351     | 639              | 712              |
| Cynthia         | 4,213     | 2,811            | 1,402            |
| Carrot Creek    | 1,575     | 691              | 884              |
| Total           | 9,344     | 5,363 (57%)      | 3,981 (43%)      |

Table 5-3. The HHR of coniferous versus deciduous broad cover groups by LMU (W5 and W6) for stands harvested from 1983 to 1995 (based on ARIS data)

| Table 5-4. T  | he netdown    | file coniferous v | versus decidu | ous broad cover | groups (W5 and | W6 combined) |
|---------------|---------------|-------------------|---------------|-----------------|----------------|--------------|
| for stands ha | arvested from | m 1983 to 1995    | (netdown are  | a comparison)   |                |              |

| Netdown Date      | Area (ha) of CX and CD stands | Area (ha) of DX and DC stands |
|-------------------|-------------------------------|-------------------------------|
| November 24, 2004 | 4,194 (40%)                   | 6,368 (60%)                   |
| Current Report    | 6,742 (64%)                   | 3,818 (36%)                   |

The previous (November 24, 2004) netdown resulted in a significantly greater proportion of cutblock data being assigned to deciduous broad cover groups than were indicated by the HHR (43% versus 60% - see Table 5-3 and Table 5-4 respectively). The current report having a proportion split of 64% coniferous versus 36% deciduous is much closer to the HHR split of 57% coniferous versus 43% deciduous.

These results suggest the current report is closer to the HHR and therefore the area moved from DC to CD cover groups appears to be justified. The shift of 3,600 ha from a 50/50 DC yield

curve to a 50/50 CD yield curve ultimately causes a small impact on the AAC. This change causes no shift in landbase assignment as both CD and DC cover groups are part of the coniferous landbase in W5 and W6 (or in E1 and E2 part of the deciduous landbase). This also has no operational consequences because none of these blocks will be harvested within the lifespan of this DFMP therefore; this issue will be clarified in the future as subsequent data are provided.

#### 5.4.4 Input from operational foresters

Since the November 24, 2004 netdown there have been several inputs by operation foresters (from Weyerhaeuser, other operators, and SRD). After observing the first draft sequence operations foresters noticed some problems with the sequence caused by a variety of issues including:

- recent changes to the status of planned blocks and cutblocks that had not been captured in the original landscape coverages
- poor harvest sequence
- poor access
- inoperable areas
- areas incorrectly assigned

Changes observed by operations personnel are tracked in the following fields:

- PB\_OPER2 Operations identified harvester of sequenced blocks in the Cynthia LMU in FMU W6.
- OPS\_CODE All operational changes were provided a grouping code to make future identification easier.
- OPS\_SEQ Identified polygons to be sequenced for harvest
- OPS\_SQCP Identified the cut period that polygons are to be harvested
- OPS\_LOCK Identified polygons to be temporality locked from being sequenced
- OPS\_DEL Identified operational deletions

These issues were than added to the netdown process by a series of files that linked directly to the *FMA\_finassign* file through the *GIS\_LINK* field and the SAS program was re-run to reflect these changes.

#### 5.4.4.1 Assigning Operators within the Cynthia LMU

After the November 24, 2004 netdown submission Weyerhaeuser operations foresters identified the scheduled harvester of a number of pre-planned blocks within the Cynthia LMU in W6F *[Cynthia\_pb]*. This coverage was linked into the landbase assignment file *[FMA\_finassign]* by the *[PB\_Num]* field, which is the ARIS opening number for planned blocks. The imported field *[PB\_Oper2]* was then used to update the *[Planner]* field, which defines the operators for sequenced planned blocks.

This change has no impact on the netdown and is used only within Woodstock as a reporting tool.

#### 5.4.4.2 **Operational Deletions**

Three additional deletion areas were identified by operations foresters that had not been removed from the operable landbase in the November 24, 2005 submission. Two of these deletion areas were located in FMU W6. Firstly, an oxbow island was removed (Figure 5-1) because it was determined that the expense required to access this location (a total of 16 ha) is too great to justify over the foreseeable future (this can be reviewed during the next DFMP). Therefore, the entire island was removed from the operable landbase [File=W6 bigo del:OPS CODE =W6 GR5].



Secondly, a total of 8 ha located between a road and a pipeline Figure 5-1

Figure 5-1 Bigory oxbow island - operational deletion

were deemed to be inoperable (Township 48 Range 11 - Figure 5-3)

[*File=W6\_pipe\_del:OPS\_CODE=W6\_GR6*]. This will be re-examined during the next DFMP process. Finally in E2, 43 ha were not correctly identified as private land (in Township 51 Range 8) and were removed from the operable landbase (Figure 5-3). All of these deletion polygons are identified by an "OP" placed in the [*DEL*] field [*File=E2\_priv\_del:OPS\_CODE=E2\_GR1*].



#### 5.4.4.3 Operational Locking of Stands

Upon instruction from operational foresters a number of stands were locked for harvest due to a variety of reasons which included:

- improving the harvest sequence
- poor access
- prohibiting harvesting in areas to maintain contiguous areas of minimally impacted forest

A summary of lock [input file:OPS\_CODE] designations by FMU are as follows:

<u>E1</u> E1P3:E1P3 E1P5:E1P5 E1P9:E1P9 E1P10:E1P10

E2\_obed\_lock:E2GR2 E2\_moos\_lock:E2GR4 E2\_camp\_lock:E2GR6
## <u>W5</u> None

#### W6

W6 nojs lock:W6 GR1 W6 gas np lock:W6 GR2 W6 gas sr lock:W6 GR4 W6 GL1:W6 GL1 W6 GL2:W6 GL2 W6 GL3:W6 GL3 W6 GL4:W6 GL4 W6 GL5:W6 GL5 W6 GL6:W6 GL6

#### 5.4.4.4 Operational Sequencing

Planning foresters selected stands to improve sequencing.

A summary of sequenced *[input file:OPS CODE]* designations by FMU are as follows:

#### E1

E1\_SVED\_SEQ:E1\_1SEQ E1P1:E1P1 E1P2:E1P2 E1P4:E1P4 E1P7:E1P7 E1P8:E1P8

#### E2

E2 gp seq:E2GR5 E2 miss seq:E2GR6  $E2\overline{P}1:E2\overline{P}1$ 

#### <u>W5</u>

W5 er seq:W5 GR1

#### <u>W6</u>

 $\overline{W6}$  and seq:W6 ANCS W6 mw seq:W6 GR3 W6 GS1:W6 GS1 W6 GS2:W6 GS2 W6 GS4:W6 GS4 W6 GS5:W6 GS5 W6 GS6:W6 GS6

#### **Marginal Stands** 5.4.5

The Edson FMA has a number of different timber operators with diverse standards. These operators have an agreement upon the definition of what constitutes a truly merchantable stand. However, there is a relatively small range of forest types (hereafter called *marginal*) where some disparities between operators arose as to if marginal stands are viable for operations.

During the landbase allocation portion of the DFMP process, Weyerhaeuser in discussion with other Edson FMA timber harvesters developed a set of agreed upon "rules" to identify the merchantable landbase. These rules were used in the submitted November 24, 2004 as subjective deletions. The Edson FMA AACs were set based upon this "approved" netdown procedure along with the "approved" yield curves (volume from marginal stands not included).

In general subjective deletions identify stands located on wet sites. The two subjective deletion rules used were: 1) Stands with 10% or more Larch composition or; 2) Stands with 80% or more Black spruce composition.

To identify the *marginal* area all subjectively deleted stands with the most favorable AVI stand attributes were identified. During meetings and discussions with Edson FMA timber harvesters the following rules were agreed upon to indicate potential marginal stands (all the following must be true to qualify).

- a. Area must have been assigned as a subjective deletion only and must <u>not</u> have greater than 20% larch composition (for example a 100% pure black spruce stand within a stream buffer cannot be considered marginal).
- b. Stand must be greater than and equal to 14m tall
- c. Stand must have greater than an "A" crown closure

Marginal stands are represented in the database when marg op=1.

| FMU | Area of stands with 10% or    | Area of stands with 80% or greater black | Total marginally     |
|-----|-------------------------------|------------------------------------------|----------------------|
|     | 20% larch that are defined as | spruce that are defined as marginally    | productive area (ha) |
|     | marginally productive (ha)    | productive (ha)                          |                      |
| E1  | 748                           | 2,047                                    | 2,795                |
| E2  | 1,061                         | 1,814                                    | 2,875                |
| W5  | 400                           | 354                                      | 754                  |
| W6  | 1,255                         | 2,103                                    | 3,358                |

#### Table 5-5. Marginally productive stand areas by FMU

#### 5.4.6 Assigning Piece Size Strata

Four strata were used to project piece size across the Edson FMA.

- Coniferous dominated stands (C, or CD) Good/Medium Sites Lower/Upper Foothills – All crown closures (Understory managed stands (Switch) <u>not</u> included)
- 2. Deciduous dominated stands (D, or DC) Good Sites Lower/Upper Foothills All crown closures (Understory managed stands (Switch) not included)
- 3. Poor Site (Both coniferous and deciduous dominated stands) Lower/Upper Foothills All crown closures (Understory managed stands (Switch) <u>not</u> included)
- 4. Understory managed stands All Sites Lower/Upper Foothills All crown closures

| PStrata | Site         | Stand Type             | Area (ha) |  |  |
|---------|--------------|------------------------|-----------|--|--|
| 1       | Good/ Medium | Coniferous             | 136,292   |  |  |
| 2       | Good         | Deciduous              | 106,490   |  |  |
| 3       | Poor         | Coniferous / Deciduous | 12,558    |  |  |
| 4       | All          | Understory Managed     | 27,775    |  |  |

Table 5-6 Area (ha) by Piece Strata Group

To clarify the above understory management regime does not match exactly with the understory SoPM defined in (Section 2.10.1). The piece size strata are based upon a stand alone analysis as outlined in the Yield Projections Report.

#### 5.4.7 Woodstock Input files

To ensure a realistic harvest sequence, two goals within the timber supply model (Woodstock) were to ensure harvesting across the profile of the operable landbase and to ensure that a minimum critical level of late seral stage stand area remains on the FMA over time.

#### 5.4.7.1 Harvesting across the profile

To ensure sustainability, constraints were used in the Woodstock/Stanley timber supply analysis model to ensure that there are no significant biases toward any strata types. When no such controls were maintained, operational problems were caused because disproportionately high amounts of low density (CC=A) stand areas were being scheduled for harvested. The reason being the model was attempting to take maximum benefit from moving understocked stands to fully-stocked status.

To avoid this problem, crown closure and site class were identified as the two selection factors which most strongly influence the volume obtained from a stand. In the TSA each FMU is identified as a sustained yield unit and the area by crown closure class and site class were estimated for each unit. The goal was to identify a range of areas for each class that allowed for flexibility in the TSA model yet ensured that most harvest strata types are harvested in some proportional type to its distribution with in the operable landbase. Therefore, the goal harvest range for each site and crown closure class was to harvest between +50% or -50% of the proportional harvest area based on the rotation age (Table 5-7, Table 5-8). For easier implementation into the TSA model, the ranges were reported for each 5-year-period.

| (Col.1) | (Col.2)  | (Col.3) | (Col.4)                  | (Col.5)                    | (Col.6)                                                     | (Col.7)                                      | (Col.8)                                      |
|---------|----------|---------|--------------------------|----------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| FMU     | Landbase | Site    | Operable<br>Area<br>(ha) | Rotation<br>Age<br>(Years) | 5-year<br>Proportional<br>Harvest Area<br>(Col.4)*5/(Col.5) | Lower 50%<br>Harvest<br>Area<br>(Col.6)*0.50 | Upper 50%<br>Harvest<br>Area<br>(Col.6)*1.50 |
|         |          | G       | 16,530                   | 80                         | 1,033                                                       | 517                                          | 1,550                                        |
|         | CON      | М       | 17,675                   | 80                         | 1,105                                                       | 552                                          | 1,657                                        |
| E1      |          | Р       | 2,901                    | 80                         | 181                                                         | 91                                           | 272                                          |
|         |          | G       | 16,045                   | 80                         | 1,003                                                       | 501                                          | 1,504                                        |
|         | DEC      | М       | 850                      | 80                         | 53                                                          | 27                                           | 80                                           |
|         |          | Р       | 168                      | 80                         | 10                                                          | 5                                            | 16                                           |
|         | CON      | G       | 14,405                   | 80                         | 900                                                         | 450                                          | 1,351                                        |
| E2      |          | М       | 5,464                    | 80                         | 341                                                         | 171                                          | 512                                          |
|         |          | Р       | 1,021                    | 80                         | 64                                                          | 32                                           | 96                                           |
|         | DEC      | G       | 44,687                   | 80                         | 2,793                                                       | 1,396                                        | 4,189                                        |
|         |          | М       | 1,365                    | 80                         | 85                                                          | 43                                           | 128                                          |
|         |          | Р       | 251                      | 80                         | 16                                                          | 8                                            | 24                                           |
|         |          | G       | 9,778                    | 100                        | 489                                                         | 244                                          | 733                                          |
|         | CON      | М       | 3,843                    | 100                        | 192                                                         | 96                                           | 288                                          |
| W5      |          | Р       | 1,708                    | 100                        | 85                                                          | 43                                           | 128                                          |
|         | DEC      | G       | 17,289                   | 80                         | 1,081                                                       | 540                                          | 1,621                                        |
|         | DEC      | Р       | 61                       | 80                         | 4                                                           | 2                                            | 6                                            |
|         |          | G       | 54,742                   | 80                         | 3,421                                                       | 1,711                                        | 5,132                                        |
|         | CON      | М       | 25,998                   | 80                         | 1,625                                                       | 812                                          | 2,437                                        |
| W6      |          | Р       | 6,394                    | 80                         | 400                                                         | 200                                          | 599                                          |
|         | DEC      | G       | 38,804                   | 80                         | 2,425                                                       | 1,213                                        | 3,638                                        |
|         | DEC      | Р       | 136                      | 80                         | 9                                                           | 4                                            | 13                                           |

Table 5-7. Proportional 5-year operational harvest area target for the TSA model by Site Class

Table 5-8. Proportional 5-year operational harvest area target for TSA model by Crown Closure Class

| (Col.1)     | (Col.2)  | (Col.3)                 | (Col.4)                  | (Col.5)                    | (Col.6)                                                     | (Col.7)                                   | (Col.8)                                   |
|-------------|----------|-------------------------|--------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| FMU         | Landbase | AVI<br>Crown<br>Closure | Operable<br>Area<br>(ha) | Rotation<br>Age<br>(Years) | 5-year<br>Proportional<br>Harvest Area<br>(Col.4)*5/(Col.5) | Lower 50%<br>Harvest Area<br>(Col.6)*0.50 | Upper 50%<br>Harvest Area<br>(Col.6)*1.50 |
|             |          | Α                       | 5,491                    | 80                         | 343                                                         | 172                                       | 515                                       |
|             | CON      | В                       | 6,157                    | 80                         | 385                                                         | 192                                       | 577                                       |
|             |          | С                       | 16,744                   | 80                         | 1,046                                                       | 523                                       | 1,570                                     |
| <b>T</b> 71 |          | D                       | 8,715                    | 80                         | 545                                                         | 272                                       | 817                                       |
| E1          |          | Α                       | 1,394                    | 80                         | 87                                                          | 44                                        | 131                                       |
|             | DEC      | В                       | 3,074                    | 80                         | 192                                                         | 96                                        | 288                                       |
|             | DEC      | С                       | 10,180                   | 80                         | 636                                                         | 318                                       | 954                                       |
|             |          | D                       | 2,414                    | 80                         | 151                                                         | 75                                        | 226                                       |
| E2          | CON      | Α                       | 3,808                    | 80                         | 238                                                         | 119                                       | 357                                       |
|             |          | В                       | 4,731                    | 80                         | 296                                                         | 148                                       | 444                                       |
|             |          | С                       | 9,378                    | 80                         | 586                                                         | 293                                       | 879                                       |

| (Col.1)    | (Col.2)  | (Col.3)                 | (Col.4)                  | (Col.5)                    | (Col.6)                                                     | (Col.7)                                   | (Col.8)                                   |
|------------|----------|-------------------------|--------------------------|----------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| FMU        | Landbase | AVI<br>Crown<br>Closure | Operable<br>Area<br>(ha) | Rotation<br>Age<br>(Years) | 5-year<br>Proportional<br>Harvest Area<br>(Col.4)*5/(Col.5) | Lower 50%<br>Harvest Area<br>(Col.6)*0.50 | Upper 50%<br>Harvest Area<br>(Col.6)*1.50 |
|            |          | D                       | 2,972                    | 80                         | 186                                                         | 93                                        | 279                                       |
|            |          | Α                       | 3,010                    | 80                         | 188                                                         | 94                                        | 282                                       |
|            | DEC      | В                       | 8,945                    | 80                         | 559                                                         | 280                                       | 839                                       |
|            |          | С                       | 29,094                   | 80                         | 1,818                                                       | 909                                       | 2,728                                     |
|            |          | D                       | 5,254                    | 80                         | 328                                                         | 164                                       | 493                                       |
|            |          | Α                       | 5,569                    | 100                        | 278                                                         | 139                                       | 418                                       |
|            | CON      | В                       | 2,003                    | 100                        | 100                                                         | 50                                        | 150                                       |
|            |          | С                       | 6,778                    | 100                        | 339                                                         | 169                                       | 508                                       |
| W5         |          | D                       | 978                      | 100                        | 49                                                          | 24                                        | 73                                        |
| <b>W</b> 5 | DEC      | Α                       | 1,455                    | 80                         | 91                                                          | 45                                        | 136                                       |
|            |          | В                       | 2,986                    | 80                         | 187                                                         | 93                                        | 280                                       |
|            | DEC      | С                       | 9,112                    | 80                         | 569                                                         | 285                                       | 854                                       |
|            |          | D                       | 3,798                    | 80                         | 237                                                         | 119                                       | 356                                       |
|            |          | Α                       | 12,724                   | 80                         | 795                                                         | 398                                       | 1,193                                     |
|            | CON      | В                       | 17,323                   | 80                         | 1,083                                                       | 541                                       | 1,624                                     |
|            | CON      | С                       | 53,073                   | 80                         | 3,317                                                       | 1,659                                     | 4,976                                     |
| W6         |          | D                       | 4,014                    | 80                         | 251                                                         | 125                                       | 376                                       |
|            |          | Α                       | 1,190                    | 80                         | 74                                                          | 37                                        | 112                                       |
|            | DEC      | В                       | 5,230                    | 80                         | 327                                                         | 163                                       | 490                                       |
|            | DEC      | С                       | 28,513                   | 80                         | 1,782                                                       | 891                                       | 2,673                                     |
|            |          | D                       | 4,008                    | 80                         | 250                                                         | 125                                       | 376                                       |

#### 5.4.7.2 Maintaining a remanent of old seral stages

Ensuring a remnant level of old seral stages was deemed to be an important target for this management plan. Weyerhaeusers Senior Ecologist provided a list of critical minimum areas that must be maintained (Table 5-9) for six old growth broad cover groups (see Section 2.10.4). These areas were directly input into the TSA model of each FMU.

| Table 5-9. Minimum old growth areas to be maintained within the TS | SA model by broad cover group |
|--------------------------------------------------------------------|-------------------------------|
|--------------------------------------------------------------------|-------------------------------|

| (Col.1) | (Col.2)                   | (Col.3)                                        | (Col.4)                                                                                   | (Col.5)                                                                                        | (Col.6)                                                                              | (Col.7)                                        | (Col.8)                                                                         | (Col.9)                                                                                 | (Col.10)                                                                                   |
|---------|---------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| FMU     | Natural<br>Sub-<br>region | Old Growth<br>Broad Cover<br>Group<br>Category | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Late Seral<br>Stage or<br>Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Very Late<br>Seral Stage<br>or Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Over-mature<br>Seral Stage | Gross<br>Area (ha)<br>Operable +<br>Inoperable | Minimum<br>Area that Must Be<br>Late Seral Stage<br>or Older<br>(Col.7)*(Col.4) | Minimum<br>Area that<br>Must Be Very<br>Late Seral<br>Stage or Older<br>(Col.7)*(Col.5) | Minimum<br>Area that<br>Must Be Over-<br>mature Seral<br>Stage or Older<br>(Col.7)*(Col.6) |
| E1      | LF                        | CD                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 11,179                                         | 559                                                                             | 112                                                                                     | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 47,952                                         | 2,398                                                                           | 480                                                                                     | 0                                                                                          |
|         |                           | DC                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 5,644                                          | 282                                                                             | 56                                                                                      | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 7,015                                          | 351                                                                             | 70                                                                                      | 0                                                                                          |
|         |                           | Pure CX<br>Pine Leading                        | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 22,109                                         | 1,105                                                                           | 221                                                                                     | 0                                                                                          |

| (Col.1) | (Col.2)                   | (Col.3)                                        | (Col.4)                                                                                   | (Col.5)                                                                                        | (Col.6)                                                                              | (Col.7)                                        | (Col.8)                                                                         | (Col.9)                                                                                 | (Col.10)                                                                                   |
|---------|---------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| FMU     | Natural<br>Sub-<br>region | Old Growth<br>Broad Cover<br>Group<br>Category | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Late Seral<br>Stage or<br>Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Very Late<br>Seral Stage<br>or Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Over-mature<br>Seral Stage | Gross<br>Area (ha)<br>Operable +<br>Inoperable | Minimum<br>Area that Must Be<br>Late Seral Stage<br>or Older<br>(Col.7)*(Col.4) | Minimum<br>Area that<br>Must Be Very<br>Late Seral<br>Stage or Older<br>(Col.7)*(Col.5) | Minimum<br>Area that<br>Must Be Over-<br>mature Seral<br>Stage or Older<br>(Col.7)*(Col.6) |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 3,769                                          | 188                                                                             | 38                                                                                      | 0                                                                                          |
|         |                           | Pure CX<br>White Spruce<br>Leading             | 10.0%                                                                                     | 2.0%                                                                                           | NA                                                                                   | 3,014                                          | 301                                                                             | 60                                                                                      | 0                                                                                          |
|         |                           | CD                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 63                                             | 3                                                                               | 1                                                                                       | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 105                                            | 10                                                                              | 5                                                                                       | 3                                                                                          |
|         |                           | DC                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 55                                             | 3                                                                               | 1                                                                                       | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 84                                             | 4                                                                               | 2                                                                                       | 0                                                                                          |
|         | UF                        | Pure CX<br>Pine Leading                        | 2.0%                                                                                      | 1.0%                                                                                           | 0.5%                                                                                 | 121                                            | 2                                                                               | 1                                                                                       | 1                                                                                          |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 26                                             | 3                                                                               | 1                                                                                       | 1                                                                                          |
|         |                           | Pure CX<br>White Spruce<br>Leading             | 15.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 10                                             | 1                                                                               | 0                                                                                       | 0                                                                                          |
|         |                           | CD                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 9,204                                          | 460                                                                             | 92                                                                                      | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 31,661                                         | 1,583                                                                           | 317                                                                                     | 0                                                                                          |
|         |                           | DC                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 7,734                                          | 387                                                                             | 77                                                                                      | 0                                                                                          |
|         | LF                        | DX                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 31,883                                         | 1,594                                                                           | 319                                                                                     | 0                                                                                          |
|         |                           | Pure CX<br>Pine Leading                        | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 5,828                                          | 291                                                                             | 58                                                                                      | 0                                                                                          |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 2,335                                          | 117                                                                             | 23                                                                                      | 0                                                                                          |
| F)      |                           | Pure CX<br>White Spruce<br>Leading             | 10.0%                                                                                     | 2.0%                                                                                           | NA                                                                                   | 2,313                                          | 231                                                                             | 46                                                                                      | 0                                                                                          |
| E2      |                           | CD                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 1,952                                          | 98                                                                              | 39                                                                                      | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 1,650                                          | 165                                                                             | 83                                                                                      | 41                                                                                         |
|         |                           | DC                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 2,062                                          | 103                                                                             | 41                                                                                      | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 2,482                                          | 124                                                                             | 50                                                                                      | 0                                                                                          |
|         | UF                        | Pure CX<br>Pine Leading                        | 2.0%                                                                                      | 1.0%                                                                                           | 0.5%                                                                                 | 3,798                                          | 76                                                                              | 38                                                                                      | 19                                                                                         |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 622                                            | 62                                                                              | 31                                                                                      | 16                                                                                         |
|         |                           | Pure CX<br>White Spruce<br>Leading             | 15.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 495                                            | 74                                                                              | 25                                                                                      | 12                                                                                         |
| W5      | LF                        | CD                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 5,454                                          | 273                                                                             | 55                                                                                      | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 19,181                                         | 959                                                                             | 192                                                                                     | 0                                                                                          |
|         |                           | DC                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 4,391                                          | 220                                                                             | 44                                                                                      | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 18,436                                         | 922                                                                             | 184                                                                                     | 0                                                                                          |

| (Col.1) | (Col.2)                   | (Col.3)                                        | (Col.4)                                                                                   | (Col.5)                                                                                        | (Col.6)                                                                              | (Col.7)                                        | (Col.8)                                                                         | (Col.9)                                                                                 | (Col.10)                                                                                   |
|---------|---------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| FMU     | Natural<br>Sub-<br>region | Old Growth<br>Broad Cover<br>Group<br>Category | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Late Seral<br>Stage or<br>Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Very Late<br>Seral Stage<br>or Older | Minimum<br>Percentage of<br>Gross Area<br>that Must Be<br>Over-mature<br>Seral Stage | Gross<br>Area (ha)<br>Operable +<br>Inoperable | Minimum<br>Area that Must Be<br>Late Seral Stage<br>or Older<br>(Col.7)*(Col.4) | Minimum<br>Area that<br>Must Be Very<br>Late Seral<br>Stage or Older<br>(Col.7)*(Col.5) | Minimum<br>Area that<br>Must Be Over-<br>mature Seral<br>Stage or Older<br>(Col.7)*(Col.6) |
|         |                           | Pure CX<br>Pine Leading                        | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 3,761                                          | 188                                                                             | 38                                                                                      | 0                                                                                          |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 707                                            | 35                                                                              | 7                                                                                       | 0                                                                                          |
|         |                           | Pure CX<br>White Spruce<br>Leading             | 10.0%                                                                                     | 2.0%                                                                                           | NA                                                                                   | 1,672                                          | 167                                                                             | 33                                                                                      | 0                                                                                          |
|         |                           | CD                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 20,398                                         | 1,020                                                                           | 204                                                                                     | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 76,207                                         | 3,810                                                                           | 762                                                                                     | 0                                                                                          |
|         |                           | DC                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 14,491                                         | 725                                                                             | 145                                                                                     | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 40,141                                         | 2,007                                                                           | 401                                                                                     | 0                                                                                          |
|         | LF                        | Pure CX<br>Pine Leading                        | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 24,684                                         | 1,234                                                                           | 247                                                                                     | 0                                                                                          |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 5.0%                                                                                      | 1.0%                                                                                           | NA                                                                                   | 4,333                                          | 217                                                                             | 43                                                                                      | 0                                                                                          |
| W6      |                           | Pure CX<br>White Spruce<br>Leading             | 10.0%                                                                                     | 2.0%                                                                                           | NA                                                                                   | 12,595                                         | 1,259                                                                           | 252                                                                                     | 0                                                                                          |
| WU      |                           | CD                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 985                                            | 49                                                                              | 20                                                                                      | 0                                                                                          |
|         |                           | Other Pure<br>CX                               | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 9,085                                          | 908                                                                             | 454                                                                                     | 227                                                                                        |
|         |                           | DC                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 347                                            | 17                                                                              | 7                                                                                       | 0                                                                                          |
|         |                           | DX                                             | 5.0%                                                                                      | 2.0%                                                                                           | NA                                                                                   | 625                                            | 31                                                                              | 13                                                                                      | 0                                                                                          |
|         | UF                        | Pure CX<br>Pine Leading                        | 2.0%                                                                                      | 1.0%                                                                                           | 0.5%                                                                                 | 4,327                                          | 87                                                                              | 43                                                                                      | 22                                                                                         |
|         |                           | Pure CX<br>Pine/White<br>Spuce<br>Mix          | 10.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 117                                            | 12                                                                              | 6                                                                                       | 3                                                                                          |
|         |                           | Pure CX<br>White Spruce<br>Leading             | 15.0%                                                                                     | 5.0%                                                                                           | 2.5%                                                                                 | 206                                            | 31                                                                              | 10                                                                                      | 5                                                                                          |

## 5.4.7.3 Summary of change in net area from November 24, 2004 netdown compared to the current netdown

The netdown represented in this report has removed an additional 944 hectares from the operable landbase compared to the November 24, 2004 netdown (Table 5-10). This is a relatively small area which constitutes a change of only 0.3%. Most of the difference was caused by including the 100 m stream buffers (especially along the Pembina River).

|                                     | E1   | E2   | W5  | W6   | FMA  |
|-------------------------------------|------|------|-----|------|------|
| <b>Operable Deciduous Landbase</b>  | -232 | -148 | -58 | -48  | -486 |
| <b>Operable Coniferous Landbase</b> | -258 | -64  | -21 | -115 | -458 |
| Total Operable Landbase             | -490 | -212 | -79 | -163 | -944 |

Table 5-10 Change in area (ha) November 24, 2004 landbase netdown compared to the current netdown represented within this report

#### 5.5 Preparing data for input into Woodstock/Stanley

After completion of the SAS netdown a number of additional steps were required to prepare data for input into Woodstock. These changes only impact the timing and sequencing of harvesting. In no way was a stand designation changed as to if it was in or out of the operable landbase or its assignment as being managed for coniferous or deciduous volume.

The SAS file created as the output link to Woodstock/Stanley was the *FMA\_gis* table (Figure 2-2). Several steps were needed to ensure that all the data from operations foresters were captured prior to using the file as an input into the TSA model. A total of three steps were taken to integrate all the post planning input (Figure 5-4).



Figure 5-4 Procedure of going from SAS netdown output file to Woodstock/Stanley Input

#### Step 1 – Adding additional planned blocks

After the November 24, 2005 netdown, additional planned blocks were identified by Weyerhaeuser. This coverage was provided as a shapefile *[NewPlanned\_Blocks]* from operations foresters. The boundaries for the new planned blocks represent an operable solution and often did not exactly follow the boundaries for the coverages presented in November 24, 2005. Initially the intent was to use the AVI boundaries as a proxy for the planned block boundaries. However, this resulted in some gross differences from the current planned blocks. Therefore, it was determined that the easiest solution to this issue was to use the *ARCGIS 9* "union" function.

The *FMA\_GIS\_Preunion* shapefile was "unioned" to the *NewPlanned Blocks* shapefile. In the context of the total dataset very few polygons (0.1%) were impacted by this procedure (*FMA\_GIS\_Preunion* has 2,120,869 polygons versus 2,122,281 polygons for *FMA\_GIS\_PostunionNPB*). Care was taken to ensure that all polygon areas were recalculated after this procedure and that the total area matched before and after the union.

#### Step 2 – Post\_join shapefile is joined to SAS output file

The *FMA\_PostunionNPB* shapefile was linked to the SAS Woodstock/Stanley output file *[FMA\_GIS]* through the *GIS\_LINK field*. The linking of the *[FMA\_PostunionNPB]* shapefile to the *[FMA\_GIS]* SAS output file (based on the *GIS\_LINK* field) was a one-to-many join. While in some regards this appears unappealing, in reality this has no impact on data integrity as the netdown polygon call from *[FMA\_GIS]* is the same for split polygons as before the "union". The polygon areas for *[FMA\_GIS]* are then replaced with the new polygon areas within the *[FMA\_Postunion]* shapefile. To ensure future one-to-one joining of polygons a new unique polygon identifier was made *[New\_uni]*.

#### Step 3 – Run FoxPro program Post\_SAS\_P1

The dbf file from the resultant shapefile from step 2 [*FMA\_np\_theme*] was run through a Fox-pro program to correctly capture the new planned block data correctly. There were a number of data steps preformed including:

- **Identifying new cutblocks** Ensuring that all recent cutblocks (called "new cuts" [*new\_cut=Y]*) that could impact the harvest sequence due to green-up constraints were correctly assigned to a cut period. New cuts were defined as areas less than and equal to 20 years for pure coniferous stands and less than and equal to 15 years for pure deciduous stands and mixedwoods.
- Fully integrate the new planned blocks Assigning the new planned blocks [newplanned=1] (from step 2 above) to a correct cut period and when possible to an operator.
- Assign other planned blocks to operators Using general rules to assign cut blocks to operators. These rules include:
  - Assign all deciduous landbase blocks in either FMUs W6 or E1 to Weyerhaeuser unless otherwise designated.
  - Assign all coniferous landbase cutblocks within the Cynthia LMU in FMU W6 to Weyerhaeuser unless otherwise designated.
  - Assign all coniferous landbase cutblocks within the Wolf Lake LMU in FMU W6 to ANC unless otherwise designated.

- Assign all coniferous landbase cutblocks within the Carrot Creek LMU in FMU W6 to Blue Ridge Lumber unless otherwise designated.
- Assign all planned areas (coniferous and deciduous) within Lobstick HDA of W5 to the MTU.
- Divide W6 Minnow HDA into South Minnow and North Minnow
  - In W6 the intent was to have the major coniferous operators (ANC, Blue Ridge, and Weyerhaeuser) harvesting in different Land management units LMUs over the harvest sequence. This HDA was split as a potential fix to a problem of not quite enough forest area being present in the Carrot Creek LMU to fulfill Millar Western and Blue Ridges volume requirements.

After the program was run the output FMA file [*FMA\_np\_theme\_p1*] was separated into four separate FMU coverages [*E1\_np\_theme\_p1*, *E2\_np\_theme\_p1*, *W5\_np\_theme\_p1*, *W6\_np\_theme\_p1*]. These coverages were used as the initial Woodstock/Stanley input data.

# 5.6 GIS Processing Document (data and documentation provided by Silvacom Ltd.)

## Development of spatial composite landbase coverage for net landbase determination

All data sets were assembled into ArcInfo Coverage format from the source information and projected to UTM, Zone 11, NAD83 Datum if required. Only the required attributes (see table below) were maintained for each input layer (as identified by Weyerhaeuser). All input data sets listed below were overlaid together to produce a composite landbase coverage to be used in the net landbase determination. The software and operating system used to produce this overlay product was ESRI Workstation ArcInfo version 8.3 on UNIX. The input data sets were overlaid in the order listed in the table below. All spatial processing was done using a fuzzy tolerance of 0.001 and a dangle tolerance of 0. All of the separate input data sets and the final composite landbase coverage are currently stored at Silvacom and will be distributed as part of the deliverable for this project. The following table summarizes the input coverages used in creating the initial gross landbase spatial GIS coverage.

| GIS<br>Coverage                  | Source                              | Description                                | Database<br>Fields | Dropped<br>Fields   | Unique<br>Issues |
|----------------------------------|-------------------------------------|--------------------------------------------|--------------------|---------------------|------------------|
| FMA                              | Data provided<br>by<br>Weyerhaeuser | Forest Management<br>Agreement<br>Boundary | FMA                | LOCATION_D          |                  |
| Township                         | Data provided<br>by<br>Weyerhaeuser | Township Identifier                        | TOWNSHIP           |                     |                  |
| FMU                              | Data provided<br>by<br>Weyerhaeuser | Forest Management<br>Unit Boundaries       | FMU                | NAME                |                  |
| Landscape<br>Management<br>Units | Data provided<br>by<br>Weyerhaeuser | Landscape<br>Management Unit<br>Boundaries | LMU                | COMPARTMENT,<br>FMA |                  |
| Working Areas                    | Data provided                       | Harvest Design                             | WORKAREA           | FMA                 |                  |

#### **Input Spatial Coverages**

| GIS<br>Coverage                               | Source                                                                | Description                                                                                                                                                                                                                                                                                                                                    | Database<br>Fields  | Dropped<br>Fields                                                                                                                                                                                                                                                                                                                                                                | Unique<br>Issues                                                                                                                                                                                                                                  |
|-----------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | by<br>Weyerhaeuser                                                    | Areas                                                                                                                                                                                                                                                                                                                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |
| Land Use<br>Dispositions                      | LU_LINE,<br>LU_POLY,<br>TDA data sets<br>stored at<br>Silvacom        | Land Use<br>Dispositions<br>Linear Dispositions<br>Buffered using the<br>Following Criteria<br>(distances are total<br>widths):<br>EZE - 15m<br>FRD - 20m<br>GEO - 8m<br>LOC - 20m<br>MLL - 20m<br>MLL - 20m<br>MLP - 10m<br>MSL - 20m<br>PIL - 15m<br>PLA - 20m<br>RDS - 20m<br>REA - 10m<br>ROS - 20m<br>RRD - 20m<br>SML - 15m<br>VCE - 15m | LU_LINE,<br>LANDUSE |                                                                                                                                                                                                                                                                                                                                                                                  | Polygonal<br>dispositions cannot<br>overlap and<br>therefore only one<br>disposition type can<br>be kept. Linear<br>disposition<br>type/number will not<br>be included in the<br>overlay, but a linear<br>reference coverage<br>will be provided. |
| PNT                                           | Data loaded<br>based on<br>description<br>provided by<br>Weyerhaeuser | Pioneer Area                                                                                                                                                                                                                                                                                                                                   | PNT,<br>PIONEER     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |
| Disposition<br>Reservations                   | Derived from<br>LSAS<br>Database                                      | DRS Boundaries                                                                                                                                                                                                                                                                                                                                 | DRS                 |                                                                                                                                                                                                                                                                                                                                                                                  | Identified on list by<br>ASRD                                                                                                                                                                                                                     |
| Grazing<br>Leases,<br>Licenses and<br>Permits | Data provided<br>by<br>Weyerhaeuser                                   | Grazing<br>Dispositions                                                                                                                                                                                                                                                                                                                        | GRAZING             |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |
| Private Land<br>Inventory                     | Data provided<br>by<br>Weyerhaeuser                                   | Private Land<br>Identifier                                                                                                                                                                                                                                                                                                                     | STATUS              | MER, RGE, TWP,<br>SEC, QS,<br>OWNER1_FN,<br>OWNER1_LN,<br>CITY1,<br>PROVINCE1,<br>PCODE1,<br>OWNER2_FN,<br>OWNER2_LN,<br>ADDRESS2,<br>CITY2,<br>PROVINCE2,<br>PCODE2,<br>OWNER3_LN,<br>ADDRESS3,<br>CITY3,<br>PROVINCE3,<br>PCODE3,<br>OWNER4_EN,<br>OWNER4_EN,<br>ADDRESS4,<br>CITY4,<br>PROVINCE4,<br>PCODE4,<br>OWNER5_EN,<br>OWNER5_LN,<br>ADDRESS5,<br>CITY5,<br>PROVINCE5, |                                                                                                                                                                                                                                                   |

| GIS<br>Coverage              | GIS<br>Coverage Source Descr                                      |                                                                              | Database<br>Fields            | Dropped<br>Fields                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Unique<br>Issues                                      |
|------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                              |                                                                   |                                                                              |                               | PCODE5, STATUS,<br>ID_NUMBER,<br>STATUSDATE,<br>OWNER6_FN,<br>OWNER6_LN,<br>ADDRESS6,<br>CITY6,<br>PROVINCE6,<br>PCODE6,<br>ADDRESS1                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |
| Special Places<br>2000 Areas | Assembled<br>from previous<br>Net Landbase<br>Project             | SP2000 Areas                                                                 | SP2000,<br>SUN500M            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sundance area<br>buffered 500m (from<br>the boundary) |
| Historical<br>Potential      | Data provided<br>by<br>Weyerhaeuser                               | Archaeological<br>Potential                                                  | ARCH_POT                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| Coniferous<br>Timber Permits | Assembled<br>from previous<br>Net Landbase<br>Project             | CTP Identifier                                                               | CTP                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |
| Cutblocks                    | Data provided<br>by<br>Weyerhaeuser                               | Inventory and Post-<br>Inventory Updates<br>Reflecting Harvest<br>Activities | CUT_NUM,<br>CUTBLK            | WORKAREA,<br>BLOCK_NUM,<br>SOURCE, FMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |
| Quota Holder<br>Cutblocks    | Quota Holder Data provided Harve<br>Cutblocks Weverbacuser from 0 |                                                                              | QB_OP,<br>QB_NUM,<br>QUOT BLK | HARVYEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |
| Planned<br>Cutblocks         | Data provided<br>by<br>Weyerhaeuser                               | Cutblocks Planned<br>for Harvest                                             | PB_NUM,<br>PB_OP,<br>PLAN_BLK | FIELD_NUM,<br>OPEN_TYPE,<br>DESIGN_YR,<br>AOP_YR,<br>OPERATOR,<br>SEASON,<br>PLAN_STAT,<br>ARCHIVE,<br>APPR_DATE,<br>CONTINGEN SP,1<br>BCGP,<br>REFOR_SYS,<br>REFOR_USR,<br>REFOR_APR,<br>PRIM_DISP, FMU,<br>COMPART,<br>WORKAREA,<br>SUBREGION,<br>AREA_CODE,<br>TRAPLINE,<br>GRAZ_DISP,<br>ARCH_POTEN,<br>CAL_CONVOL,<br>FLD_CONVOL,<br>FLD_CONVOL,<br>FLD_CONVOL,<br>CAL_TOTVOL,<br>CAL_SB_VOL,<br>CAL_SB_VOL,<br>CAL_SB_VOL,<br>CAL_SB_VOL,<br>CAL_FB_VOL,<br>CAL_PB_VOL,<br>CAL_PB_VOL,<br>CAL_PB_VOL,<br>CAL_PB_VOL,<br>CAL_PB_VOL,<br>CAL_PB_PER,<br>CAL_BW_VOL, |                                                       |

| GIS<br>Coverage                       | Source                                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                     | Database<br>Fields                                                                                  | Dropped<br>Fields                                                                                                                                                                                                                                                                                                                                             | Unique<br>Issues |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Quota Holder<br>Planned<br>Cutblocks  | Data provided<br>by<br>Weyerhaeuser                                                                               | Cutblocks Planned<br>for Harvest                                                                                                                                                                                                                                                                                                                                | PQ_OP,<br>PLAN_QUOT                                                                                 | PLAN_YEAR,<br>PLAN_BCG                                                                                                                                                                                                                                                                                                                                        |                  |
| Water Buffers                         | Data provided<br>by GISmo<br>Solutions                                                                            | Water Features<br>Buffered using the<br>Following Criteria<br>(distances are total<br>widths):<br>Lake buffers<br>100m Buffer<br>Applied to All Lakes<br>Greater than 4 ha in<br>Area<br>Trumpeter Swan<br>Lake Buffers<br>200m Buffer<br>River Buffers<br>100m Buffer<br>Large Permanent<br>Buffers 60m<br>Buffer<br>Small Permanent<br>Buffer S 30m<br>Buffer | STRM30,<br>STRM60,<br>STRM100,<br>LAKE,<br>SWAN200                                                  |                                                                                                                                                                                                                                                                                                                                                               |                  |
| Watersheds                            | Data provided 4 <sup>th</sup> Order   by GISmo Watershed   Solutions Boundaries                                   |                                                                                                                                                                                                                                                                                                                                                                 | WTRSHED                                                                                             | NEW_W_OR,<br>NEW_W_NAM,<br>NEW_STR,<br>CLIENT_NAME,<br>FMA_OVERLAP                                                                                                                                                                                                                                                                                            |                  |
| Cutline Buffers                       | Cutline Buffers Data provided All Cutline Feat<br>by Buffered 8 Met<br>Weverhaeuser (total width)                 |                                                                                                                                                                                                                                                                                                                                                                 | CUTLINES                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                  |
| Integrated<br>Resource Plan           | Data provided<br>by ASRD                                                                                          | IRP Identifiers                                                                                                                                                                                                                                                                                                                                                 | IRP_NAME,<br>IRP_STAT,<br>IRP_TYPE,<br>IRP_CODE                                                     | IRP_, IRP_ID,<br>LABEL                                                                                                                                                                                                                                                                                                                                        |                  |
| Historical Fires                      | Fires Data provided Historical Class E by ASRD Fires                                                              |                                                                                                                                                                                                                                                                                                                                                                 | FIRE1930,<br>FIRE1940,<br>FIRE1950,<br>FIRE1960,<br>FIRE1970,<br>FIRE1980,<br>FIRE1990,<br>FIRE2000 | BURNCODE,<br>YEAR, SOURCE                                                                                                                                                                                                                                                                                                                                     |                  |
| Eastern Slopes<br>Integrated Plan     | Data provided<br>by ASRD                                                                                          | ESIP boundaries                                                                                                                                                                                                                                                                                                                                                 | ESIP                                                                                                | ESIP_ZONES,<br>ESIPZONE,<br>DESCRIPTION                                                                                                                                                                                                                                                                                                                       |                  |
| Natural<br>Regions and<br>Sub-Regions | Natural 1:1,000,000 Natural Region and<br>Regions and scale Sub-Region<br>Sub-Regions provincial data Identifiers |                                                                                                                                                                                                                                                                                                                                                                 | NSN, NRN                                                                                            | EDC, EDN, EDTC,<br>CR_, CD_, ADC,<br>REL, G1, PM1,<br>SE1, SL1, SLU1,<br>S1, T1, DU1, DL1,<br>V1, G2, PM2, SE2,<br>SL2, SLU2, S2, T2,<br>DU2, DL2, V2, G3,<br>PM3, SE3, SL3,<br>SLU3, S3, T3, DU3,<br>DL3, V3, P, AG,<br>MT_BT_FT_,<br>WMF, WM, WS,<br>WD, WB, WF, WO,<br>MF1, MF2, MF3,<br>MF4, MF5, MF6,<br>MF7, MF8, MF9,<br>BF1, BF2, BF3,<br>BF4 BF5 BF6 |                  |

| GIS<br>Coverage           | je Source Descriptior                                                                                         |                                                | Database<br>Fields                                    | Dropped<br>Fields                                                                                                                                                                                                | Unique<br>Issues                                                                                                                              |
|---------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                           |                                                                                                               |                                                |                                                       | BF7, BF8, BF9,<br>LF1, LF2, LF3, LF4,<br>LF5, LF6, LF7, LF8,<br>LF9, LF10, LF11,<br>LF12, LF13, LF14,<br>LF15, LNO, LHA,<br>DB1, DB2, DB3,<br>HA, INFIL, COLOR,<br>COLOR2                                        |                                                                                                                                               |
| Permanent<br>Sample Plots | manent Data provided PSP points and<br>nple Plots by ASRD polygons                                            |                                                | PSP                                                   | STATUS,<br>PLOT_NUM, TYPE,<br>RESERVE, SIZE,<br>PLOTS,<br>CENTRE_GPS,<br>FILENAME,<br>LONGITUDE,<br>LATITUDE,<br>EASTING,<br>NORTHING,<br>ELEVATION,<br>MERIDIAN,<br>SIZE_M2,<br>COMMENTS,<br>PLOT_NUM,<br>META2 | PSPs represented<br>by points were<br>buffered to become<br>a 300m by 300m<br>square                                                          |
| Forest<br>Inventory       | Data<br>assembled<br>from existing<br>Weyerhaeuser<br>AVI and AVI<br>re-inventory<br>completed by<br>Silvacom | Alberta Vegetation<br>Inventory Version<br>2.1 | AVI<br>Overstorey<br>and<br>Understorey<br>Attributes |                                                                                                                                                                                                                  |                                                                                                                                               |
| Ecosite<br>Classification | Data provided<br>by<br>Weyerhaeuser                                                                           | Ecosite Class                                  | ECOSITE                                               |                                                                                                                                                                                                                  | Each AVI Polygon<br>was Assigned an<br>Ecosite Type Based<br>on the Ecosite Type<br>Which Comprises<br>the Largest Area of<br>the AVI Polygon |

#### SLIVER STATISTICS

All slivers were retained in the final data set and throughout the processing. The distribution of slivers in the composite landbase coverage is summarized in the following table.

| Sliver<br>Size | Number of<br>Records |
|----------------|----------------------|
| <.01 ha        | 1,211,058            |
| .0105 ha       | 565,090              |
| .051 ha        | 186,880              |
| .125 ha        | 175,690              |
| .255 ha        | 98,423               |

#### **QUALITY CONTROL**

Quality control checks were performed on both the spatial data and the output databases. Area summaries were completed to ensure that the areas in the output data set matched the areas of the input data sets. Frequency summaries were performed to ensure that each field contained a valid code. Internal QC maps were produced to highlight any missing data and to verify the spatial location of the data.

5.7 Regeneration Study (data and documentation provided by Timberline Forest Inventory Consultants)



Analysis of regenerated cutblock data Weyerhaeuser Canada (Edson)

Submitted by Timberline Forest Inventory Consultants Suite 315, 10357 109 Street Edmonton, Alberta T5J 1N3 August 3, 2000





### **TABLE OF CONTENTS**

| 1 | INTROD  | UCTION                                                                      | 1     |
|---|---------|-----------------------------------------------------------------------------|-------|
| 2 | DATA L  | AYERS AND METHODS                                                           | 2     |
|   | 2.1 AV  | /I inventory background                                                     | 2     |
|   | 2.2 To  | ols used                                                                    | 3     |
|   | 2.3 GIS | S processing                                                                | 3     |
|   | 2.4 Ad  | ministrative designations                                                   | 3     |
|   | 2.5 No  | n-harvesting type dispositions                                              | 4     |
|   | 2.5.1   | Landuse dispositions                                                        | 4     |
|   | 2.5.2   | Grazing dispositions                                                        | 6     |
|   | 2.5.3   | Provincial PSPs                                                             | 7     |
|   | 2.6 Pro | phibited Areas                                                              | 7     |
|   | 2.6.1   | Private land                                                                | 7     |
|   | 2.6.2   | Parks                                                                       | 8     |
|   | 2.7 Eco | ological and cultural feature designations                                  | 8     |
|   | 2.7.1   | Natural subregions                                                          | 8     |
|   | 2.7.2   | Watershed basins                                                            | 8     |
|   | 2.7.3   | Ecosite                                                                     | 9     |
|   | 2.7.4   | Integrated resource plans (IRP) and eastern slopes integrated plans (E<br>9 | SIP)  |
|   | 2.7.5   | Historic resources                                                          | 9     |
|   | 2.8 La  | ndscape disturbances                                                        | 9     |
|   | 2.8.1   | Forest fires                                                                | 10    |
|   | 2.8.2   | Linear disturbances (not captured as a linear disposition)                  | 10    |
|   | 2.8.3   | On going update process                                                     | 10    |
|   | 2.8.4   | Cutblocks                                                                   | 11    |
|   | 2.8.5   | Planned Blocks                                                              | 19    |
|   | 2.9 Op  | erational Parameters                                                        | 20    |
|   | 2.9.1   | Steep/sensitive slopes and isolated stands                                  | 20    |
|   | 2.9.2   | Watercourse buffers                                                         | 20    |
|   | 2.9.3   | Subjective deletions and ecosite deletions                                  | 21    |
|   | 2.10 De | fining the forested landscape                                               | 22    |
|   | 2.10.1  | Landbase, broad cover group, story of primary management, and stand         | d age |
|   | assignm | ent                                                                         | 22    |
|   | 2.10.2  | Ecosite Stratification                                                      | 26    |
|   | 2.10.3  | Yield curve assignment                                                      | 26    |
|   | 2.10.4  | Seral stages and over-mature forests within the FMA                         | 27    |
|   | 2.10.5  | The deletion hierarchy                                                      | 28    |
|   | 2.11 Su | mmary of SAS output files                                                   | 29    |
| 3 | FINAL R | RESULTS                                                                     | 31    |
| 4 | REFERE  | INCES                                                                       | 34    |
| 5 | APPEND  | DIX                                                                         | 34    |
| * | 51 Da   | to Library                                                                  | 24    |
|   | J.I Da  | la L101a1 y                                                                 | 34    |



| 5.2     | Exhaustive list of Yield Curves                                          | 58 |
|---------|--------------------------------------------------------------------------|----|
| 5.3     | Individual input data layers                                             | 62 |
| 5.4     | Additions to the landbase netdown since the November 24, 2004 submission | 63 |
| 5.4.1   | 1 Corrections to coding of the subjective deletion criteria              | 63 |
| 5.4.2   | 2 Changes based on using 100m stream buffers                             | 64 |
| 5.4.3   | 3 Changes to assigning first species to cutblocks                        | 64 |
| 5.4.4   | 4 Input from operational foresters                                       | 66 |
| 5.4.5   | 5 Marginal Stands                                                        | 69 |
| 5.4.6   | 6 Assigning Piece Size Strata                                            | 70 |
| 5.4.7   | 7 Woodstock Input files                                                  | 71 |
| 5.5     | Preparing data for input into Woodstock/Stanley                          | 76 |
| 5.6     | GIS Processing Document (data and documentation provided by Silvacom     |    |
| Ltd.)   | 78                                                                       |    |
| 5.7     | Regeneration Study (data and documentation provided by Timberline Forest |    |
| Invento | ory Consultants)                                                         | 83 |

### LIST OF TABLES

| TABLE 2-1 TYPES OF LINEAR DISPOSITIONS AND TOTAL BUFFER WIDTH APPLIED.                     | 5    |
|--------------------------------------------------------------------------------------------|------|
| TABLE 2-2 POLYGON TYPE DISPOSITIONS                                                        | 6    |
| TABLE 2-3. THE HISTORICAL HARVESTING RATIO (HHR) BY LAND MANAGEMENT UNIT (LMU)*            | 13   |
| TABLE 2-4 HARVEST RULES APPLIED TO THE TO THE FMA BY AREA                                  | 17   |
| TABLE 2-5. EDSON FMA HISTORICAL CUTBLOCK REGENERATION STUDY STOCKING PERCENTAGE (FROM      |      |
| TIMBERLINE 2000 SEE APPENDIX) BY LMU CONVERTED TO AVI STAND STOCKING PERCENTAGE            | 18   |
| TABLE 2-6. SUMMARY OF WATERCOURSE CLASSIFICATION AND BUFFER WIDTH APPLIED                  | 21   |
| TABLE 2-7 SPECIES GROUPINGS USED IN DEFINING BROAD COVER GROUPS                            | 23   |
| TABLE 2-8 DECISION RULES FOR BROAD COVER GROUP                                             | 23   |
| TABLE 2-9 LANDBASE DESIGNATION* RULES BY FMU                                               | 24   |
| TABLE 2-10 DESCRIPTION RULES FOR STORY OF PRIMARY MANAGEMENT IN NON-CUTBLOCK AND NON-      |      |
| HORIZONTAL POLYGONS                                                                        | 24   |
| TABLE 2-11. SUMMARY OF ASSUMED SITE QUALITY FOR CONIFEROUS AND DECIDUOUS STANDS BY ECOSIT  | Е    |
| CALL                                                                                       | 26   |
| TABLE 3-1 FINAL PROPOSED NETDOWN - DELETION AREAS ARE BASED ON THE HIERARCHY (SECTION 2.10 | ).5) |
| - EACH POLYGON IS ASSIGNED TO ONLY ONE DELETION TYPE                                       | 31   |
| TABLE 5-1 DATA LIBRARY (PROVIDED BY SILVACOM LTD.) - (FIELD NO. FIELD RELATES DIRECTLY TO  |      |
| FMA_2004 TABLE ONLY)                                                                       | 34   |
| TABLE 5-2. DATA LIBRARY - (FOR NETDOWN DEFINED FIELDS - ALPHABETICAL ORDER BY FIELD NAME)  | 49   |
| TABLE 5-3. THE HHR OF CONIFEROUS VERSUS DECIDUOUS BROAD COVER GROUPS BY LMU (W5F AND       |      |
| W6F) FOR STANDS HARVESTED FROM 1983 TO 1995 (BASED ON ARIS DATA)                           | 65   |
| TABLE 5-4. THE NETDOWN FILE CONIFEROUS VERSUS DECIDUOUS BROAD COVER GROUPS (W5F AND W6F    | 2    |
| COMBINED) FOR STANDS HARVESTED FROM 1983 TO 1995 (NETDOWN AREA COMPARISON)                 | 65   |
| TABLE 5-5. MARGINALLY PRODUCTIVE STAND AREAS BY FMU                                        | 70   |
| TABLE 5-6 AREA (HA) BY PIECE STRATA GROUP                                                  | 71   |
| TABLE 5-7. PROPORTIONAL OPERATIONAL HARVEST AREA TARGET FOR THE TSA MODEL BY SITE CLASS    | 72   |
| TABLE 5-8. PROPORTIONAL OPERATIONAL HARVEST AREA TARGET FOR TSA MODEL BY CROWN CLOSURE     | 3    |
| CLASS                                                                                      | 72   |
| TABLE 5-9. MINIMUM OLD GROWTH AREAS TO BE MAINTAINED WITHIN THE TSA MODEL BY BROAD COVER   | R    |
| GROUP                                                                                      | 73   |
| TABLE 5-10 CHANGE IN AREA (HA) NOVEMBER 24, 2004 LANDBASE NETDOWN COMPARED TO THE CURRENT  | NT   |
| NETDOWN REPRESENTED WITHIN THIS REPORT                                                     | 76   |
|                                                                                            |      |





| TABLE 5-11. DENSITY: LB HH; BY LMU AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)          | 4   |
|-------------------------------------------------------------------------------------------|-----|
| TABLE 5-12. DENSITY: LB SS; BY LMU AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)          | 5   |
| TABLE 5-13. DENSITY: LB SS; BY LMU AND SPECIES GROUP (PINE AND SPRUCE)                    | 6   |
| TABLE 5-14. DENSITY: LB HH; BY GRAZING, AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)     | 7   |
| TABLE 5-15. DENSITY: LB SS; BY GRAZING AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)      | 8   |
| TABLE 5-16. DENSITY: LB SS; BY GRAZING AND SPECIES GROUP (PINE AND SPRUCE)                | 9   |
| TABLE 5-17. DENSITY: LB HH; BY DATE AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)         | .10 |
| TABLE 5-18. DENSITY: LB SS; BY DATE AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)         | .11 |
| TABLE 5-19. DENSITY: LB SS; BY DATE AND SPECIES GROUP (PINE AND SPRUCE)                   | .12 |
| TABLE 5-20. STOCKING: LB HH; BY LMU AND SPECIES GROUP (DECID. "A", DECID. "B")            | .14 |
| TABLE 5-21. STOCKING: LB HH; BY LMU AND SPECIES GROUP (CONIFER, DECID. "B", AND TOTAL)    | .15 |
| TABLE 5-22. STOCKING: LB SS; BY LMU AND SPECIES GROUP (CONIFER, DECID. "B", AND TOTAL)    | .16 |
| TABLE 5-23. STOCKING: LB HH; BY GRAZING AND SPECIES GROUP (DECID. "A" AND DECID. "B")     | .17 |
| TABLE 5-24. STOCKING LB HH; BY GRAZING AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL)  | .18 |
| TABLE 5-25. STOCKING: LB SS; BY GRAZING AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL) | .19 |
| TABLE 5-26. STOCKING: LB HH; BY DATE AND SPECIES GROUP (DECID. "A" AND DECID. "B")        | .20 |
| TABLE 5-27. STOCKING: LB HH; BY DATE AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL)    | .21 |
| TABLE 5-28. STOCKING: LB SS; BY DATE AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL)    | .22 |



#### LIST OF FIGURES

| FIGURE 1-1WEYERHAEUSER EDSON: FOREST MANAGEMENT AREA                                       | 1        |
|--------------------------------------------------------------------------------------------|----------|
| FIGURE 2-2 SUMMARY OF SAS NETDOWN PROGRAM OUTPUT FILES                                     | 30       |
| FIGURE 3-1 FMU E1F AGE CLASS DISTRIBUTION BY OPERABLE CONIFEROUS AND DECIDUOUS LAND        | BASE     |
|                                                                                            | 32       |
| FIGURE 3-3 FMU W5F AGE CLASS DISTRIBUTION BY OPERABLE CONIFEROUS AND DECIDUOUS             | 22       |
| LANDBASE                                                                                   |          |
| FIGURE 5-4 OUTPUT FILES FROM SAS PROGRAM                                                   | INED.    |
| FIGURE 5-5 PROCEDURE OF GOING FROM SAS NEIDOWN OUTPUT FILE TO WOODSTOCK/STANLEY INPUT      | /0       |
| FIGURE 5-0. DENSITY: LB HH, BY LMU AND SPECIES GROUP (CONIFER, DECID. AND TOTAL).          | 4        |
| FIGURE 5-7. DENSITY: LD 55, BY LIVIU AND SPECIES GROUP (CUNIFER, DECID. AND TOTAL)         | 3<br>6   |
| FIGURE 5-0. DENSITY: LD 55, BY LIVIU AND SPECIES GROUP (PINE AND SPRUCE)                   | 0        |
| FIGURE 5-9. DENSITY: LD HH, BY GRAZING AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)       | / /<br>و |
| FIGURE 5-10. DENSITY: LB SS, BY GRAZING AND SPECIES GROUP (CONITER, DECID. AND TOTAL)      | 0        |
| FIGURE 5-12 DENSITY: LB HH: BY DATE AND SPECIES GROUP (FINE AND SPRUCE)                    | 9        |
| FIGURE 5-13 DENSITY: LB SS: BY DATE AND SPECIES GROUP (CONIFER, DECID. AND TOTAL)          | 10       |
| FIGURE 5-14 DENSITY: LB SS, BY DATE AND SPECIES GROUP (PINE AND SPRICE)                    | 12       |
| FIGURE 5-15 STOCKING: LB HH: BY LMU AND SPECIES GROUP (DECID "A" DECID "B")                | 14       |
| FIGURE 5-16. STOCKING: LB HH: BY LMU AND SPECIES GROUP (CONIFER, DECID "B", AND TOTAL)     |          |
| FIGURE 5-17. STOCKING: LB SS: BY LMU AND SPECIES GROUP (CONIFER, DECID. "B", AND TOTAL)    | 16       |
| FIGURE 5-18. STOCKING: LB HH; BY GRAZING AND SPECIES GROUP (DECID. "A" AND DECID. "B")     | 17       |
| FIGURE 5-19. STOCKING: LB HH; BY GRAZING AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL) | 18       |
| FIGURE 5-20. STOCKING: LB SS; BY GRAZING AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL) | 19       |
| FIGURE 5-21. STOCKING: LB HH; BY DATE AND SPECIES GROUP (DECID. "A" AND DECID. "B")        | 20       |
| FIGURE 5-22. STOCKING: LB HH; BY DATE AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL)    | 21       |
| FIGURE 5-23. STOCKING: LB SS; BY DATE AND SPECIES GROUP (CONIFER, DECID. "B" AND TOTAL)    | 22       |
| FIGURE 5-24. HEIGHT: ALL BLOCKS IN ALL LB TYPES                                            | 24       |
| FIGURE 5-25. HEIGHT: ALL BLOCKS COMBINED, LB HH (SPRUCE, PINE DECID.)                      | 25       |
| FIGURE 5-26. HEIGHT: ALL BLOCKS COMBINED, LB SS (SPRUCE, PINE DECID.)                      | 25       |
| FIGURE 5-27. HEIGHT: LMU BS (SPRUCE, PINE DECID.)                                          | 26       |
| FIGURE 5-28. HEIGHT: LMU CC (SPRUCE, PINE DECID.)                                          | 26       |
| FIGURE 5-29. HEIGHT: LMU CY (SPRUCE, PINE DECID.)                                          | 27       |
| FIGURE 5-30. HEIGHT: LMU EU (SPRUCE, PINE DECID.)                                          | 27       |
| FIGURE 5-31. HEIGHT: LMU MC (SPRUCE, PINE DECID.)                                          | 28       |
| FIGURE 5-32. HEIGHT: LMU WC (SPRUCE, PINE DECID.)                                          | 28       |
| FIGURE 5-33. HEIGHT: LB HH GRAZED (SPRUCE, PINE DECID.)                                    | 29       |
| FIGURE 5-34. HEIGHT: LB HH NOT GRAZED (SPRUCE, PINE DECID.)                                | 29       |
| FIGURE 5-55. HEIGHT: LB SS GRAZED (SPRUCE, PINE DECID.)                                    | 30       |
| FIGURE 3-30. HEIGHT: LB SS NOT GRAZED (SPRUCE, PINE DECID.)                                |          |

### **1. Introduction**

Timberline Forest Inventory Consultants (TFIC) conducted an analysis of regenerated cutblock information on behalf of Weyerhaeuser (Edmonton and Edson). Data pertaining to stocking, height and density measurements were provided to TFIC by Weyerhaeuser, along with a detailed survey design and analysis framework<sup>1</sup>. The statistical analysis undertaken and presented in this document closely followed the analysis criteria and framework used for the *Analysis of Regenerated Cutblock data, Weyerhaeuser (Drayton Valley)* document completed in July 2000 by TFIC. Additional analyses were completed in this report regarding grazing disposition. Landbase classes were combined because of low sample sizes in types other than HH and SS (HH includes HH; SS includes SS and MS). Grazing disposition was added as a variable with landbase, therefore additional landbase classes were analyzed HH\_YG (HH landbase with grazing), HH\_NG (HH landbase without grazing), SS\_YG (SS landbase with grazing) and SS\_NG (SS landbase without grazing)

Data were checked for coding errors. There was one instance of a missing tree species and a incorrectly coded species "PW". There were 17 instances of crop trees that should probably have been assigned to advanced growth (i.e. having root collar diameter ages greater than 4 years older than the block "year cut" age). These instances were not corrected, as they would have had a minimal influence on statistical calculations based on 7111 observations, and the correction would have taken more time than was justifiable.

For stocking and density calculations, a series of box and whisker plots were produced along with a summary table showing median and sample size for groups defined in the survey design. In the boxplot graphics:

- The box is defined by the 25<sup>th</sup> and 75<sup>th</sup> percentile values (the <u>interquartile range</u>); 50 percent of observations lie within the box, and the line through the box is the median.
- <u>Outliers (values more than 1.5 and less than 3 box-lengths from the 25<sup>th</sup> or 75<sup>th</sup> percentile) are designated by a circle (O). The lines extending above and below each box contain the range of smallest to largest values that are not considered outliers.</u>
- <u>Extreme values</u> (values more than 3 box-lengths from the 25<sup>th</sup> or 75<sup>th</sup> percentile) are designated by a star (\*).
- The "N" label and associated numbers along the X axis of the boxplots and in the tables refers to the number of blocks within each LMU.

For height-age relationships, a linear regression curve was fit to each of the groups and the line was forced through the origin; growth responses are probably more or less linear during the early stages of stand establishment. In support of management activities that are influenced by the results of this analysis, block age measurements are used for modelling rather than true tree age measurements. The reason for this is to permit modelling of overall tree responses at the block and land management unit level; crop tree age-height relationships are useful for modelling individual tree growth responses, but this is not a focal issue at this time. Approximately 425 height-age pairs do occur in the dataset, however, and could be used to develop basic statistical relationships for crop tree growth if desired.

<sup>&</sup>lt;sup>1</sup> Regenerated Cutblock Assessment – Survey Design (Weyerhaeuser Canada Ltd., Edmonton, internal document).



Results are presented in the following order:

- Density (by species group and then by species and LMU): boxplots, tables including median, 25<sup>th</sup> and 75<sup>th</sup> percentile (limits of boxes in boxplots) Stocking (boxplots, tables including median, 25<sup>th</sup> and 75<sup>th</sup> percentiles). •
- •
- Height (graphs)



## 2. Density







LMU

Table 5-11. Density: LB HH; by LMU and species group (conifer, decid. and total) Summary: Median Stem Density (stems/ha) by LMU for LB Designation HH, MH, or SH; Deciduous, Coniferous, and Total

| LB |    |         |           | Valid N | Median | Percentile 25 | Percentile 75 |
|----|----|---------|-----------|---------|--------|---------------|---------------|
| HH | BM | Species | Conifer   | N=19    | 0      | 0             | 30            |
|    |    |         | Deciduous | N=19    | 6892   | 4221          | 9725          |
|    |    |         | Total     | N=19    | 6917   | 4225          | 10437         |
|    | CC | Species | Conifer   | N=10    | 875    | 249           | 2258          |
|    |    |         | Deciduous | N=10    | 9083   | 7272          | 14767         |
|    |    |         | Total     | N=10    | 9808   | 8076          | 17538         |
|    | CY | Species | Conifer   | N=20    | 200    | 145           | 912           |
|    |    |         | Deciduous | N=20    | 11008  | 7413          | 15846         |
|    |    |         | Total     | N=20    | 11133  | 7588          | 17525         |
|    | EU | Species | Conifer   | N=35    | 217    | 37            | 496           |
|    |    |         | Deciduous | N=35    | 15192  | 13159         | 19592         |
|    |    |         | Total     | N=35    | 16407  | 13159         | 19812         |
|    | MC | Species | Conifer   | N=9     | 1283   | 237           | 2812          |
|    |    |         | Deciduous | N=9     | 12200  | 8303          | 13929         |
|    |    |         | Total     | N=9     | 14425  | 10363         | 15016         |
|    | WC | Species | Conifer   | N=15    | 217    | 59            | 446           |
|    |    |         | Deciduous | N=15    | 13059  | 11058         | 15358         |
|    |    |         | Total     | N=15    | 13267  | 11171         | 15725         |









Table 5-12. Density: LB SS; by LMU and species group (conifer, decid. and total)

| LB |    |         |           | Valid N | Median | Percentile 25 | Percentile 75 |
|----|----|---------|-----------|---------|--------|---------------|---------------|
| SS | BM | Species | Conifer   | N=11    | 939    | 171           | 2546          |
|    |    |         | Deciduous | N=11    | 3775   | 1891          | 9004          |
|    |    |         | Total     | N=11    | 4633   | 3217          | 9391          |
|    | CC | Species | Conifer   | N=4     | 1933   | 1333          |               |
|    |    |         | Deciduous | N=4     | 10650  | 6654          |               |
|    |    |         | Total     | N=4     | 12583  | 8087          |               |
|    | CY | Species | Conifer   | N=27    | 1733   | 1100          | 5058          |
|    |    |         | Deciduous | N=27    | 6976   | 4437          | 10046         |
|    |    |         | Total     | N=27    | 9884   | 6474          | 13567         |
|    | EU | Species | Conifer   | N=25    | 1875   | 1417          | 4129          |
|    |    |         | Deciduous | N=25    | 3233   | 2567          | 7233          |
|    |    |         | Total     | N=25    | 6166   | 4225          | 9812          |
|    | MC | Species | Conifer   | N=23    | 2399   | 1637          | 4179          |
|    |    |         | Deciduous | N=23    | 4438   | 1075          | 6567          |
|    |    |         | Total     | N=23    | 7475   | 3041          | 11066         |
|    | WC | Species | Conifer   | N=12    | 2950   | 1483          | 4041          |
|    |    |         | Deciduous | N=12    | 4242   | 2354          | 7092          |
|    |    |         | Total     | N=12    | 7233   | 5521          | 9033          |



Figure 5-7. Density: LB SS; by LMU and species group (pine and spruce)



LMU

Table 5-13. Density: LB SS; by LMU and species group (pine and spruce)

Summary: Median Stem Density (stems/ha) by LMU for LB Designation SS, MS, or HS; Pine, Spruce (SB,SW)

| LB |    |         |        | Valid N | Median | Percentile 25 | Percentile 75 |
|----|----|---------|--------|---------|--------|---------------|---------------|
| SS | BM | Species | Pine   | N=11    | 92     | 0             | 925           |
|    |    |         | Spruce | N=11    | 208    | 0             | 808           |
|    | CC | Species | Pine   | N=4     | 100    | 0             |               |
|    |    |         | Spruce | N=4     | 1600   | 1187          |               |
|    | CY | Species | Pine   | N=27    | 0      | 0             | 142           |
|    |    |         | Spruce | N=27    | 1417   | 1037          | 2558          |
|    | EU | Species | Pine   | N=25    | 658    | 61            | 1283          |
|    |    |         | Spruce | N=25    | 1375   | 780           | 2158          |
|    | MC | Species | Pine   | N=23    | 1312   | 133           | 2529          |
|    |    |         | Spruce | N=23    | 1061   | 562           | 1737          |
|    | WC | Species | Pine   | N=12    | 1883   | 283           | 3533          |
|    |    |         | Spruce | N=12    | 550    | 183           | 1404          |







Table 5-14. Density: LB HH; by grazing, and species group (conifer, decid. and total)

| Summary: Median Stem Density | / (stems/ha) by Grazing | o for LB Designation HH: | Deciduous, Coniferous | and Total |
|------------------------------|-------------------------|--------------------------|-----------------------|-----------|
|                              | (0.0.0                  | , <u></u>                |                       | ,         |

| LB |         |           |         |             | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|-----------|---------|-------------|---------|--------|---------------|---------------|
| HH | Species | Conifer   | Grazing | No Grazing  | N=87    | 294    | 92            | 846           |
|    |         |           |         | Yes Grazing | N=21    | 0      | 0             | 186           |
|    |         | Deciduous | Grazing | No Grazing  | N=87    | 13034  | 8937          | 15592         |
|    |         |           |         | Yes Grazing | N=21    | 7700   | 4704          | 14651         |
|    |         | Total     | Grazing | No Grazing  | N=87    | 14033  | 9270          | 17058         |
|    |         |           |         | Yes Grazing | N=21    | 7700   | 4725          | 14826         |



Figure 5-9. Density: LB SS; by grazing and species group (conifer, decid. and total)

Table 5-15. Density: LB SS; by grazing and species group (conifer, decid. and total)

| LB |         |           |         |             | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|-----------|---------|-------------|---------|--------|---------------|---------------|
| SS | Species | Conifer   | Grazing | No Grazing  | N=81    | 1974   | 1283          | 4129          |
|    |         |           |         | Yes Grazing | N=21    | 1566   | 904           | 2200          |
|    |         | Deciduous | Grazing | No Grazing  | N=81    | 4641   | 2521          | 7996          |
|    |         |           |         | Yes Grazing | N=21    | 4500   | 3042          | 9062          |
|    |         | Total     | Grazing | No Grazing  | N=81    | 7500   | 4424          | 11666         |
|    |         |           |         | Yes Grazing | N=21    | 7158   | 4703          | 9425          |

Summary: Median Stem Density (stems/ha) by Grazing for LB Designation SS; Deciduous, Coniferous, and Total





Species

|             | D        |          | • •           | •             |           | ```               |
|-------------|----------|----------|---------------|---------------|-----------|-------------------|
| Table 5-16. | Density: | LB 88: b | v grazing and | species group | (pine and | spruce)           |
|             |          |          | / =           | ~ P P P       | (P        | ~ ~ ~ ~ ~ ~ ~ ~ / |

Summary: Median Stem Density (stems/ha) by GRAZING for LB Designation SS; Pine and Spruce (SB,SW)

| LB |         |        |         |             | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|--------|---------|-------------|---------|--------|---------------|---------------|
| SS | Species | Pine   | Grazing | No Grazing  | N=81    | 175    | 0             | 1586          |
|    |         |        |         | Yes Grazing | N=21    | 83     | 0             | 863           |
|    |         | Spruce | Grazing | No Grazing  | N=81    | 1117   | 588           | 1787          |
|    |         |        |         | Yes Grazing | N=21    | 1075   | 320           | 1646          |





Figure 5-11. Density: LB HH; by date and species group (conifer, decid. and total)

Table 5-17. Density: LB HH; by date and species group (conifer, decid. and total)

| Summary: Median Sten | n Density (stems/ha) by Date f | or LB Designation HH; Deciduous, | <b>Coniferous, and Total</b> |
|----------------------|--------------------------------|----------------------------------|------------------------------|
|----------------------|--------------------------------|----------------------------------|------------------------------|

| LB |         |           |      |                | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|-----------|------|----------------|---------|--------|---------------|---------------|
| HH | Species | Conifer   | Date | 1991 and After | N=63    | 105    | 0             | 446           |
|    |         |           |      | Before 1991    | N=45    | 375    | 200           | 1088          |
|    |         | Deciduous | Date | 1991 and After | N=63    | 12341  | 6730          | 15442         |
|    |         |           |      | Before 1991    | N=45    | 12759  | 8687          | 15459         |
|    |         | Total     | Date | 1991 and After | N=63    | 12500  | 6759          | 16917         |
|    |         |           |      | Before 1991    | N=45    | 14100  | 9196          | 16983         |





Species



Summary: Median Stem Density (stems/ha) by Date for LB Designation SS; Deciduous, Coniferous, and Total

| LB |         |           |      |                | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|-----------|------|----------------|---------|--------|---------------|---------------|
| SS | Species | Conifer   | Date | 1991 and After | N=50    | 2158   | 1450          | 4108          |
|    |         |           |      | Before 1991    | N=52    | 1734   | 1094          | 3838          |
|    |         | Deciduous | Date | 1991 and After | N=50    | 4950   | 2529          | 7971          |
|    |         |           |      | Before 1991    | N=52    | 4358   | 2646          | 8096          |
|    |         | Total     | Date | 1991 and After | N=50    | 8675   | 4416          | 11533         |
|    |         |           |      | Before 1991    | N=52    | 6667   | 4591          | 10375         |



Figure 5-13. Density: LB SS; by date and species group (pine and spruce)



Species

Table 5-19. Density: LB SS; by date and species group (pine and spruce)

Summary: Median Stem Density (stems/ha) by Date for LB Designation SS; Pine and Spruce (SB,SW)

| LB |         |        |      |                | Valid N | Median | Percentile 25 | Percentile 75 |
|----|---------|--------|------|----------------|---------|--------|---------------|---------------|
| SS | Species | Pine   | Date | 1991 and After | N=50    | 459    | 67            | 2538          |
|    |         |        |      | Before 1991    | N=52    | 117    | 0             | 836           |
|    |         | Spruce | Date | 1991 and After | N=50    | 1117   | 596           | 1533          |
|    |         |        |      | Before 1991    | N=52    | 1100   | 497           | 2217          |



## 3. Stocking







Table 5-20. Stocking: LB HH; by LMU and species group (decid. "A", decid. "B")

|    |    |         |               |         | Percent s | ercent stocking by block |               |  |
|----|----|---------|---------------|---------|-----------|--------------------------|---------------|--|
| LB |    |         |               | Valid N | Median    | Percentile 25            | Percentile 75 |  |
| НН | BM | Species | Deciduous "A" | N=19    | 88.0      | 78.3                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=19    | 84.7      | 67.0                     | 93.0          |  |
|    | CC | Species | Deciduous "A" | N=10    | 88.0      | 87.0                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=10    | 90.0      | 80.0                     | 93.0          |  |
|    | CY | Species | Deciduous "A" | N=20    | 93.0      | 88.5                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=20    | 93.0      | 81.8                     | 100.0         |  |
|    | EU | Species | Deciduous "A" | N=35    | 98.8      | 91.5                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=35    | 93.0      | 87.0                     | 100.0         |  |
|    | MC | Species | Deciduous "A" | N=9     | 100.0     | 90.8                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=9     | 100.0     | 88.1                     | 100.0         |  |
|    | WC | Species | Deciduous "A" | N=15    | 100.0     | 87.8                     | 100.0         |  |
|    |    | group   | Deciduous "B" | N=15    | 100.0     | 87.8                     | 100.0         |  |

Summary: Stocking, LB class HH (Deciduous "A" and Deciduous "B")







#### LMU

Table 5-21. Stocking: LB HH; by LMU and species group (conifer, decid. "B", and total) Summary: Stocking, LB class HH (Deciduous "B", Conifer, and total (all eligible species))

|    |    |         |                |         | Percent s | tocking by block |               |
|----|----|---------|----------------|---------|-----------|------------------|---------------|
| LB |    |         |                | Valid N | Median    | Percentile 25    | Percentile 75 |
| НН | BM | Species | Coniferous     | N=19    | .0        | .0               | 6.4           |
|    |    | group   | Deciduous "B"  | N=19    | 84.7      | 67.0             | 93.0          |
|    |    |         | Total stocking | N=19    | 84.7      | 67.0             | 93.0          |
|    | CC | Species | Coniferous     | N=10    | 50.0      | 20.0             | 70.8          |
|    |    | group   | Deciduous "B"  | N=10    | 90.0      | 80.0             | 93.0          |
|    |    |         | Total stocking | N=10    | 93.0      | 87.0             | 100.0         |
|    | CY | Species | Coniferous     | N=20    | 27.0      | 13.0             | 54.7          |
|    |    | group   | Deciduous "B"  | N=20    | 93.0      | 81.8             | 100.0         |
|    |    |         | Total stocking | N=20    | 96.5      | 92.5             | 100.0         |
|    | EU | Species | Coniferous     | N=35    | 27.0      | 7.0              | 35.6          |
|    |    | group   | Deciduous "B"  | N=35    | 93.0      | 87.0             | 100.0         |
|    |    |         | Total stocking | N=35    | 93.0      | 91.5             | 100.0         |
|    | MC | Species | Coniferous     | N=9     | 50.3      | 18.8             | 86.1          |
|    |    | group   | Deciduous "B"  | N=9     | 100.0     | 88.1             | 100.0         |
|    |    |         | Total stocking | N=9     | 100.0     | 95.9             | 100.0         |
|    | WC | Species | Coniferous     | N=15    | 21.7      | 7.5              | 33.0          |
|    |    | group   | Deciduous "B"  | N=15    | 100.0     | 87.8             | 100.0         |
|    |    |         | Total stocking | N=15    | 100.0     | 87.8             | 100.0         |









Table 5-22. Stocking: LB SS; by LMU and species group (conifer, decid. "B", and total) Summary: Stocking, LB class SS (Deciduous "B", Conifer, and total (all eligible species))

|    |    |         |                |         | Percent s | tocking by block |               |
|----|----|---------|----------------|---------|-----------|------------------|---------------|
| LB |    |         |                | Valid N | Median    | Percentile 25    | Percentile 75 |
| SS | BM | Species | Coniferous     | N=11    | 69.2      | 13.6             | 82.6          |
|    |    | group   | Deciduous "B"  | N=11    | 81.2      | 63.5             | 92.5          |
|    |    |         | Total stocking | N=11    | 88.0      | 87.0             | 94.8          |
|    | CC | Species | Coniferous     | N=4     | 87.0      | 81.8             |               |
|    |    | group   | Deciduous "B"  | N=4     | 85.3      | 71.9             |               |
|    |    |         | Total stocking | N=4     | 90.0      | 82.6             |               |
|    | CY | Species | Coniferous     | N=27    | 87.0      | 73.6             | 94.8          |
|    |    | group   | Deciduous "B"  | N=27    | 87.0      | 73.0             | 93.0          |
|    |    |         | Total stocking | N=27    | 100.0     | 93.0             | 100.0         |
|    | EU | Species | Coniferous     | N=25    | 87.0      | 73.0             | 93.0          |
|    |    | group   | Deciduous "B"  | N=25    | 68.0      | 50.7             | 80.0          |
|    |    |         | Total stocking | N=25    | 93.0      | 87.0             | 100.0         |
|    | MC | Species | Coniferous     | N=23    | 92.0      | 73.8             | 100.0         |
|    |    | group   | Deciduous "B"  | N=23    | 61.2      | 27.0             | 86.4          |
|    |    |         | Total stocking | N=23    | 94.2      | 80.0             | 100.0         |
|    | WC | Species | Coniferous     | N=12    | 83.5      | 70.3             | 93.6          |
|    |    | group   | Deciduous "B"  | N=12    | 56.5      | 38.2             | 85.3          |
|    |    |         | Total stocking | N=12    | 93.0      | 86.4             | 100.0         |








|    |         |           |         |             |         | Percent s | tocking by block |               |
|----|---------|-----------|---------|-------------|---------|-----------|------------------|---------------|
| LB |         |           |         |             | Valid N | Median    | Percentile 25    | Percentile 75 |
| НН | Species | Deciduous | Grazing | No Grazing  | N=87    | 100.0     | 87.5             | 100.0         |
|    | group   | "A"       |         | Yes Grazing | N=21    | 92.0      | 80.0             | 100.0         |
|    |         | Deciduous | Grazing | No Grazing  | N=87    | 93.0      | 87.0             | 100.0         |
|    |         | "B"       |         | Yes Grazing | N=21    | 87.0      | 67.0             | 93.0          |

Summary: Stocking, LB class HH by Grazing (Deciduous "A" and Deciduous "B")







| Table 5-24. Stocking Ll | З НН; by grazing | g and species group | (conifer, decid. | "B" and total) |
|-------------------------|------------------|---------------------|------------------|----------------|
|-------------------------|------------------|---------------------|------------------|----------------|

| Summary: Stocking, LB class HH by Grazing (Decidu | ous "B", Co | nifer, and to | tal (all eligible s | pecies)) |
|---------------------------------------------------|-------------|---------------|---------------------|----------|
|                                                   |             | Percent s     | tocking by block    |          |
|                                                   |             |               |                     |          |

|    |         |                |         |             | Percent stocking by block |        |               |               |  |
|----|---------|----------------|---------|-------------|---------------------------|--------|---------------|---------------|--|
| LB |         |                |         |             | Valid N                   | Median | Percentile 25 | Percentile 75 |  |
| НН | Species | Coniferous     | Grazing | No Grazing  | N=87                      | 27.0   | 7.5           | 47.0          |  |
|    | group   |                |         | Yes Grazing | N=21                      | .0     | .0            | 12.2          |  |
|    |         | Deciduous      | Grazing | No Grazing  | N=87                      | 93.0   | 87.0          | 100.0         |  |
|    |         | "B"            |         | Yes Grazing | N=21                      | 87.0   | 67.0          | 93.0          |  |
|    |         | Total stocking | Grazing | No Grazing  | N=87                      | 100.0  | 87.5          | 100.0         |  |
|    |         |                |         | Yes Grazing | N=21                      | 87.0   | 67.0          | 93.0          |  |







Table 5-25. Stocking: LB SS; by grazing and species group (conifer, decid. "B" and total)

|    |         |                |         |             | Percent stocking by block |        |               |               |  |
|----|---------|----------------|---------|-------------|---------------------------|--------|---------------|---------------|--|
| LB |         |                |         |             | Valid N                   | Median | Percentile 25 | Percentile 75 |  |
| SS | Species | Coniferous     | Grazing | No Grazing  | N=81                      | 87.0   | 76.8          | 93.0          |  |
|    | group   |                |         | Yes Grazing | N=21                      | 80.0   | 67.0          | 90.5          |  |
|    |         | Deciduous      | Grazing | No Grazing  | N=81                      | 72.0   | 47.0          | 87.0          |  |
|    |         | "B"            |         | Yes Grazing | N=21                      | 80.0   | 67.0          | 90.5          |  |
|    |         | Total stocking | Grazing | No Grazing  | N=81                      | 93.0   | 87.0          | 100.0         |  |
|    |         |                |         | Yes Grazing | N=21                      | 93.0   | 87.0          | 100.0         |  |

Summary: Stocking, LB class SS by Grazing (Deciduous "B", Conifer, and total (all eligible species))





Figure 5-20. Stocking: LB HH; by date and species group (decid. "A" and decid. "B")

| Table 5-26.  | Stocking: | LB HH: by | v date and | species group | (decid. | "A" and | decid. | "B") |
|--------------|-----------|-----------|------------|---------------|---------|---------|--------|------|
| 1 abic 5 20. | Stocking. |           | y uate and | species group | (ucciu. | 11 anu  | uttiu. |      |

| Summary: Stocking, | LB class HH by dat | e (Deciduous "A" | and Deciduous " | В") |
|--------------------|--------------------|------------------|-----------------|-----|
|                    |                    |                  |                 |     |

|    |         |           |                | Percent stocking by block |        |               |               |  |  |
|----|---------|-----------|----------------|---------------------------|--------|---------------|---------------|--|--|
| LB |         |           |                | Valid N                   | Median | Percentile 25 | Percentile 75 |  |  |
| ΗΗ | Species | Deciduous | 1991 and After | N=63                      | 93.0   | 87.0          | 100.0         |  |  |
|    | group   | "A"       | Before 1991    | N=45                      | 100.0  | 93.0          | 100.0         |  |  |
|    |         | Deciduous | 1991 and After | N=63                      | 93.0   | 80.0          | 94.8          |  |  |
|    |         | "B"       | Before 1991    | N=45                      | 94.2   | 87.0          | 100.0         |  |  |







Species group



| Summarv  | Stocking  | hy Block | Ado and LR HH | Snacias   | aroune De | cid "B" | Conifer a   | letoT be  | (all aligible) |
|----------|-----------|----------|---------------|-----------|-----------|---------|-------------|-----------|----------------|
| Summary. | Stocking, | DY DIOCK | Ауе ани со пп | , opecies | groups be | , u u u | Connier, ai | iu i utai | (all eligible) |

|    |         |                |                | Percent stocking by block |        |               |               |  |  |
|----|---------|----------------|----------------|---------------------------|--------|---------------|---------------|--|--|
| LB |         |                |                | Valid N                   | Median | Percentile 25 | Percentile 75 |  |  |
| НН | Species | Coniferous     | 1991 and After | N=63                      | 8.0    | .0            | 33.0          |  |  |
|    | group   |                | Before 1991    | N=45                      | 33.0   | 15.9          | 57.1          |  |  |
|    |         | Deciduous      | 1991 and After | N=63                      | 93.0   | 80.0          | 94.8          |  |  |
|    |         | "B"            | Before 1991    | N=45                      | 94.2   | 87.0          | 100.0         |  |  |
|    |         | Total stocking | 1991 and After | N=63                      | 93.0   | 87.0          | 100.0         |  |  |
|    |         |                | Before 1991    | N=45                      | 100.0  | 89.5          | 100.0         |  |  |

Figure 5-22. Stocking: LB SS; by date and species group (conifer, decid. "B" and total)





| Summary. | Stocking  | hy Block | Age and LB SS  | Species arouns | Decid "B" | Conifer and | Fotal (all eligible)  |
|----------|-----------|----------|----------------|----------------|-----------|-------------|-----------------------|
| Summary. | Stocking, | Dy DIOCK | Aye and LD 33, | Species groups | Deciu D,  | Conner, and | i otal (all eligible) |

|    |         |                |                | Percent stocking by block |        |               |               |  |  |
|----|---------|----------------|----------------|---------------------------|--------|---------------|---------------|--|--|
| LB |         |                |                | Valid N                   | Median | Percentile 25 | Percentile 75 |  |  |
| SS | Species | Coniferous     | 1991 and After | N=50                      | 87.0   | 80.0          | 100.0         |  |  |
|    | group   |                | Before 1991    | N=52                      | 80.0   | 67.0          | 91.5          |  |  |
|    |         | Deciduous      | 1991 and After | N=50                      | 73.0   | 47.0          | 87.0          |  |  |
|    |         | "B"            | Before 1991    | N=52                      | 80.0   | 54.7          | 91.5          |  |  |
|    |         | Total stocking | 1991 and After | N=50                      | 93.0   | 87.0          | 100.0         |  |  |
|    |         |                | Before 1991    | N=52                      | 93.0   | 87.0          | 100.0         |  |  |



## 4. Height





Figure 5-23. Height: All Blocks in all LB types







Figure 5-25. Height: All blocks combined, LB SS (spruce, pine decid.)



Age of block







Figure 5-27. Height: LMU CC (spruce, pine decid.)



Age of block





Figure 5-28. Height: LMU CY (spruce, pine decid.)

Figure 5-29. Height: LMU EU (spruce, pine decid.)



Age of block







Figure 5-31. Height: LMU WC (spruce, pine decid.)







Figure 5-32. Height: LB HH grazed (spruce, pine decid.)

Figure 5-33. Height: LB HH not grazed (spruce, pine decid.)



Age of block







Figure 5-35. Height: LB SS not grazed (spruce, pine decid.)



Age of block

