www.jsthrower.com

To: \quad Greg Behuniak
From: Craig Mistal
cc: Gyula Gulyas
Date: January 23, 2006
Project: WCG-011
File: WCG-011_alternate_utilization_memo_2006Jan23.doc
Re: \quad Adjustment factor for conifer 15/10 utilization
Yield tables were developed for Weyerhaeuser's Edson FMA and submitted to ASRD February 2005.
These yield tables were developed based on the coniferous utilization standard of 15 cm minimum stump height and 11 cm minimum top diameter (15/11 utilization). Weyerhaeuser requires a simple conversion factor for operators who want to use a 10 cm minimum top diameter ($15 / 10$ utilization). This memo describes the procedures used to determine the factor for converting conifer 15/11 yield tables to 15/10 yield tables.

The basic steps to calculate the conversion factor were:

1. Recompile the tree- and plot-level data with a conifer $15 / 10$ utilization standard.

We used the same compilation routine as used in the 15/11 analysis and simply changed the conifer minimum top diameter to 10 cm in the tree-level volume calculation. The compilation routine then compiles the plot-level volumes using the alternate utilization standard.
2. Refit the volume-age yield tables using the $15 / 10$ utilization volume compilation.

We used the same yield table modeling routine as used in the 15/11 analysis (no changes necessary). The volume age curves were fit to the higher 15/10 utilization plot-level volumes (Figure 1).
3. Compare the resulting $15 / 10$ yield tables to the original $15 / 11$ tables curves.

We did a logical comparison of the $15 / 10$ utilization yield tables to $15 / 11$ utilization yield tables (i.e. the 15/10 yield tables do not cross below the 15/11 yield tables) (Figure 1).

Edson FMA 15/10 vs $15 / 11$ curves

Figure 1. Alternate utilizations for yield table number 14.
4. Compute the average percent difference between $15 / 10$ and $15 / 11$ utilization at timber harvest ages for each yield table.
Weyerhaeuser determined that the average timber harvesting age over the next 20 years for coniferous stands is approximately 110 years age. We calculated the percent difference between $15 / 10$ and $15 / 11$ utilization yield tables for each base yield table (161 in total) between the ages of 90 to 130 years (Figure 2).

15/10 \% difference from 15/11
landbase $=\mathrm{C}$ yieldnum=14 plot_site=LFG std_cc=C stdper_con=6 area (ha) $=9,616$ area $(\%)=3.43$

Figure 2. 15/10 percent difference from $15 / 11$ volume.
5. Compute the area-weighted average percent difference between $15 / 10$ and $15 / 11$ yield tables.

We attached the net landbase area to each analysis unit and calculated the area-weighted average of the volume ratio between the $15 / 10$ and 15/11. The 15/10 conifer yield tables were, on average, 2.99% higher than the $15 / 11$ conifer yield tables (Table 1, Table 2).

Table 1. Yield table 15/11 to $15 / 10$ conversion factors.

landbase	area (ha)	area(\%)	total volume		conifer volume	
			15/10 \% diff. from 15/11	conversion factor	15/10 \% diff. from 15/11	conversion factor
C	157,875	56.4	2.68	1.0268	3.52	1.0352
D	122,232	43.6	0.60	1.0060	2.32	1.0232
All	280,107	100.0	1.77	1.0177	2.99	1.0299

Table 2. Conversion factors for largest analysis units in the lanbase (up to 80\% of area of landbase).

landbase	yield number	area (ha)	area (\%)	total volume		conifer volume	
				15/10 \% diff. from 15/11	conversion factor	15/10 \% diff. from 15/11	conversion factor
D	13	21,316	7.6\%	0.56	1.0056	2.78	1.0278
D	14	19,835	7.1\%	0.57	1.0057	2.27	1.0227
C	42	16,938	6.0\%	2.78	1.0278	3.46	1.0346
D	15	16,522	5.9\%	0.58	1.0058	2.04	1.0204
C	41	9,984	3.6\%	2.77	1.0277	3.51	1.0351
C	14	9,616	3.4\%	2.33	1.0233	3.32	1.0332
C	109	9,607	3.4\%	1.75	1.0175	3.53	1.0353
D	16	9,053	3.2\%	0.58	1.0058	1.92	1.0192
C	17	8,786	3.1\%	2.34	1.0234	3.07	1.0307
D	19	7,095	2.5\%	0.49	1.0049	2.71	1.0271
D	17	6,513	2.3\%	0.59	1.0059	1.84	1.0184
C	13	6,497	2.3\%	2.33	1.0233	3.47	1.0347
C	54	6,250	2.2\%	5.13	1.0513	5.84	1.0584
D	7	6,233	2.2\%	0.58	1.0058	2.80	1.0280
C	48	6,121	2.2\%	4.33	1.0433	5.03	1.0503
C	15	5,676	2.0\%	2.33	1.0233	3.21	1.0321
C	16	5,141	1.8\%	2.33	1.0233	3.13	1.0313
D	8	4,709	1.7\%	0.59	1.0059	2.29	1.0229
D	20	4,362	1.6\%	0.50	1.0050	2.20	1.0220
C	36	4,338	1.5\%	2.23	1.0223	2.92	1.0292
C	2	3,793	1.4\%	1.78	1.0178	2.76	1.0276
C	6	3,321	1.2\%	1.78	1.0178	2.47	1.0247
C	53	3,301	1.2\%	5.13	1.0513	5.89	1.0589
C	71	3,156	1.1\%	2.30	1.0230	2.74	1.0274
C	72	3,153	1.1\%	2.29	1.0229	2.64	1.0264
D	10	2,903	1.0\%	0.60	1.0060	1.94	1.0194
D	9	2,696	1.0\%	0.60	1.0060	2.06	1.0206
C	23	2,462	0.9\%	3.76	1.0376	4.50	1.0450
C	5	2,422	0.9\%	1.78	1.0178	2.52	1.0252
C	35	2,323	0.8\%	2.23	1.0223	2.97	1.0297
C	11	2,244	0.8\%	1.81	1.0181	2.54	1.0254
C	47	2,181	0.8\%	4.33	1.0433	5.08	1.0508
C	40	2,164	0.8\%	2.77	1.0277	3.58	1.0358
C	30	2,162	0.8\%	2.34	1.0234	3.02	1.0302
D	4	2,150	0.8\%	0.53	1.0053	1.86	1.0186

