Forest Management Plan 2010 Mountain Pine Beetle Amendment

Hinton Wood Products A Division of West Fraser Mills Ltd. FMA 8800025 – 0.C. 565/2007

April 30, 2010

Richard Briand, RPF 418 Management Forester Glenn Buckmaster, RPF 495 Planning Forester

Rick Bonar, P.Biol Chief Biologist and Planning Coordinator Dan Rollert, RPF 415 Woodlands Manager

Table of Contents

1	Intro	duction	1
	1.1	Plan Development Process	1
	1.2	Plan Development Team	1
	1.3	Description of the Company	2
	1.4	History of the Hinton FMA	3
	1.5	Changes in Management Philosophy from 1999 FMP	
	1.6	Mountain Pine Beetle Management on the Hinton FMA	3
	1.6.1	The Current Mountain Pine Beetle Outbreak	9
	1.7	Current Tenure Allocations	11
	1.8	Document Structure	11
2	Com	munication	12
	2.1	Public Communications Summary	12
	2.1.1	Open Houses	12
	2.1.2	Stakeholder Letters	13
	2.1.3	Public Notices	13
	2.1.4	Public Advisory Group	13
	2.2	Aboriginal Engagement Summary	14
3	Tech	nical Analysis	15
	3.1	Landbase Assessment	15
	3.1.1	Yield Strata Definitions	17
	3.2	Forest Growth & Yield	20
	3.2.1	Utilization Standards	20
	3.2.2	Volume Compilation Methods	21
	3.2.3	Cull Deductions	21
	3.2.4	Yield Curves and Yield Tables	22
	3.2.5	Regenerated Yield Transitions	22
	3.2.6	Regeneration Lag	24
	3.2.7	Alternative Regeneration Standards	24
	3.2.8	Long Run Sustained Yield Average	25
	3.3	Timber Supply Analysis	26
4	Prefe	rred Pine Management Strategy	29
	4.1	Timber Values	29
	4.1.1	MPB Risk Reduction	29
	4.1.2	Timber Supply	32
	4.1.3	Spatial Harvest Sequence	35

4.2	Non-Timber Values	. 39
4.2.1	Water Yield Impacts	. 39
4.2.2	Wildlife Species of Management Concern	. 44
4.2.3	Road Corridor Plan	. 54
4.3	Recommended Annual Allowable Cut	55
Appendix A	Terms of Reference & Extension Letters	. 58
Appendix E	B FMA Agreement	. 59
Appendix C	SRD MPB Interpretive Bulletin	. 60
Appendix I	O Communications Log	61
Appendix E	SSI Summaries	. 91
Volume II -	- Technical Analyses (under separate cover)	

Section 1: Landbase Assessment

Section 2: Timber Yields

Section 3: Annual Allowable Cut Projection

List of Tables

Table 1-1. Plan Development Team Core Members	1
Table 1-2. Additional Technical Experts	
Table 1-3. MPB Ranking by Broad Yield Strata (contributing landbase only)	
Table 1-4: FMA Tenure Allocations	. 11
Table 2-1. Current HWP Aboriginal Engagement List	
Table 3-1. Hinton FMA Landbase Classification (compared to the 1999 FMP)	. 17
Table 3-2. FMP Yield Strata and Area Summary	. 18
Table 3-3. Broad Yield Strata Area Summary	
Table 3-4. Coniferous Utilization Standards	. 21
Table 3-5. Deciduous Utilization Standards	. 21
Table 3-6. Acceptable Species	. 21
Table 3-7. Regeneration Transitions	
Table 3-8. Regeneration Lag by FMP Yield Stratum.	. 24
Table 3-9. Regeneration Standards Target MAI	
Table 3-10. Long Run Sustained Yield Average	. 25
Table 3-11. Major Timber Supply Model Constraints	. 28
Table 4-1. 2008-2017 SHS Stratum Summary	
Table 4-2. Water Flow Assessment: Watershed Groups	. 42
Table 4-3. RSF, Mortality Risk and Safe Harbour Summary - Grande Cache Population	. 50
Table 4-4. RSF, Mortality Risk and Safe Harbour Summary - Yellowhead Population	
Table 4-5. Open Route Density – Grande Cache Grizzly Bear Population	
Table 4-6. Open Route Density – Yellowhead Grizzly Bear Population	. 52
Table 4-7. Harvest Level Allocation	. 55
Table 4-8. Historical Allocations	. 55
Table 4-9. Proposed Allocations	. 56
Table 4-10. Timber Utilization	. 56
Table 4-11. Timber Chargeability	. 56
Table 4-12. Timber Production	. 57
Table 4-13. Fibre Assignment Agreements	
Table A 1. 2007 Open House; Summary of Public Input	. 61

Table A 2. 2008 Open House; Summary of Public Input	61
Table A 3. 2009 Open House; Summary of Public Input	
Table A 4. 2010 Open House; Summary of Public Input	62
Table A 5. Description of FRAG activities related to the FMP and/or FMP Amendment	64
Table A 6. HWP Aboriginal Engagement List (December 17, 2007)	70
Table A 7. HWP Aboriginal Engagement List (July 2008 – July 2009)	70
Table A 8. HWP Aboriginal Engagement List (August 2009 – Present)	70
Table A 9. Summary of Aboriginal Engagement Efforts	71
Table A 10. Compartment Ranking Based on SSI with Climate Factor Adjustment	91
Table A 11. Compartment Ranking Based on SSI with Climate Factor Adjustment (40+)	91
Table A 12. Compartment Ranking Based on MPB Connectivity Rating	92
Table A 13. Compartment Ranking Based on SSI with Climate Factor Adjustment (40+) & Connectivity	93

List of Figures

Figure 1-1. Merchantable Growing Stock (Gross)	4
Figure 1-2. FMA Age Class Distribution	4
Figure 1-3. Age Class Distribution for the Passive Landbase	
Figure 1-4. Age Class Distribution for the AAC Contributing Landbase	5
Figure 1-5. SRD MPB Stand Ranking Matrix	6
Figure 1-6. MPB Pine Rating Map (2008)	7
Figure 1-7. MPB Rank Map (2008)	8
Figure 1-8. MPB Stand Ranking Proportions (2008)	9
Figure 1-9. Location of the 2009 Pheromone Bait Sites on HWP's FMA.	. 10
Figure 3-1. Net Area Age Class Distribution by Broad Yield Strata	. 19
Figure 3-2: FMA Composite Yield Curve	. 22
Figure 3-3. TSA Scenario Outcomes	. 27
Figure 4-1. Change in Rank 1 & 2 Area	
Figure 4-2. Contributing Area Age Class Distribution 2008 vs. 2027	. 30
Figure 4-3. Rank 1 and Rank 2 Stands 2008 vs. 2027	. 31
Figure 4-4. Change in Conifer Growing Stock.	. 32
Figure 4-5. Harvest Flow	
Figure 4-6. Conifer Harvest Flow Composition Trend	. 33
Figure 4-7. Growing Stock Trend	
Figure 4-8. Tree Size Trend	. 34
Figure 4-9. Average Haul Distance Trend	
Figure 4-10. 10 Year SHS	. 38
Figure 4-11. Watershed Groups	. 40
Figure 4-12. Base Yield Estimates	. 41
Figure 4-13. Base Precipitation Estimates	
Figure 4-14. Watershed Groups with Projected Increase in Water Yield > 15% (Pine Creek and Wind	lfall
Creek)	
Figure 4-15. Location of Caribou Range	
Figure 4-16. Rank 1 and Rank 2 Stands within the Caribou Range	
Figure 4-17. Location of Trumpeter Swan Ponds	
Figure 4-18. Grizzly Bear Watershed Units	
Figure 4-19: Grizzly Bear Safe Harbour (current)	
Figure 4-20: Grizzly Bear Safe Harbour (future)	
Figure 4-21: HWP Long-Term Access Plan Regions	. 54

1 INTRODUCTION

This is the first of two forest management plan documents that will be completed for the Hinton FMA over the course of the next five years. Hinton Wood Products has prepared this plan in response to the Government of Alberta's directive to reduce the amount of Mountain Pine Beetle (MPB) susceptible stands within the Hinton FMA. Although this is an amendment to the currently approved 1999 Forest Management Plan, several significant tasks have been completed in preparation of this plan. The following are of particular significance:

- A new landbase assessment, based on a new forest inventory, has been completed.
- New yield curves have been developed reflecting the utilization standards currently in effect for the FMA
- A re-assessment of the annual allowable cuts has been completed.

This Mountain Pine Beetle Forest Management Plan Amendment is focussed on MPB risk reduction and includes the recommendation of a new AAC and addresses water, caribou, trumpeter swan and grizzly bear issues. A 10 year spatial harvest sequence has also been produced. The effective date of this plan is May 1, 2008.

1.1 Plan Development Process

The planning process was initiated with the approval (June 2, 2005) of a Terms of Reference for the development of a new forest management plan for the Hinton Wood Products Forest Management Agreement (FMA) area. In 2007, after a few key personnel and forest management direction changes were introduced, a revised Terms of Reference was prepared and approved. A final amendment to the Terms of Reference was submitted in September of 2009 to reflect changes in submission timelines (Appendix A).

This document is the first of two that are planned for the FMA over the course of the next five years. This "Mountain Pine Beetle Amendment", due April 30 2010, is focussed on MPB risk reduction and includes the recommendation of a new AAC and addresses water, caribou, trumpeter swan and grizzly bear issues. A 10 year spatial harvest sequence has also been produced.

The second document, currently scheduled for submission by September 30, 2014, will meet the requirements of the Alberta Forest Management Planning Standard (version 4.1 – April 2006). The previous submission timeline for this document was September 30, 2010. However, HWP and the Government of Alberta reviewed the submission timeline in light of several significant strategic planning initiatives currently planned for the region. These include the land-use framework, the water for life strategy and grizzly bear and caribou recovery plans. Given the potential implications that these initiatives may have on forest management planning, and the significant resources that will likely be required to participate in these processes, the revised timeline was adopted.

1.2 Plan Development Team

Hinton Wood Products and Alberta Sustainable Resource Development have assembled a Plan Development Team (PDT) that was the central group responsible for development of the DFMP. The following table describes PDT membership.

Name	Affiliation	Position
Frazer Butt Vicky Bossé Stephen Wills Brad Epp	ASRD—Forest Management Branch	Forest Management Planning Forester

Table 1-1. Plan Development Team Core Members

Name	Affiliation	Position	
Kevin Vander Haeghe Bill Tinge	ASRD—Foothills Area	Integrated Operational Planning Forester	
Chad Yurich Tracy McLean	ASRD—Foothills Area	Area Forester	
Jeff Kneteman	ASRD— Foothills Area Fish and Wildlife	Senior Wildlife Biologist	
George Sterling	ASRD— Foothills Area Fish and Wildlife	Senior Fisheries Biologist	
Dan Rollert	Hinton Wood Products	Woodlands Manager	
Richard Briand	Hinton Wood Products	Management Forester	
Rick Bonar	Hinton Wood Products	Chief Biologist & Planning Coordinator	
Glenn Buckmaster	Hinton Wood Products	Planning Forester	

Other technical experts from the Alberta government and Hinton Wood Products were consulted on an as needed basis to address specific areas of concern (see table below).

Name	Affiliation	Position	Function	
Karl Peck	ASRD—Resource Analysis Section	Senior Resource Analyst	Timber supply	
Darren Aitkin	ASRD—Resource Analysis Section	Growth and Yield Forester	Growth and Yield	
Jamie Bruha	ASRD— Timber Operations Harvesting and Renewal Section	Senior Forester	Operating Ground Rules Lead	
Aaron Jones	Hinton Wood Products	Stewardship/Public Affairs Coordinator	Public/Aboriginal Referral	
Diane Renaud	Hinton Wood Products	Senior Silviculture Forester	Tree improvement and silviculture	
Bruce Alexander Peter Andrews	Hinton Wood Products	Operations Coordinator	Harvest Operations	
Lynn Bergeron	Hinton Wood Products	Landuse Coordinator	Landuse	

Table 1-2. Additional Technical Experts

1.3 Description of the Company

West Fraser Timber Company Ltd. is a Canadian owned integrated forest products company producing lumber, wood chips, medium density fibreboard (MDF), plywood, pulp, laminated veneer lumber (LVL), linerboard, kraft paper, and newsprint. Today, the Company carries on its operations in Alberta, British Columbia, Arkansas, and Louisiana through subsidiary companies and joint ventures owned directly or indirectly by the Company's principal operating subsidiary West Fraser Mills Ltd.

The Hinton manufacturing facilities include a sawmill, Hinton Wood Products (HWP), with an annual capacity of 281 million board feet of dimension lumber and a northern bleached softwood kraft pulp mill, Hinton Pulp, with an annual capacity of 365,000 air-dried tonnes. The Hinton mills are supplied predominantly with wood harvested from the Forest Management Area (FMA).

1.4 History of the Hinton FMA

The Hinton Wood Products Forest Management Agreement (Appendix B) was renewed on May 1, 2008 with the Government of Alberta (O.C. 565/2007 - FMA 8800025) for a twenty-year period.

On December 31, 2004, the Hinton operation was acquired by West Fraser Mills Ltd. The Forest Management Area (FMA) that Hinton Wood Products manages has been in existence since 1951, making it the oldest FMA in Alberta. The Hinton FMA was unprecedented in many respects. It marked the first binding commitment of its kind by a major Canadian forest industry to sustained yield forest management. It established a unique co-operative relationship between government and industry for sharing costs and responsibilities, and it provided a landscape for scientists to apply their knowledge on a large scale.

1.5 Changes in Management Philosophy from 1999 FMP

In 2006, West Fraser's management paradigm for the FMA changed. The change was to shift the focus from a pulpwood standard to a sawlog standard. This resulted in the closure of the pulp mill woodroom and an amendment of the conifer utilization standard from 10/8/15 to 15/10/15.

In the 1999 DFMP, the Company had a stated objective of maintaining an annual allowable cut of 2.2 million cubic metres. Significant investments in enhanced forest management research were made in pursuit of this AAC objective. With the change to the sawlog standard, this impetus for this research was removed. Nonetheless, the Company has followed through on the research trials to ensure that the information is collected. In light of the impending MPB outbreak on the FMA, this research may prove to be extremely valuable for mitigating AAC fall down post-beetle attack.

The other primary shift in management of the FMA is the intent to mitigate impacts of the mountain pine beetle outbreak. Lodgepole pine, the target host of the MPB, accounts for approximately 70% of the coniferous annual allowable cut on the Hinton FMA. HWP's forest management activities are driven by the objective to reduce the susceptibility of the FMA to a catastrophic MPB outbreak.

1.6 Mountain Pine Beetle Management on the Hinton FMA

In the 2007 General Development Plan, HWP's strategy for addressing the MPB risk was described. The strategies outlined at that time remain in effect today and can be summarized as follows:

- Concentrate harvest operations in pine dominant stand types
- Where possible, avoid harvest of non-pine species, except where required to meet other business commitments (e.g. harvest of deciduous timber for exchange/sale with other operators)
- Cooperate with SRD to control known beetle attack areas, where economically feasible
- Concentrate harvest operations in the northern portion of the FMA, where the MPB threat appears to be the highest. When required, maintain operations in other areas of the FMA for economic or other business reasons.

Lodgepole pine is the most dominant commercial species on the FMA (Figure 1-1). The FMA is also dominated by mature and overmature stands (Figure 1-2). The prevalence of contiguous, mature pine on the FMA provides an ideal environment for a catastrophic MPB outbreak.

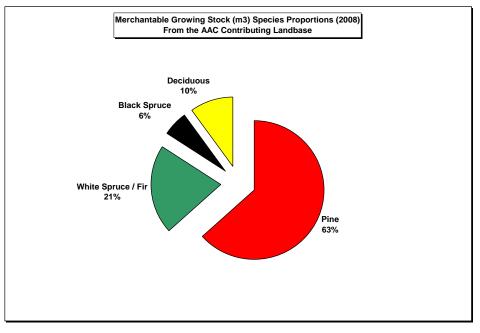


Figure 1-1. Merchantable Growing Stock (Gross)

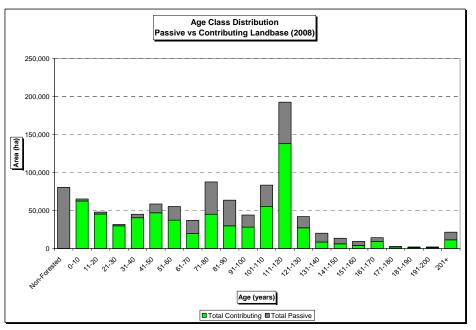


Figure 1-3 and Figure 1-4 illustrate the age class distribution of the passive (areas excluded from the AAC) and the contributing (areas included in the AAC) landbases, respectively. Pine stands make up approximately half of the passive landbase, with the balance being predominantly white spruce and black spruce. Pine stands comprise approximately two-thirds of the contributing landbase.

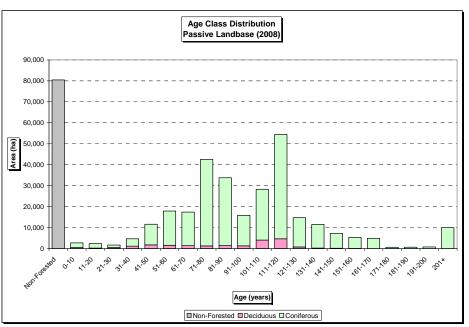
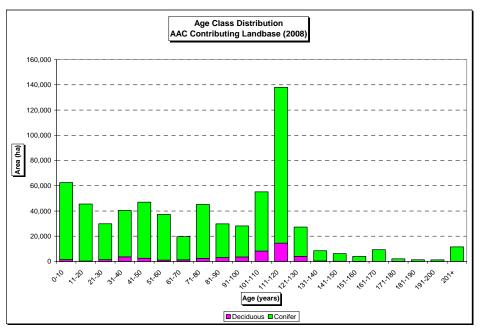



Figure 1-3. Age Class Distribution for the Passive Landbase

Figure 1-4. Age Class Distribution for the AAC Contributing Landbase

Alberta Sustainable Resource Development adopted a method of ranking the MPB risk associated with individual stand types. As per the SRD MPB interpretive bulletin¹ (Appendix C), the stand MPB ranking is based on:

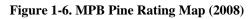
- Pine Rating. The physical characteristics of the stand, without considering the climate, or location of the particular stand. The Pine Rating is a factor of the percentage of susceptible pine basal area, stand age, and a stand density factor.
- Compartment Risk The probability that a compartment will be attacked based on the location of existing MPB populations.
- Climate Factor: Ranks the potential for successful MPB development.

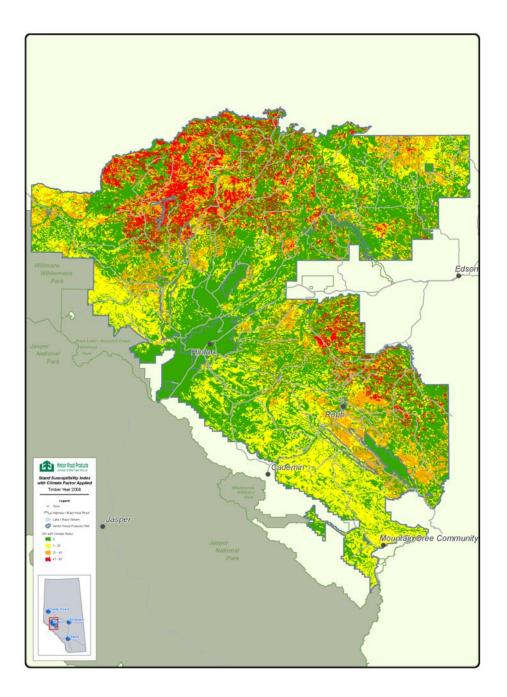
These factors are combined as per the following table to assign stand MPB ranking:

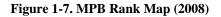
(per stand)	Rank 1	Rank 1	Rank 1	Rank 1	High
Very Suitable 1.0	Rank 2 Rank 2	Rank 1 Rank 2	Rank 1 Rank 1	Rank 1 Rank 1	Moderate Low
Highly Suitable 0.8	Rank 1 Rank 2 Rank 2	Rank 1 Rank 2 Rank 2	Rank 1 Rank 1 Rank 2	Rank 1 Rank 1 Rank 1	High Moderate Low
Moderately Suitable 0.5	Rank 2 Rank 2 Rank 3	Rank 1 Rank 2 Rank 2	Rank 1 Rank 2 Rank 2	Rank 1 Rank 1 Rank 2	High Moderate Low
Low Suitability 0.2	Rank 2 Rank 3 Rank 3	Rank 1 Rank 2 Rank 2	Rank 1 Rank 2 Rank 2	Rank 1 Rank 2 Rank 2	High Moderate Low
Very Low Suitability 0.1	Rank 3 Rank 3 Rank 3	Rank 2 Rank 3 Rank 3	Rank 2 Rank 2 Rank 3	Rank 2 Rank 2 Rank 3	High Moderate Low
	Rank 3 0 to 30	31to 50	Rank 3 51to 80 Rating	Rank 3 81to 100	Low

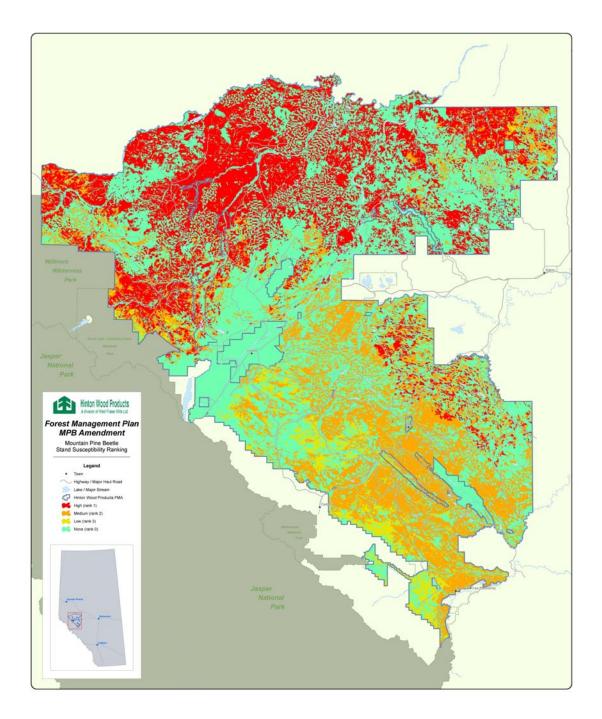
Figure 1-5. SRD MPB Stand Ranking Matrix

The ranking classes are described by SRD as follows:


- Rank 1 stands are the highest priority for susceptibility reduction. These stands provide the best habitat for MPB to produce brood and spread MPB to other stands. Rank 1 stands have the following general characteristics, comprised of large old pine, are close to existing MPB populations and/or are in areas that are very climatically suitable for beetle development.
- Rank 2 stands are also important, but, because of their lower pine component, lower climate suitability, and/or greater distance from existing MPB populations, they are a lower priority.
- Rank 3 stands can be attacked and MPB can survive in these stands. However, the brood produced from these areas, at least right now, is significantly lower than that produced in Rank 1 and Rank 2 stands.


The Hinton FMA is comprised of stands which have high pine ratings (also referred to as Stand Susceptibility Rating (SSI)). Please refer to Figure 1-6. HWP received direction from the regional Forest Health Officer to assess compartment risk as high for the northern portion of the FMA (Berland, Athabasca and Marlboro Working Circles) and medium for the southern portion of the FMA (Embarras and McLeod


¹ Alberta SRD Interpretive Bulletin - Planning Mountain Pine Beetle Response Operations v2.6


Working Circles). The resulting Hinton FMA rank assignments are shown in Figure 1-7 and Table 1-3. The table provides an area summary by broad stand type for the contributing landbase.

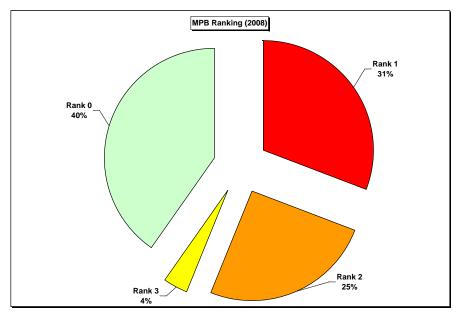


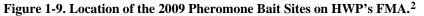
Figure 1-8. MPB Stand Ranking Proportions (2008)

Broad Yield Strata	MPB Ranking				Total Area	
Bload Tield Strata	1	2	3	None	(ha)	
1 - Pure Deciduous	6,762	5,383	69	39,016	51,230	
2 - DC (Pine)	7,745	5,905	302	4,375	18,326	
3 - DC (Other Conifer)	2,557	3,534	124	13,424	19,639	
4 - CD (White Spruce)	1,415	2,779	113	12,162	16,469	
5 - CD (Pine)	10,489	6,877	380	7,586	25,331	
6 - CD (Black Spruce)	179	61	0	315	555	
7 - Pure Conifer (White Spruce)	9,316	19,878	10,902	66,576	106,673	
8 - Pure Conifer (Pine)	157,023	114,762	12,196	111,943	395,925	
9 - Pure Conifer (Black Spruce)	4,869	5,093	398	5,655	16,016	
Total Area (ha)	200,356	164,270	24,484	261,052	650,163	

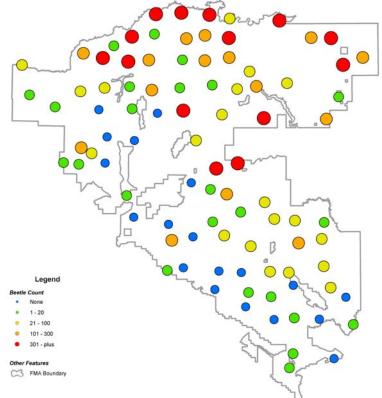
1.6.1 The Current Mountain Pine Beetle Outbreak

During the first half of 2009, the status of mountain pine beetle (MPB) on the Hinton Forest Management Area (FMA) appeared quite positive – the cold snap Hinton residents endured in December of 2008 resulted in a high level of mortality of MPB in the general area of the Hinton FMA.

The Hinton FMA has seen the benefits of cold weather over the past two winters as well as the provincial government's aggressive cut and burn control tactics for infected trees. In fact, in 2009 Alberta Sustainable Resource Development (ASRD) had to control about 60% less MPB infested trees as compared to the previous year. In addition, mortality sampling conducted by ASRD in the spring of 2009 in the Grande Cache/Willmore area indicated that beetle success was low with declining populations, and that there was a low probability of spread from the Grande Cache and Willmore areas.


In late July 2009 the situation changed for the worse when Alberta received another large influx of MPB from British Columbia. These beetles were brought significant distances (hundreds of kilometres) by the wind. They rained down on Alberta in a wide swath from Grand Prairie to south of Hinton, with the highest

concentrations to the north of the FMA; however, the effects of this flight have been seen to a lesser extent in Grande Cache, Hinton and Edson areas. New MPB attack has been confirmed as far east as Chip Lake and as far south as the Brazeau River. This large MPB wind driven event appears to be worse than a similar event seen in 2006. This 2009 flight was also earlier, allowing more time for the beetle's larvae to develop, which often leads to increased over-wintering survivability.


Since 2006, HWP has placed pheromone baits on a grid system (one pheromone site per township) across the FMA (see Figure 1-9). Each site has three trees with chemical baits that lure MPB in from a distance of a few hundred meters. This has allowed the Company to monitor the level of MPB attack on the FMA.

From 2006 to 2008, MPB attack of these pheromone baited trees remained very low; however, all that changed in 2009. Previously HWP had been able to count the number of individual beetles that had attacked the pheromone baited trees – the most individual beetle hits found over the entire Hinton FMA was 90 in 2007, which decreased to 48 in 2008. However, in 2009, the amount of individual hits on HWP pheromone baited trees were in the thousands (too many to count) and for the first time there was spill over of MPB attack into the non-baited trees adjacent to the trees with the pheromone baits.

This indicates a never before seen level of MPB attack within the Hinton FMA. Not only were the levels of individual MPB hits significantly higher than anything seen in the past, there were also many more pheromone baited sites that were hit. HWP is now seeing some level of MPB activity across a significant portion of the FMA, although the highest concentrations are still in the north. In addition. ASRD aerial surveys in late fall 2009 detected hundreds of sites with trees starting to die because of natural MPB attack on the FMA, again mostly along the northern edge. Survey and control of all known MPB sites on the FMA is underway for winter 2009-2010. However it is certain that there are other MPB infestations on the FMA that are yet unknown.

One thing appears to be certain; mountain pine beetle is firmly established on the Hinton FMA and it is not likely that it will ever go

away entirely. There is some reason for optimism, however, because when local climate data over the last 10 years is examined, it is encouraging to see that each year the Hinton area has undergone at least one day where temperatures have dropped below -40C (which is fatal to MPB), and in the middle of December 2009 the Hinton/Grande Cache area did experience a cold snap with temperatures plummeting to as low as -43 in some areas. This provides some optimism that MPB may still have a difficult time reaching epidemic levels.

² Each coloured circle indicates the number of individual MPB hits at each site. The warmer the colour and the larger the circle, the higher the number of individual MPB hits.

1.7 Current Tenure Allocations

The Hinton sawmill and pulp mill are supplied predominantly with wood harvested from the Forest Management Agreement area (FMA). The Woodlands department of Hinton Wood Products manages the FMA and the supply of wood to the two mills. The approved annual cut for the FMA currently stands at 1,535,000 m³ of softwood at the 15/10/15 utilization standard and 169,449 m³ of deciduous at the 10/8/15 utilization standard.

There are no overlapping quota holders within the Hinton Wood Products FMA. A small amount of the FMA annual allowable cut (8,500 m³ conifer and 1,500 m³ deciduous) is available to be issued by Alberta.

Disposition Holder	Conifer AAC $(15/10/15 - m^3/yr)$	Deciduous AAC $(10/8/15 - m^3/yr)$
Hinton Wood Products	1,526,500	167,949
Available for allocation by SRD as per FMA Agreement	8,500	1,500
Total	1,535,000	169,449

Table 1-4:	FMA	Tenure Allocations
-------------------	-----	---------------------------

1.8 Document Structure

This document has been developed in 4 sections

- Section 1 contains a description of the intent, people and process.
- Section 2 summarizes the stakeholder communication activities undertaken for this plan.
- Section 3 contains summaries of the landbase, growth and yield and timber supply analysis.
- Section 4 contains a summary of the preferred pine management strategy.

2 COMMUNICATION

This section contains a summary of the communications activities undertake by Hinton Wood Products to solicit and incorporate input from the general public and from Aboriginal communities (with traditional use within or adjacent to the FMA) in the development of the Company's FMP amendment This document summarizes the different strategies the Company has employed to gather public and Aboriginal input, and also describes what type of issues have been raised (to date) and how the Company has responded to those issues. Communication efforts were initiated several years ago as the Company began work on a new Forest Management Plan, which then evolved into the MPB FMP amendment. As previously discussed, the FMP submission date has been amended to September 30, 2014.

These communications efforts are consistent with the Company's Communications Plan, which has been approved by Alberta Sustainable Resource Development.

See Appendix D for a detailed communications log.

2.1 Public Communications Summary

Hinton Wood Products has used four main communication strategies for seeking and incorporating public input into the development of the FMP and Beetle Plan:

- 1. Open Houses
- 2. Stakeholder Letters
- 3. Public Notices
- 4. A public advisory group

2.1.1 Open Houses

Hinton Wood Products has been holding annual open houses in local communities for over a decade. At these open houses, posters and maps are displayed that provide information on each component of HWP's operation including information on planning, certification, recreation, silviculture, operations, mountain pine beetle management, and access management. For each open house since 2001, HWP has also compiled and printed a "Summary Document". This Summary Document describes in plain language, HWP's harvesting plans for the upcoming 5 year period. In 2010, a more detailed Summary Document was prepared – it was titled the "Mountain Pine Beetle Plan and General Development Plan Summary Document" (copy provided in Appendix D. This document described in easy to understand language the following:

- 1. HWP's Mountain Pine Beetle (MPB) Plan including information on: a new gross and net landbase for the FMA, new forest growth relationships, a new Annual Allowable Cut, a five year spatial harvest sequence, and strategies for major non-timber values on the FMA
- 2. HWP's 2010-2011 General Development Plan (GDP) showing the location of compartments to be harvested within for the next five years.
- 3. HWP's Stand Tending Plan showing the block locations of chemical and manual tending operations for the next operating season.

At all open houses, HWP staff is on hand to answer any questions that the public might have and to respond to any issues or complaints. Forms are provided so that people can provide written feedback either immediately at the open house, or by taking the form away and later sending it back to HWP. Each form specifically asks whether or not the person would like a written response to their question, comment, or concern.

For each open house, advertisements are placed in two or three local newspapers (i.e. Edson Leader, Hinton Parklander, and the Grande Cache Mountaineer) notifying the public of the location and time of the open house. In addition, the ads note specifically what type of input the Company may be looking for.

Since 2007, part of the advertised reasoning for the Company's open houses was to "provide feedback regarding the development of a new Forest Management Plan".

2.1.2 Stakeholder Letters

While open houses are planned to give the general public an opportunity to provide feedback, ask questions, and acquire information about the Company's plans, this type of public involvement by its very nature is not that targeted. To better target specific individuals or organizations, the Company also sent out letters to a list of stakeholders that HWP knows or thinks might have a particular interest within the FMA, specifically asking for their input in the development of the FMP and inviting them to participate in the process. By sending out these stakeholder letters, HWP is providing those individuals or organizations that really want to be involved in the forest management planning process, a very real opportunity to provide input and become involved. In 2010, each stakeholder letter either contained a "MPB Plan & GDP Summary Document" or provided the stakeholder with a link to HWP's website to download the document.

2.1.3 Public Notices

In April of 2005 Hinton Wood Products also placed a public notice in three local newspapers- the Hinton Parklander, the Edson Leader, and the Edson Anchor. This notice advertised the fact that HWP was soliciting input into the development and implementation of a new SFM system (required under the Company's CSA Z809 certification) and a new Forest Management Plan. The notice pointed out that HWP's Forest Resources Advisory Group (FRAG) was the Company's main avenue for public input, but noted that anyone could provide input into the Forest Management Planning process. The public notice specifically identified what HWP was looking to be advised on, which was described as follows:

- The identification and/or setting of Values, Objectives, Indicators, or Targets related to the Company's FMA
- The implementation and continual improvement of the SFM System and/or Forest Management Plan

The notice provided contact information for anyone to ask questions or for anyone interested in providing feedback regarding the SFM System and/or the FMP.

Public notices also go out annually to announce HWP's open house dates and locations.

2.1.4 Public Advisory Group

Since 1989, Hinton Wood Products has maintained a public advisory group that meets on a regular basis (about 10 times per year) – this advisory group is called the Forest Resources Advisory Group or FRAG for short. FRAG is a multi-stakeholder public advisory group with the following purpose:

- To provide organized and regular public input into HWP's Woodlands Department's planning and operations.
- To select or respond to issues, and to consider and recommend actions and policies to HWP's Woodlands staff.

FRAG is HWP's main avenue for public participation. The following organizations are represented on FRAG:

- Hinton & District Chamber of Commerce
- Steel Workers
- Hinton Ministerial Association
- Coal Assoc. of Canada
- Town of Hinton
- Canadian Forest Service
- Hinton Good Companions
- Alberta Teachers Association
- Hinton Environmental Association

- Alberta Trappers Association
- Fish & Game Association
- Yellowhead County
- Jasper National Park
- Hinton All Terrain Vehicle Society
- Communications, Energy and Paperworkers Union of Canada
- Neighbour Link
- Whisky-Jack Bird Club
- Fox Creek Development Association

2.2 Aboriginal Engagement Summary

The duty to consult with Aboriginal communities rests with the Crown (Alberta). Alberta has acknowledged that while the key goal in all circumstances is to avoid or mitigate potential adverse impacts and to come to an agreeable solution, the agreement of all parties is not a requisite component of adequate consultation. The Guidelines state that ASRD will assist a forest company by "advising the forest industry which First Nations need to be consulted".

HWP has made a significant effort to consult with Aboriginal communities within and adjacent to the FMA – this effort started before the government's Aboriginal Consultation Guidelines came into effect (September 2006) and continue to this day. The government sanctioned list of which communities HWP must contact has changed a number of times over the last three years, resulting in some inconsistent referral activities (i.e. some communities have been dropped and others added). However, HWP has had a long consultative relationship with the five Aboriginal communities that are closest to the Hinton FMA and that have documented traditional use sites – this includes the Alexis Nakota Sioux Nation, Aseniwuche Winewak Nation, Foothills Ojibway, Nakcowinewak Nation, and the Mountain Cree (Smallboys camp).

The current communities which HWP contacts are presented in the following table:

Aboriginal Community	Status	Mandatory/Voluntary
Alexis Nakota Sioux Nation	First Nation	Mandatory
Aseniwuche Winewak Nation (AWM)	Non-Status	Mandatory
Ermineskin Tribe	First Nation	Mandatory
O'Chiese First Nation	First Nation	Mandatory
Foothills Ojibway	Non-Status	Voluntary
Nakcowinewak Nation	Non-Status	Voluntary
Mountain Cree (Small Boys)	Non-Status	Voluntary
Sunchild First Nation	First Nation	Voluntary
Bighorn Chiniki	Non-Status	Voluntary

Table 2-1. Current HWP Aboriginal Engagement List

Appendix D contains summaries of the engagement activities undertaken.

3 TECHNICAL ANALYSIS

Since the 1999 FMP was completed and approved HWP has acquired new data sources, which include: a new forest inventory, a new watercourse layer, an ecological land classification inventory, MPB stand susceptibility indices, and LIDAR data. These new data along with changes in the timber utilization from a 10/8 pulp standard to a 15/11 sawlog standard has required HWP to complete much of the technical work required for a complete revision to the FMP; this includes: classifying a new landbase, building new yield curves, and constructing new TSA models.

This section contains summaries of the FMA landbase assessment, the development of forest growth and yield age relationships and the timber supply analyses undertaken:

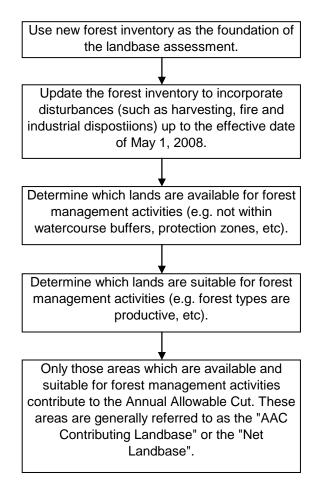
- Landbase assessment this is a detailed evaluation of which areas are available and suitable for forest management activities such as timber harvesting.
- Growth and Yield an assessment of how the forest grows over time
- **Timber Supply Analysis** an assessment of how much timber can be harvested in a sustainable manner, including a detailed assessment of the impacts on other values.

Detailed documentation of the methods and results are provided in *Volume II – Technical Analyses* of this FMP Amendment.

3.1 Landbase Assessment

The classification of the FMA landbase is the first of three technical tasks required in the determination of a new annual allowable cut for the Hinton FMA. The landbase classification has three primary objectives:

- Determine the current condition of the Hinton FMA landbase by classifying each polygon in the FMA as either part of the contributing or passive landbase and assigning all forested areas to a yield stratum;
- Identify pine stands that are particularly vulnerable to MPB infestation;
- Create a layer that is compliant to the *Alberta Forest Management Planning Standard* which can be used within a timber supply model to revise the AAC for the Hinton FMA.


The landbase assessment was completed using several data sources, including:

- Alberta Vegetation Inventory (AVI)
- FMA boundary (May 1, 2008 Forest Management Agreement O.C. 565/2007)
- Compartments
- Cutblock history and silviculture records
- Fire history
- Ecological land classification
- Mountain pine beetle susceptibility index

- Natural sub-region
- Hydrology (Watercourses and Lakes)
- Watersheds
- Eastern Slopes Prime Protection zones
- HWP wildlife zones
- Steep slopes
- Dispositions
- Seismic lines
- Planned blocks

These data sources were combined and updated to a base date of May 1, 2008. In simple terms, the landbase assessment process is as follows:

The following table summarizes the new net landbase and provides a comparison to the 1999 forest management plan.

A report entitled <u>2009 Mountain Pine Beetle Forest Management Plan Technical Report #1 - Landbase</u> <u>Classification</u> is provided in Section 1 of *Volume II – Technical Analyses* of this FMP Amendment. It contains a detailed description of the landbase assessment methods and results.

Land	base Category		1999 Area (ha) 10/8 Utilization	2009 Area (ha) 15/11 Utilization [†]	2009 % of Total Area*
Total	Landscape (Including OB Areas)		1,038,564	1,034,067	
Outsi	de the FMA				
OB	Townsites, Patented Land, Parks, and Mines		36,093	45,293	
Total	FMA Area		1,002,471	988,774	100.00%
Non-	Forested Area Reductions				
NN	Naturally Non-Vegetated		18,733	5,280	0.53%
NV	Naturally Non-Forested		47,175	21,834	2.21%
AN	Anthropogenic Non-Vegetated			17,542	1.77%
AV	Anthropogenic Vegetated			5,334	0.54%
		Sub-Total	65,909	49,991	5.06%
Dispo	ositions and Other Area Removals				
EP	Eastern Slopes Land Use Zones (Prime Protection)			962	0.10%
DR	Disposition Reservation		22,044	22,341	2.26%
		Sub-Total	22,044	23,303	2.36%
······	ective and Ecosite Deletions				
WT	Wet Site			152,694	15.44%
LR	Larch Subjective Deletion			2,954	0.30%
EC	Non-Operational Ecosites		94,524	6,600	0.67%
AO	"A" Crown Closure Overstory with No Understory			3,924	0.40%
SB	Black Spruce Composition >=80%		24,559	28,690	2.90%
PP	Potentially Productive			2,355	0.24%
		Sub-Total	119,083	197,217	19.95%
	r course buffers / Steep Slopes				
SS	Steep Slopes		10,303	37,794	3.82%
WB	Watercourse Removals		53,648	16,737	1.69%
G	· · · ·	Sub-Total	63,951	54,531	5.52%
	nic Lines		17 144	12 600	
CL	Cutlines / Seismic		16,144	13,528	1.37%
	Non-Managed Portions of Horizontal Stands	G 1 77 / 1	0	41	0.00%
Tata	Deletion Area (Evaluding OP Areas)	Sub-Total	<u>16,144</u> 287,130	13,569	<u> </u>
	Deletion Area (Excluding OB Areas)		· · · · · ·	338,611	
Total	AAC Contributing Landbase		715,340	650,163	65.75%

* - Percentages exclude out of bounds areas (Del = "OB"); † - UTZ = Utilization Standard - 15/11 for coniferous; 15/10 for deciduous

3.1.1 Yield Strata Definitions

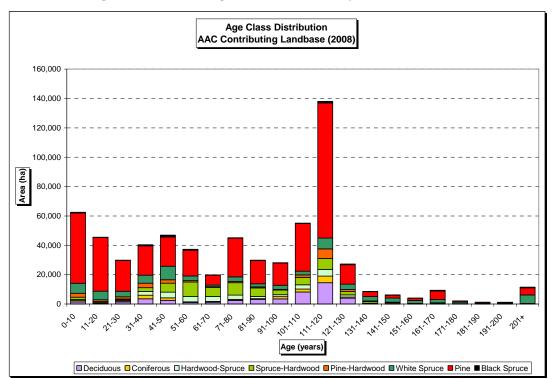
Yield strata are groupings of forest stands into categories with similar forest growth expectations. Every hectare of the contributing landbase is assigned to a yield stratum. Two broad strata were also created for productive stand types in the passive landbase; however, they were not used in this FMP Amendment. The yield stratum assignments were based on four key forest inventory attributes:

- 1. Stand origin: fire origin (natural) stands were stratified separately from post-harvest managed stands.
- 2. Site Quality: Each stand was identified as being located on either a Good, Medium, or Poor site.
- 3. Crown Closure: Each stand was identified as having either high ("C" & "D") or low ("A" & "B") crown closure.

4. Overstory versus Understory managed: Used for fire origin stands only. Some stands are planned to be managed based on the understory composition.

Fire origin stands and cutblocks harvested prior to 1991 were assigned to a yield stratum based on the stand attributes from the forest inventory classification. Yields for these strata were based on HWP's permanent growth sample (PGS) data. Cutblocks harvested since the beginning of the 1991 timber year were assigned to a yield strata based on field surveys and silviculture declarations; yields for these strata were projected using performance survey data modeled through Alberta's forest growth model (GYPSY).

Twenty seven yield strata were identified for the 2009 MPB FMP using the above mentioned variables. A description of the FMP Yield Strata and the variables used to assign the strata are presented in the following table.


There are 555 hectares of the "black spruce-hardwood" type in the AAC contributing landbase on the FMA. Due to data limitations for yield curve development and the low number of hectares, this type was merged into the "white spruce-hardwood" stratum.

Yield Stratum Number	Landbase	Origin Type	Story Managed	Yield Stratum Name	Yield Stratum Code	AAC Contributing Area (ha)
1				Pure deciduous, A/B crown closure	E_B1_XL	11,251
2				Pure deciduous, C/D crown closure	E_B1_XH	35,465
3				Deciduous dominated pine mixedwood	E_B2_XX	16,015
4				Deciduous dominated spruce mixedwood	E_B3_XX	13,276
5				Spruce dominated mixedwood	E_B4_XX	9,239
6				Pine dominated mixedwood	E_B5_XX	21,057
7		Fire origin		Pure conifer white spruce leading, poor & medium sites	E_B7_MX	43,671
8		stands, Pre-91		Pure conifer white spruce leading, good sites, A/B crown closure	E_B7_GL	11,766
9	Contributing	cutblocks, or	Overstory	Pure conifer white spruce leading, good sites, C/D crown closure	E_B7_GH	6,866
10		cutblocks without an		Pure conifer pine leading, poor & medium sites, A/B crown closure	E_B8_ML	38,092
11		opening number		Pure conifer pine leading, poor & medium sites, C/D crown closure	E_B8_MH	131,841
12				Pure conifer pine leading, good sites, A/B crown closure	E_B8_GL	33,808
13				Pure conifer pine leading, good sites, C/D crown closure	E_B8_GH	103,589
14				Pure conifer black spruce leading	E_B9_XX	7,392
15		-	TT 1 4	Pure deciduous and mixedwoods	E UN DM	15,843
16			Understory	Pure conifer	E UN CX	51,955
17 (same as 1)				Pure deciduous, A/B crown closure	E_B1_XL	6
18 (same as 2)		Cut blocks		Pure deciduous, C/D crown closure	E_B1_XH	1,510
19 (same as 3)		Harvested since the start of		Deciduous dominated pine mixedwood	E_B2_XX	1,180
20 (same as 4)	Contributing	the 1991 timber	All	Deciduous dominated spruce mixedwood	E_B3_XX	968
21		year with		Spruce dominated mixedwood	G_B4_XX	2,315
22		an		Pine dominated mixedwood	G_B5_XX	3,424
23		opening		Pure conifer white spruce leading	G_B7_XX	12,336
24		number		Pure conifer pine leading	G_B8_XX	76,615
25 (same as 14)	number			Pure conifer black spruce leading	E_B9_XX	682
Total					Contributing	650,163
26	D:		A 11	Pure deciduous and mixedwoods	E PAS D	25,086
27	Passive	All	All	Pure conifer	E_PAS_C	278,276
Total					Passive	303,362

Table 3-2. FMP Yield Strata and Area Summary

Figure 3-1 and Table 3-3 summarize the area by the minimum stratification levels described in the Forest Management Planning Standard.

Broad Yield Strata	Net Area (ha)	% of Net Area
1 - Pure deciduous	51,230	7.88%
2 - Deciduous dominated pine mixedwood	18,326	2.82%
3 - Deciduous dominated spruce mixedwood	19,638	3.02%
4 - Spruce leading conifer dominated mixedwood ³	17,024	2.62%
5 – Pine leading conifer dominated mixedwood	25,331	3.90%
6 - Black spruce leading conifer dominated mixedwood	Allocated to Stratum 4	0.00
7 - Pure conifer white spruce leading	106,673	16.41%
8 - Pure conifer pine leading	395,925	60.90%
9 - Pure conifer black spruce leading	16,016	2.46%
Total	650,163	100.0%

Table 3-3. Broad Yield Strata Area Summary

³ Includes 555 hectares of black spruce leading conifer dominated mixedwood types.

3.2 Forest Growth & Yield

Yield curves describe the growth expectations for each yield stratum. They are applied to the landbase and used to forecast stand conditions in the determination of annual allowable cuts. This section provides a brief summary of the yield curves and related information that are used in this FMP amendment.

The report entitled <u>Mountain Pine Beetle Forest Management Plan Amendment Technical Report #2 – Yield</u> <u>Projections</u> provided in Section 2 of Volume II – Technical Analyses of this FMP Amendment contains a detailed description of the methods used for creating the volume-age yield curves, including rules for stratification, plot attribute assignment, plot deletions, volume compilation methods, and modelling techniques. Resulting yield curves, volume tables, model parameters and fit statistics are also included in the report. Additional growth and yield related FMP information including cull deductions, methods for development of piece size curves (trees/m³), and calculation of regeneration lag are also provided.

3.2.1 Utilization Standards

Coniferous and deciduous yields were compiled to several different utilization standards. <u>The annual allowable</u> <u>cut will be determined using the utilization standard #1</u>, which is summarized as follows:

For coniferous species:

- 15.0 cm stump height
- minimum 15.0 cm diameter outside bark at stump height
- minimum 11.0 cm top diameter inside bark
- minimum log length of 3.76 m.

For deciduous species (Aw & Pb):

- 15.0 cm stump height
- minimum 15.0 cm diameter outside bark at stump height
- minimum 10.0 cm top diameter inside bark
- cut to length with a target length of 2.56 m and minimum log length of 1.78 m.

Yield curves were also developed for several other standards to facilitate recalculation of the AAC in the event of a request to change the utilization standard. The selected standards were identified as those that would most likely be considered.

- The second utilization (Utilization 2) for coniferous was the same as the first utilization with the exception of the top diameter inside bark that was changed to 13.0 cm. For deciduous the standards were the same as the first utilization with the exception of the minimum log length set to 2.56 m.
- The third utilization for coniferous (Utilization 3) was cut to length with a 15.0 cm diameter at a stump height of 15.0 cm, a top diameter inside bark of 13.0 cm and the following allowable lengths: 4.98 m, 4.37 m, and 3.76 m. The tree was segmented, if possible, into logs of 4.98 m, with the last piece of 4.98 m. If the last piece was shorter then 4.98 m then a log length of 4.37 m was taken. If 4.37 m was not available then a log of 3.76 m was taken (Table 3-6). The deciduous merchantability criteria for utilization 3 are the same as the criteria for utilization 1 but only aspen is included in the compilation.
- The merchantability criteria for the deciduous fourth utilization (Utilization 4) are the same as for utilization 2, however only aspen is included in the compilation: a minimum diameter of 15.0 cm at a stump height of 15.0 cm, a top diameter of 10.0 cm and a minimum log length of 2.56 m.

The various utilization standards are summarized in Table 3-4 and Table 3-5.

Utilization Characteristic	Utilization Standard #1 (UT1)	Utilization Standard #2 (UT2)	Utilization Standard #3 (UT3)
Stump Height	15.0 cm	15.0 cm	15.0 cm
Minimum Log Length	3.76 m	3.76 m	3.76 m
Cut-To-Length	Tree Length	Tree Length	4.98/4.37/3.76 ⁴
Minimum Stump Diameter Outside Bark	15.0 cm	15.0 cm	15.0 cm
Minimum Top Diameter Inside Bark	11.0 cm	13.0 cm	13.0 cm

Table 3-4. Coniferous Utilization Standards

Table 3-5. Deciduous Utilization Standards

Utilization Characteristic	Utilization Standard #1 (UT1)	Utilization Standard #2 (UT2)	Utilization Standard #3 (UT3)	Utilization Standard #4 (UT4)
Stump Height	15.0 cm	15.0 cm	15.0 cm	15.0 cm
Minimum Log Length	1.78 m	2.56 m	1.78 m	2.56 m
Cut-To-Length	2.56 m	2.56 m	2.56 m	2.56 m
Minimum Stump Diameter Outside Bark	15.0 cm	15.0 cm	15.0 cm	15.0 cm
Minimum Top Diameter Inside Bark	10.0 cm	10.0 cm	10.0 cm	10.0 cm
Species Included in Yield Curve	Aspen & Balsam Poplar	Aspen & Balsam Poplar	Aspen	Aspen

3.2.2 Volume Compilation Methods

The HWP Permanent Growth Sample (PGS) plots and recent performance survey data were compiled separately as the key data sources for development of the yield curves. The PGS data were used to create empirical volume – age yield curves, while the performance survey data were compiled and analyzed using GYPSY. Table 3-6 summarizes the species which are included in the annual allowable cut. These species are acceptable for harvest area regeneration. Detailed compilation Methods are provided in Volume II – Section 2 of the FMP amendment.

Table 3-6. Acceptable Species

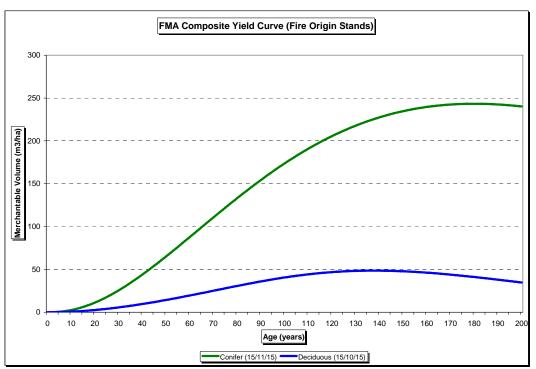
Acceptable	Acceptable	Species Not
Deciduous Species	Coniferous Species	Chargeable to AAC
Aspen Balsam Poplar	Pine, White Spruce Black Spruce Engelmann Spruce Balsam Fir Alpine Fir Sub-Alpine Fir	White Birch Tamarack All dead trees

3.2.3 Cull Deductions

Cull deductions are applied to yield curves to reflect losses for portions of trees that are rotten or of poor form. The Alberta Forest Management Planning Standard (SRD 2006) requires that cull be applied as a percent reduction to yield curves, rather than as a reduction to the harvest level in timber supply analysis. This section describes the methods by which the cull factors were derived.

⁴ First log and all subsequent logs are 4.98 m, if not available then 4.37 m, if not available then 3.76 m.

Conifer cull was separated into two components: a solid wood defect component and a rot component. A study from 1997, "Conifer Cull and Defect Study" (The Forestry Corp. 1997) was conducted on the current HWP FMA area with the objective of quantifying percent rot for the coniferous species. The objective of this study was to determine levels of rot within merchantable coniferous trees. The mean percent rot across the coniferous species identified in this report was 0.31%. A total 5% will be deducted from merchantable conifer volumes to account for the solid wood defect component and rot. This percentage will be monitored until the 2012/2013 timber year. The results from the monitoring program will inform deduction levels for solid wood defects in the 2014 FMP.


A deciduous cull study was completed on the Hinton FMA in 1990. The mean percent rot for deciduous species was found to be 13.2% (Fortrends Consulting Inc, 1990).

A total 5% coniferous cull and 13.2% deciduous cull will be deducted from the merchantable volume of the coniferous yield curves in the timber supply analysis.

3.2.4 Yield Curves and Yield Tables

Yield curves and yield tables for individual strata are included in the report entitled <u>Mountain Pine Beetle Forest</u> <u>Management Plan Amendment Technical Report #2 – Yield Projections</u> provided in Section 2 of Volume II – Technical Analyses of this FMP Amendment.

The FMA-wide area-weighted composite yield curve is presented in Figure 3-2.

3.2.5 Regenerated Yield Transitions

Yield transitions describe how harvested stands were regenerated in the timber supply analysis. The 1999 FMP regeneration assumptions were too complex to translate to operational silviculture activities. Consequently, the default stratum-level regeneration decisions were to regenerate the same broad types as those which were harvested. . HWP has two targets which are assessed and reported in annual stewardship reports. The targets are:

• 90% of blocks surveyed annually (establishment surveys) will be Satisfactorily Restocked (SR) on the first survey. This target has been consistently met for several years. It was met again in 2009, as the first

legislated establishment survey was performed on a total of 7,444.3 hectares; of this 93.8 % were surveyed to be Satisfactorily Restocked (SR).

• 90% of post-91 blocks surveyed (establishment surveys) will be Satisfactorily Restocked (SR). A total of 8,136.2 hectares were surveyed in the 2009 calendar year, of which 94.3% were surveyed SR or declared "Retreated" (RTD). As of January 30th, 2010 the cumulative percent SR area was 97%.

The achievement of SR indicates that the harvest opening was satisfactorily regenerated to the required stratum. This well-established track record of regeneration success supports the following regeneration transition assumptions in this FMP amendment:

- No species group transitions
- Pure deciduous: regenerate to fully stocked natural stand yield
- Deciduous dominant pine mixedwood: regenerate to average stocking natural stand yield
- Deciduous dominant spruce mixedwood: regenerate to average stocking natural stand yield
- Spruce dominant mixedwood: regenerate to fully stocked managed stand yield
- Pine dominant mixedwood: regenerate to fully stocked managed stand yield
- Pure conifer white spruce leading: regenerate to fully stocked managed stand yield
- Pure conifer pine leading : regenerate to fully stocked managed stand yield
- Pure conifer black spruce leading : regenerate to average stocking natural stand yield
- Understorey strata transition as above, based on current understory composition.

Table 3-7 provides a detailed listing of the regenerated yield transitions used in the timber supply analysis.

Table 3-7. Regeneration Transitions

	vested Yield Strata Strata#/Yield Strata Code)			Regenerated Yield Strata (Yield Strata #/Yield Strata Code/Description)
1	E_B1_XL	2	E_B1_XH	Natural stand - Pure deciduous, fully stocked
2	E_B1_XH	2	E_B1_XH	Natural stand - Pure deciduous, fully stocked
3	E_B2_XX	3	E_B2_XX	Natural stand - Deciduous dominated pine mixedwood, average stocking
4	E_B3_XX	4	E_B3_XX	Natural stand - Deciduous dominated spruce mixedwood, average stocking
5	E_B4_XX	21	G_B4_XX	Managed stand - Spruce dominated mixedwood
6	E_B5_XX	22	G_B5_XX	Managed stand - Pine dominated mixedwood
7	E_B7_MX	23	G_B7_XX	Managed stand - Pure conifer white spruce leading
8	E_B7_GL	23	G_B7_XX	Managed stand - Pure conifer white spruce leading
9	E_B7_GH	23	G_B7_XX	Managed stand - Pure conifer white spruce leading
10	E_B8_ML	24	G_B8_XX	Managed stand - Pure conifer pine leading
11	E_B8_MH	24	G_B8_XX	Managed stand - Pure conifer pine leading
12	E_B8_GL	24	G_B8_XX	Managed stand - Pure conifer pine leading
13	E_B8_GH	24	G_B8_XX	Managed stand - Pure conifer pine leading
14	E_B9_XX	14	E_B9_XX	Natural stand - Pure conifer black spruce leading, average stocking
		2	E_B1_XH	Natural stand - Pure deciduous, fully stocked
	E UN DM (transition	3	E_B2_XX	Natural stand - Deciduous dominated pine mixedwood
15	based on understory	4	E_B3_XX	Natural stand - Deciduous dominated spruce mixedwood
	composition)	21	G_B4_XX	Managed stand - Spruce dominated mixedwood
		22	G_B5_XX	Managed stand - Pine dominated mixedwood
	E UN CX (transition	23	G_B7_XX	Managed stand - Pure conifer white spruce leading
16	`		G_B8_XX	Managed stand - Pure conifer pine leading
	composition)	14	G_B9_XX	Managed stand - Pure conifer black spruce leading
17(1)	E_B1_XL	2	E_B1_XH	Natural stand - Pure deciduous, fully stocked
18 (2)	E_B1_XH	2	E_B1_XH	Natural stand - Pure deciduous, fully stocked

Hinton Wood Products A Division of West Fraser Mills Ltd.

	Iarvested Yield Strata eld Strata#/Yield Strata Code) (Yie			Regenerated Yield Strata (Yield Strata #/Yield Strata Code/Description)	
19 (3)	E_B2_XX	3	E_B2_XX	Natural stand - Deciduous dominated pine mixedwood, average stocking	
20 (4)	E_B3_XX	4	E_B3_XX	Natural stand - Deciduous dominated spruce mixedwood, average stocking	
21	G_B4_XX	21	G_B4_XX	Managed stand - Spruce dominated mixedwood	
22	G_B5_XX	22	G_B5_XX	Managed stand - Pine dominated mixedwood	
23	G_B7_XX	23	G_B7_XX	Managed stand - Pure conifer white spruce leading	
24	G_B8_XX	24	G_B8_XX	Managed stand - Pure conifer pine leading	
25 (14)	E_B9_XX	14	E_B9_XX	Natural stand - Pure conifer black spruce leading, average stocking	

Pre-blocked stands are regenerated based on the yield strata declarations reported to ARIS.

3.2.6 Regeneration Lag

Regeneration lag is the time in years following harvesting that is required for seedlings to become established in the harvest openings. Regeneration lag was calculated using the performance survey data from 2006, 2007, and 2008 by FMP yield stratum.

Regeneration lag was applied during timber supply modeling as a shift to all yield curves representing managed stands used in the 2010 MPB FMP amendment.

- The regeneration lag by opening was calculated as the difference between the block age and the oldest species group's mean total age;
- The FMP yield stratum regeneration lag was calculated as the average block regeneration lag from all the blocks within a particular FMP Yield Stratum.

The regeneration lag was calculated for all FMP Yield Strata that had at least one surveyed block. Regeneration lag and the number of openings used to calculate the regeneration lag are presented by FMP yield strata in Table 3-8.

Yield Stratum Number	Yield Stratum Name	Number of Openings	Regeneration Lag (years)
18 (2)	Natural stand - Pure deciduous, fully stocked	2	1.57
19 (3)	Natural stand - Deciduous dominated pine mixedwood, average stocking	3	1.55
20 (4)	Natural stand - Deciduous dominated spruce mixedwood, average stocking	4	2.37
21	Managed stand - Spruce dominated mixedwood	10	1.72
22	Managed stand - Pine dominated mixedwood	16	2.19
23	Managed stand - Pure conifer white spruce leading	103	2.35
24	Managed stand - Pure conifer pine leading	450	2.04
25 (14)	Natural stand - Pure conifer black spruce leading, average stocking	1	2.00

Table 3-8. Regeneration Lag by FMP Yield Stratum.

3.2.7 Alternative Regeneration Standards

MAI targets were developed by strata and broad cover group using the newly developed FMP yield curves. The following table summarizes the target coniferous and deciduous mean annual increment for the regeneration strata to be used in the timber supply analysis.

			8		8	
Yield Strata Number	Yield Strata Description	Primary Management Species	Regeneration Delay (years) (rounded)	MAI Culmination Age (years)	Target Conifer Gross MAI (15/11/15 utilization standard – m ³ /ha/yr)	Target Deciduous Gross MAI (15/10/15 utilization standard – m ³ /ha/yr)
18 (2)	Pure Deciduous	Deciduous	2.0	100	0.71	2.20
19 (3)	Deciduous Dominated Pine Mixedwood	Conifer	2.0	64	1.34	0.35
20 (4)	Deciduous Dominated Spruce Mixedwood	Conifer	2.0	69	1.41	1.39
21	Spruce Dominated Mixedwood	Conifer	2.0	105	2.39	0.46
22	Pine Dominated Mixedwood	Conifer	2.0	94	2.98	0.67
23	White Spruce Dominated Pure Conifer	Conifer	2.0	103	2.52	0.54
24	Pine Dominated Pure Conifer – High Site	Conifer	2.0	90	3.23	0.35
25 (14)	Black Spruce Dominated Pure Conifer	Conifer	2.0	105	1.11	0.11

Table 3-9. Regeneration S	Standards Target MAI
---------------------------	----------------------

3.2.8 Long Run Sustained Yield Average

One simple measure of the productivity of a forest area is the long run sustained yield average (LRSYA). It is a simple calculation of the sum of projected growth (expressed as mean annual increment ($m^3/ha/yr$) multiplied by the area (ha)). The LRSYA using regenerated growth is presented in the following table. LRSYA assuming current stand growth rates is included in *Volume II – Section 3*.

Yield Strata Number	Yield Strata Description	MAI Culmination Age (years)	Conifer MAI – (m3/ha/yr)	Deciduous MAI – (m3/ha/yr)	Area (ha)	Conifer LRSYA (m3/ yr)	Deciduou LRSYA (m3/ yr)
18 (2)	Pure Deciduous	100	0.71	2.20	51,116	36,292	112,455
19 (3)	Deciduous Dominated Pine Mixedwood	64	1.34	0.35	18,343	24,580	6,420
20 (4)	Deciduous Dominated Spruce Mixedwood	69	1.41	1.39	19,652	27,709	27,316
21	Spruce Dominated Mixedwood	105	2.39	0.46	17,070	40,797	7,852
22	Pine Dominated Mixedwood	94	2.98	0.67	25,313	75,433	16,960
23	White Spruce Dominated Pure Conifer	103	2.52	0.54	106,693	268,866	57,614
24	Pine Dominated Pure Conifer – High Site	90	3.23	0.35	395,961	1,278,954	138,586
25 (14)	Black Spruce Dominated Pure Conifer	105	1.11	0.11	16,014	17,776	1,762
Total			-		650,163	1,770,407	368,966
FMA Average N	AAI (m3/ha/yr)					2.72	0.57

Table 3-10. Long Run Sustained Yield Average

3.3 Timber Supply Analysis

The SRD MPB Interpretive Bulletin describes four timber supply scenarios which are required for the MPB FMP amendment. The four scenarios are intended to illustrate the sensitivity of the annual allowable cut to the various assumptions regarding MPB attack. The scenarios can be summarized as follows:

- 1. Baseline
 - a. The intent of this scenario is to ensure that the previously established annual allowable cut (AAC) is still sustainable. In the case of HWP, a new AAC was established as the baseline due to the significant changes in management philosophy introduced since the last FMP. In 2006, an operational adjustment to the conifer AAC was approved by SRD which changed the utilization standard on the FMA from the 10/8/15 pulp standard to the 15/10/15 sawlog standard. The new baseline was established using to the 15/11/15 standard. The 15/10/15 AAC was 1,535,000 m³/yr and the new baseline was determined to be approximately 1,550,000 m³/yr at the 15/11/15 standard which is a higher AAC at a marginally lower utilization standard. The end results of this analysis were two-fold 1) confirmation that the previously established AAC was still sustainable and 2) establishment of a new baseline to which the other scenarios will be evaluated.
- 2. Healthy pine (prevention strategy)
 - a. The intent of this scenario is to alter the ageclass of the pine dominated forest types on the FMA. SRD described the goal as "to reduce the area of susceptible pine stands in the Rank 1 and Rank 2 categories in the Sustained Yield Unit (SYU) to 25% of that projected in the currently approved FMP at a point twenty years into the future." The baseline scenario was used to evaluate the targeted reduction in the area of Rank 1 and Rank 2 stands on the FMA. The area of these stands after 20 years in the baseline scenario was approximately 218,000 ha. Consequently, the target area for the healthy pine scenario was to have approximately 54,500 ha after 20 years. The current age class distribution of the pine types on the Hinton FMA limited the opportunity to achieve this goal. The outcome of this scenario was a conifer AAC of ~2.9 million m³/yr for 20 years. The AAC fall-down was to ~0.98 million m³/yr. A ~65% reduction in the amount of Rank 1 and Rank 2 stands on the FMA was achieved.
- 3. Disaster scenario
 - a. The intent of this scenario was to evaluate a "worse-case" outcome for the FMA. Key assumptions for this scenario were:
 - i. Harvest at an accelerated level for 20 years.
 - ii. Assume massive pine mortality after 10 years, at which time:
 - 1. Pine volume was set to zero for all strata for all stands with a pine component of $\leq 60\%$ (based on AVI crown closure proportions).
 - 2. All live tree volume (not just pine volume) was set to zero and ages reset if the pine component was >=70% (based on AVI crown closure proportions). In the timber supply analysis, entire stand mortality was assumed (mortality applied to stands that are 20 years and older). For these stands, the age was reset to 0 years and it was regenerated on the lowest density yield curve (e.g. AB density) for its specific stratum, with a 15-year regeneration lag.
 - b. The outcomes for this scenario were drastic. The accelerated conifer harvest evaluated was ~2.3 million m^3/yr . The AAC fall-down after 20 years was to ~ 400,000 m^3/yr .

- 4. Preferred Pine Strategy
 - a. This scenario was selected as the best practically feasible option for reducing the risk of the FMA to a catastrophic MPB outbreak. The accelerated harvest was constrained to reflect anticipated limitations for utilization of the fibre as well as providing a reasonable AAC fall-down. The 20-year accelerated conifer harvest level was determined to be 1,766,576 m³/yr. The AAC after the accelerated harvest period was determined to be 1,399,724 m³/yr.
 - b. As per the approved Terms of Reference, the following non-timber values were required to be assessed:
 - i. Water flow
 - ii. Trumpeter swans
 - iii. Woodland caribou
 - iv. Grizzly bear
 - c. Detailed reports for this scenario are provided in Section 4 of this document.

A summary of the major timber supply model constraints for each of these four scenarios is described in Table 3-11. Figure 3-3 illustrates the harvest levels for each of the scenarios.

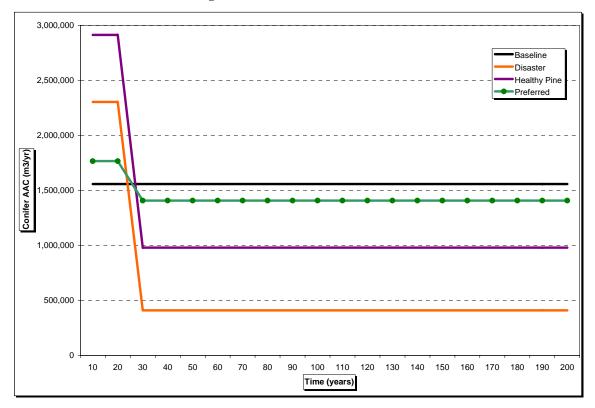


Figure 3-3. TSA Scenario Outcomes

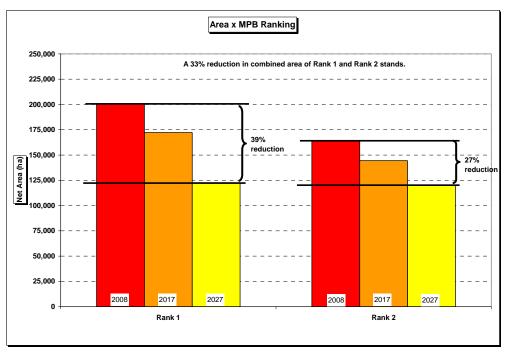
Run Control Parameter	New Baseline	Healthy Pine	Disaster	Preferred	
	,	Timber Supply Model Cor	straints		
Objective Function	Maximize total volume harvest				
Planning Horizon	200 years				
Conifer Harvest Flow	Even flow Accelerated harvest for yr 1-20, drop down to even flow for yr 21-200.				
Deciduous Harvest Flow	Mitigate variability: allow 5% variability on Pure deciduous stands, allow up to 10% variability on entire landbase				
Merchantable Growing Stock	Stable over the last 50 years of the planning horizon				
Minimum Harvest			and DC broad cover groups	5)	
Age			(D broad cover group)		
		Landbase			
Administrative Unit	HWP FMA				
Landbase	Single				
		Yields			
Utilization	15/11/15 conifer TL				
Standard	15/10/15 deciduous CTL				
Yield curves	2010 – Net				
Cull Deductions	5.0% conifer; 13.2% deciduous				
Regeneration Transition	Fully Stocked				
			As per Table 3-7 with		
Regeneration Lag	As per Table 3-7	As per Table 3-7	exceptions. See footnote ⁵	As per Table 3-7	
		Spatial Constraints			
Create SHS		No		Yes	
Maximum arvest Opening Size	None				
Adjacency /	Not applied				
Green-up	Not applied				
Grizzly Bear		Non-Timber Values			
Habitat	Not to be completed for this scenario			Completed by SRD.	
Assessment	Not to be completed for this scenario		Completed by SKD.		
				No stands scheduled f	
Woodland	3.7	Not to be completed for this scenario			
Caribou	Not	harvest in the mapped caribou area for the fir			
Assessment				decade.	
Water Flow	Not to be completed for this scenario		enario	Completed by HWP.	
Assessment		1		1 5	

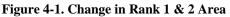
⁵ Assume massive pine mortality at Year 10:

⁻ Pine volume was set to zero for all strata if the pine component is <=60% (based on AVI crown closure proportions).

All live tree volume (not just pine volume) will be set to zero and ages reset if the pine component is >=70% (based on AVI crown closure proportions). In the timber supply analysis, entire stand mortality will be assumed (mortality applies to stands that are 20 years and older). For these stands, the age will be reset to 0 years and it will regenerate on the lowest density yield curve (e.g. AB density) for its specific stratum, with a 15-year regeneration lag.

4 PREFERRED PINE MANAGEMENT STRATEGY

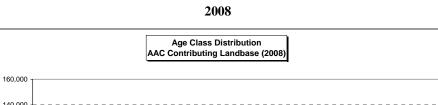
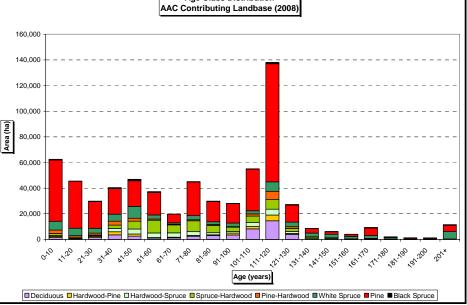
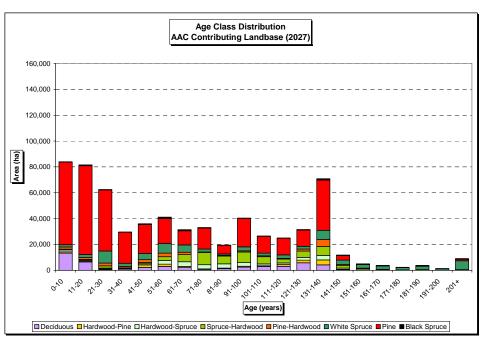

This section contains summaries of the preferred pine management strategy for the Hinton FMA. This scenario was selected as the best practically feasible option for reducing the risk of the FMA to a catastrophic MPB outbreak. The accelerated harvest was constrained to reflect anticipated limitations for utilization of the fibre as well as providing a reasonable AAC fall-down. The 20-year accelerated conifer harvest level was determined to be 1,766,576 m³/yr. The AAC after the accelerated harvest period was determined to be 1,399,724 m³/yr.

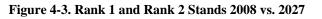

4.1 Timber Values

4.1.1 MPB Risk Reduction

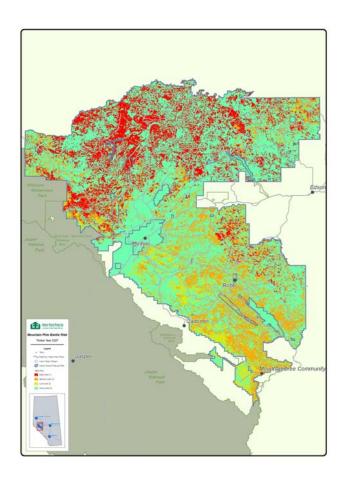
The key timber values to be addressed in this FMP amendment is the reduction of the amount of pine on the FMA that is at risk to MPB. Alberta suggested a targeted reduction of in the amount of Rank 1 and Rank 2 stands to 25% of the amount currently expected to be present in 20 years.

The preferred strategy resulted in a 39% reduction in Rank 1 stands, a 27% reduction in Rank 2 stands, for a combined reduction of 33% (Figure 4-1). Figure 4-2 demonstrates the 20-year ageclass resulting from the scheduled harvest. Figure 4-3 provides a comparison of the change in the distribution of Rank 1 and Rank 2 stands across the FMA over a twenty year period. The accelerated harvest level also results in a reduction in the amount of mature and overmature growing stock. This reduction is, as intended, heavily weighted to pine (Figure 4-4).


Figure 4-2. Contributing Area Age Class Distribution 2008 vs. 2027

²⁰²⁷



2008

Hinton Wood Products

2027

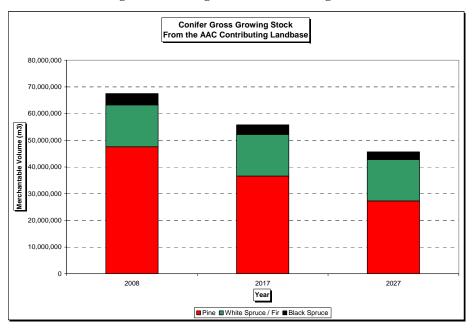
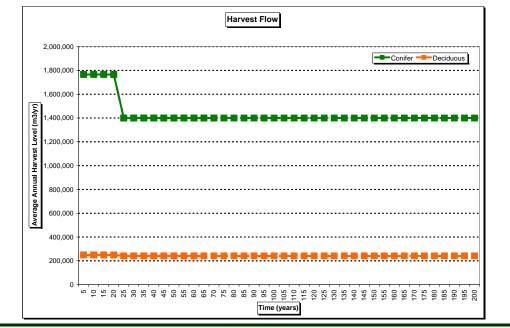



Figure 4-4. Change in Conifer Growing Stock

4.1.2 Timber Supply

The 20-year accelerated conifer harvest level was determined to be 1,766,576 m^3/yr . The AAC after the accelerated harvest period was determined to be 1,399,724 m^3/yr . These harvest levels were selected due to current limitations in capacity to utilize additional fibre while balancing the need to reduce the risk of the FMA to MPB and providing opportunities for near-term and mid-term business needs. The deciduous AAC was determined to be 249,831 m^3/yr during the 20-year accelerated harvest period, after which the AAC is projected to be 229,714 m^3/yr . Reconciliation volume from the previous quadrant was incorporated with the 20-year accelerated harvest level. The following graphs summarize the preferred scenario:

Hinton Wood Products A Division of West Fraser Mills Ltd.

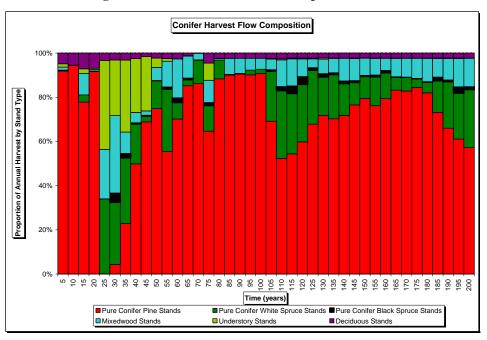
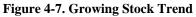



Figure 4-6. Conifer Harvest Flow Composition Trend

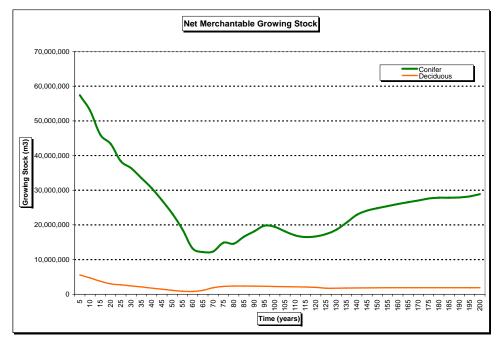
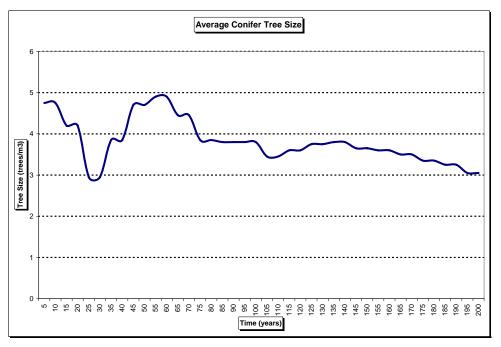
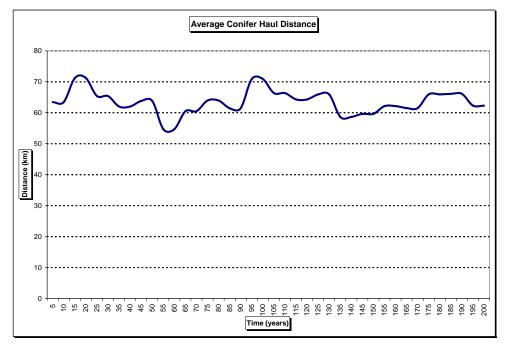




Figure 4-8. Tree Size Trend

Figure 4-9. Average Haul Distance Trend

4.1.3 Spatial Harvest Sequence

4.1.3.1 Considerations Guiding Development of the Spatial Harvest Sequence

The following factors were considered at the compartment level during the development of the spatial harvest sequence (SHS).

- 1. Stand Susceptibility Index (see Appendix E for summaries)
 - a. Assessment of compartment SSI ranking
- 2. Field knowledge
 - a. Age class. In some areas our field experience is not consistent with the current AVI age classification. Consequently, the SSI rating of these stands may be overstated. Compartments such as these were deferred to later in the planning horizon.
 - b. Areas containing significant non-pine conifer composition, or conifer understory suitable for future timber supply value, were deferred to later in the harvest sequence:
- 3. Current distribution of MPB on the FMA
 - a. In the late summer/fall of 2009 the HWP FMA was hit with a significant natural MPB attack. Aerial and ground assessments were completed to determine the initial extent of the infestation.
- 4. Aspen
 - a. HWP has volume supply agreements for deciduous fibre with mills in the region. The SHS includes the scheduling of harvest areas within the economic sphere of operations for these agreements.
- 5. Economics
 - a. Haul distance, isolated stands, piece size and reforestation costs were all considered when selecting compartments available for harvest sequencing.

After consideration of the factors listed above, the final list of compartments which were open for development of the SHS is as follows:

- Athabasca 1, 15, 19, 22, 24, 26, 27, 28, 29, 30, 31, 35
- Marlboro 2, 4, 5, 8, 13, 16, 17, 18, 21, 22
- Embarras 6, 7, 9, 10, 11, 12, 20
- McLeod 2, 3, 5, 6, 7, 8, 12, 13, 16, 17, 18, 20, 23, 24, 25, 27
- Berland 6, 7, 9, 10, 11, 12, 18, 23, 25, 26, 27, 29, 30, 33

The sequencing of low levels of harvest in other compartments was allowed in order to facilitate model development of an optimal spatial solution.

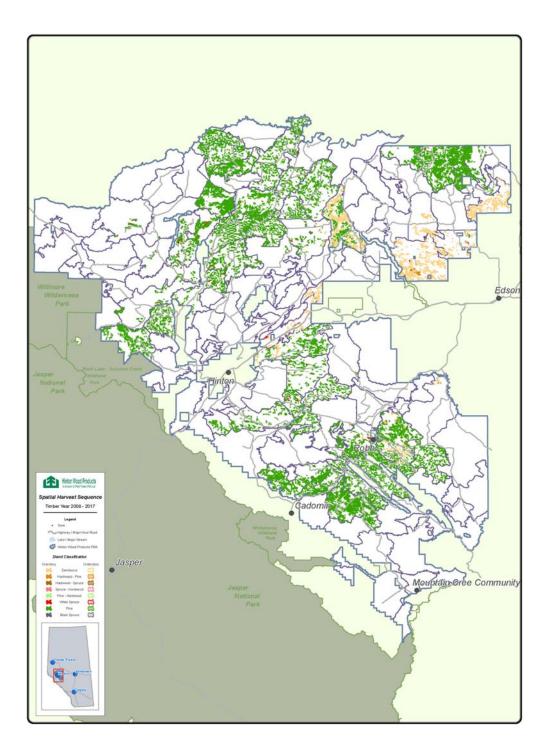
4.1.3.2 Known Issues Impacting SHS Implementation

There are several known issues with the spatial harvest sequence (SHS). Following is a description of the most significant areas of concern. HWP is exploring strategies to resolve these issues with the goal to developing a more robust SHS for the 2014 Forest Management Plan.

- Forest Inventory: lack of conifer understory identification within conifer dominated stand types
 - **Concern:** A key learning from British Columbia regarding MPB harvest operations is the critical importance of protecting non-pine structure. The maintenance of non-pine species on the FMA during pine prevention and salvage harvest operations will contribute significantly to what has been called the "mid-term timber supply". In this context, "mid-term" refers to the period after pine salvage operations are halted and before regenerating pine stands become merchantable again. AVI identification of non-pine species, particularly in the understory, is poor.
 - <u>Action:</u> HWP has completed some trials using LiDAR signatures to identify areas likely to have understory. Further work is expected in this area. Until an acceptable inventory of these stand types is completed, and the SHS can be enhanced to reflect this new information, these stands will be identified in the field and deferred from harvest.
- Forest Inventory: stand heights, species composition and level of resolution
 - **Concern:** Although the inventory is more than sufficient for strategic planning purposes, the coarseness of the inventory specification provides challenges for operational implementation of the SHS. Efforts completed to date have demonstrated that within-stand height and species composition variability is problematic, particularly when striving for mitigation of MPB risk. In some cases, this has resulted in incorrect stand MPB risk ratings.
 - <u>Action:</u> HWP is working with another industry partner on a trial to enhance the identification of pine areas within AVI polygons using colour aerial imagery. HWP will consider extending the project to planned area of operations across the FMA, should the trial results prove to be positive and cost-effective. Stands, or portions thereof, with significant non-pine conifer composition will be deferred to later in the SHS to mitigate the mid-term timber supply fall down.
 - <u>Action:</u> HWP is exploring the use of LiDAR data to enhance the height inventory across the FMA. Preliminary work in this area has been encouraging. Stands, or portions thereof, with inaccurate heights will be deferred to later in the SHS.
- Mountain Pine Beetle Attack
 - <u>Concern:</u> Recent events have demonstrated that MPB spread patterns are not predictable. Two
 major wind-driven events in the past five years have resulted in unanticipated MPB infestation
 levels across Alberta. After the most recent, in late July 2009, HWP and SRD staff have found
 MPB natural attack across the FMA. In the Hinton FMA, the most heavily hit areas identified to
 date are in the north.
 - <u>Action:</u> Where economically and operationally feasible, HWP will alter operational plans to focus on areas where timber harvesting will be the most effective regarding MPB control. Attacked stands outside of the SHS will be prioritized for harvest

In addition to the concerns identified above, several site-specific factors may lead to a decision to defer an area from harvest, predominantly to reflect accepted strategies for mitigation of MPB infestation impacts. These include:

- Stem Density
 - Stands with total merchantable stem density less than 650 or greater than 1500 stems/ha will be deferred from harvest. The rationale for these deferrals is that MPB spread rates tend to be lower in open and dense stands.
- Non-merchantable Stems Proportions
 - Stands with \geq 30 % non-merchantable (excluding understory) stems will be deferred. The rationale for these deferrals is that MPB spread rates tend to be lower in these types of stands. Stands with high proportions of non-merchantable stems also tend to result in higher levels of harvest residual material.
- Pine size
 - Stands with few pine sawlogs will be deferred. Larger pine trees produce more beetles than smaller pine trees. Stands generally targeted for harvest will average ≤ 5 trees/m³ of merchantable stems. This translates to stand height of ~17 metres or greater and average merchantable stem DBH of ~19 cm or greater.
- Pine age
 - Young and very old pine stands will be deferred from harvest as MPB reproduction success tends to be lower in these stands. Target stand ages will be 80-150 years old.


4.1.3.3 SHS Summary

The following table summarizes the 2008-2017 spatial harvest sequence. Figure 4-10 illustrates the location and type of stands sequenced for harvest. A full size copy of the map is provided at the end of this section.

Stand Type	Area Scheduled for Harvest (ha)	SHS Conifer Volume (15/11/15 TL m ³)	SHS Deciduous Volume (15/10/15 CTL m ³)
Pure Deciduous	10,701.7	915,685	1,677,489
Understorey: Deciduous & Mixedwood	673.4	33,603	91,656
Deciduous Dominated Pine Mixedwood	214.5	22,438	21,007
Deciduous Dominated Spruce Mixedwood	146.5	17,627	15,963
Spruce Dominated Mixedwood	29.5	3,784	1,367
Pine Dominated Mixedwood	373.8	80,431	14,596
Understorey: Conifer	597.7	115,453	14,315
Pure Conifer - White Spruce	144.9	26,753	2,664
Pure Conifer - Pine	76,094.2	16,517,737	701,175
Pure Conifer - Black Spruce	106.0	12,429	972
Total	89,082.2	17,745,940	2,541,204

Figure 4-10. 10 Year SHS

4.2 Non-Timber Values

As per the approved Terms of Reference, the following assessments were required to be incorporated into this MPB amendment:

- 1. Water yield impacts
- 2. Wildlife Species of Management Concern:
 - a. Woodland Caribou
 - b. Trumpeter Swans
 - c. Grizzly bear

4.2.1 Water Yield Impacts

Water yield impacts of timber harvesting were modelled for the period between 2008 and 2027⁶.

Projected water yield changes were assessed using three different sizes of watersheds:

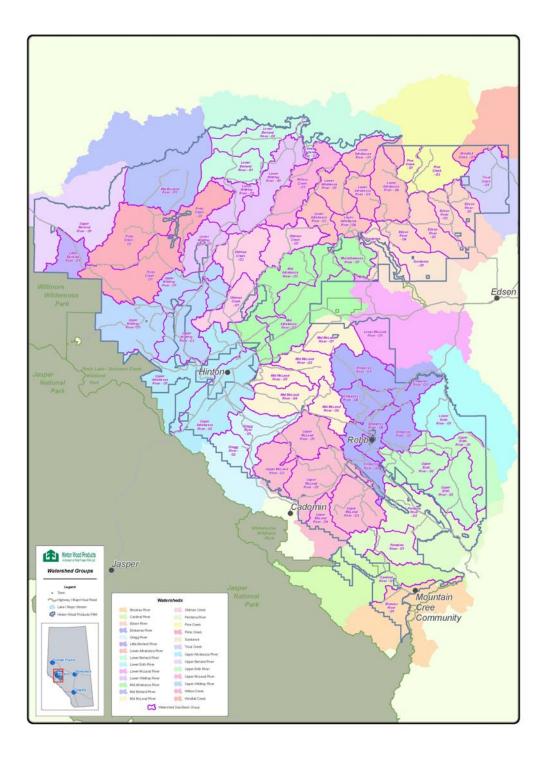
- 27 major basins (average: 38,361 ha maximum: 77,360 ha minimum: 4,676 ha)
- 67 watershed groups (average: 15,419 ha maximum: 33,315 ha minimum: 4,676 ha)
- 222 watersheds (average: 4,653 ha maximum: 11,977 ha minimum: 5 ha)

The watershed groups are the most appropriate for the purposes of the FMP amendment water yield assessment. The major basins are too large and the watersheds tend to be too small for the scale of assessment completed. As the name suggests, the watershed groups were created by grouping smaller watersheds together with the intent to create units of approximately 10,000 ha in size. Groupings were limited to adjacent units that contained watercourses which flowed to a common outlet. For some watersheds along very large watercourses (e.g. Athabasca River), the groups were simply the smaller watersheds that flowed into the larger watercourse. Particular attention was focused on creating reasonable watershed groups in locations impacted during the first ten-years of the spatial harvest sequence. The watershed group results are presented in this section. Figure 4-11 illustrates the geographic extent of the 67 watershed groups within the Hinton FMA.

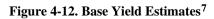
The results for all three sizes of watersheds are presented in <u>Volume II – Section 3: Annual Allowable Cut</u> <u>Projection</u>.

4.2.1.1 Water Yield Assessment Tool

The Alberta ECA model was used to evaluate potential impacts of the spatial harvest sequence on water yield. Base precipitation and base yield estimates were obtained from a report completed for the Hinton FMA area (Strategic Planning Tools for Hydrologic Resources Phase 2 Study, Golder Associates Ltd. 1999.) Base yield estimates were provided for three hydrologic zones, which covered the extent of the FMA:


- Front Range: 279 mm
- Upper Foothills: 267 mm
- Lower Foothills: 112 mm

Base precipitation estimates were provided for ten selected basins. These estimates were extended to all 222 watersheds in this assessment, based on the relative proximity of each watershed to the original ten (from the Golder study). See the following diagrams for an illustration of the assignments of yield and precipitation to the individual watersheds.



⁶ HWP was required to create a ten-year spatial harvest sequence for the FMP amendment. However, the water yields were assessed using a projected twenty-year sequence.

Figure 4-11. Watershed Groups

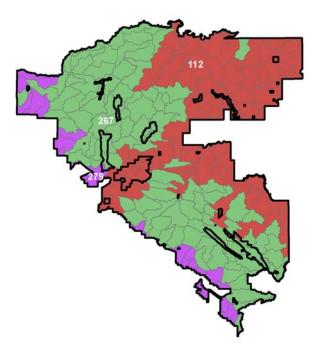


Figure 4-13. Base Precipitation Estimates

⁷ Regions where base precipitation and yield estimates were applied are identified by colour.

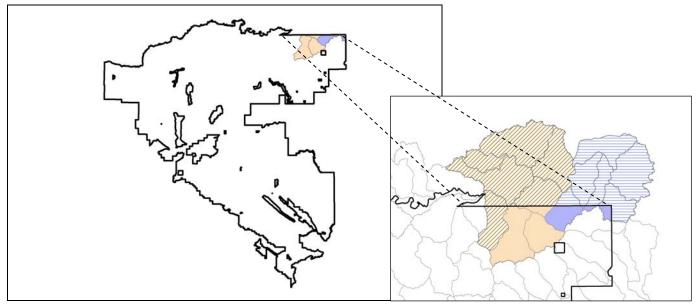
4.2.1.2 Water Flow Assessment Results

A summary of the Alberta ECA results for the watershed groups is provided in Table 4-2. "Pine Creek – G2" and "Windfall Creek – G1" show projected yield increases above 15%. These watersheds are on the edge of the FMA; hence the analysis does not include the entire watershed area. Figure 4-14 shows the location of these two watershed groups. These areas were attacked by MPB in 2009.

Watershed	Base Precipitation	Base Water	Total Area	Total Harvest	Percent	Maximum Water Yield Increase	
	(mm)	Yield (mm)	(ha)	(ha)	Harvest	Amount (%)	Year
Brazeau River - G1	621	273	10,189	536	5%	1.3%	2027
Cardinal River - G1	621	272	18,595	817	4%	0.9%	2027
Edson River - G1	567	112	7,675	1,930	25%	8.6%	2018
Edson River - G2	567	112	9,820	924	9%	3.3%	2027
Edson River - G3	567	112	14,751	2,322	16%	5.4%	2022
Edson River - G4	567	112	8,876	2,110	24%	10.3%	2027
Embarras River - G1	468	112	17,420	1,831	11%	4.8%	2027
Embarras River - G2	621	267	9,831	3,177	32%	4.4%	2013
Embarras River - G3	621	267	11,326	2,690	24%	3.8%	2017
Embarras River - G4	621	267	11,039	977	9%	1.5%	2027
Embarras River - G5	468	112	7,238	807	11%	4.3%	2023
Embarras River - G6	621	112	9,654	1,787	19%	10.5%	2017
Gregg River - G1	621	267	15,280	1,144	7%	1.3%	2018
Gregg River - G2	621	271	8,243	949	12%	2.2%	2026
Little Berland River - G1	596	279	9,911	981	10%	1.7%	2026
Lower Athabasca River - G1	567	112	11,357	1,623	14%	6.4%	2027
Lower Athabasca River - G2	567	112	9,368	2,811	30%	8.5%	2018
Lower Athabasca River - G3	567	112	10,973	3,313	30%	7.8%	2027
Lower Athabasca River - G4	567	112	15,792	346	2%	1.0%	2027
Lower Athabasca River - G5	567	112	8,311	760	9%	5.3%	2027
Lower Athabasca River - G6	567	112	6,247	1,719	28%	9.2%	2017
Lower Berland River - G1	596	267	14,328	4,333	30%	4.1%	2018
Lower Berland River - G2	594	254	15,313	3,914	26%	2.6%	2017
Lower Berland River - G3	579	174	10,515	2,598	25%	5.5%	2027
Lower Erith River - G1	468	112	19,990	2,144	11%	4.6%	2023
Lower McLeod River - G1	469	112	11,016	463	4%	1.6%	2027
Lower Wildhay River - G1	567	112	22,083	5,934	27%	12.2%	2013
Lower Wildhay River - G2	596	267	9,754	2,715	28%	4.7%	2013

Table 4-2. Water Flow Assessment: Watershed Groups


Hinton Wood Products A Division of West Fraser Mills Ltd.



Watershed	Base Precipitation	Base Water	Total Area	Total Harvest	Percent	Maximum Water Yield Increase	
	(mm)	Yield (mm)	(ha)	(ha)	Harvest	Amount (%)	Year
Lower Wildhay River - G3	596	267	12,780	3,061	24%	3.0%	2013
Mid Athabasca River - G1	567	112	10,034	1,791	18%	5.6%	2027
Mid Athabasca River - G2	486	112	28,468	4,368	15%	3.8%	2022
Mid Athabasca River - G3	486	229	30,435	1,962	6%	0.8%	2022
Mid Berland River - G1	596	267	33,316	6,740	20%	3.1%	2023
Mid McLeod River - G1	472	112	11,557	1,807	16%	5.2%	2017
Mid McLeod River - G2	478	159	10,988	1,745	16%	3.5%	2013
Mid McLeod River - G3	468	267	8,148	322	4%	0.3%	2013
Mid McLeod River - G4	545	224	14,934	1,962	13%	1.9%	2016
Mid McLeod River - G5	621	267	9,909	1,022	10%	1.1%	2012
Oldman Creek - G1	486	267	13,039	48	0%	0.1%	2022
Oldman Creek - G2	572	267	17,927	3,254	18%	2.2%	2013
Oldman Creek - G3	567	267	13,533	1,492	11%	1.5%	2013
Pembina River - G1	621	266	10,483	155	1%	0.4%	2027
Pembina River - G2	621	269	32,690	2,653	8%	1.4%	2023
Pine Creek - G1	567	267	4,974	1,230	25%	3.6%	2018
Pine Creek - G2	567	112	15,595	5,930	38%	20.4%	2018
Pinto Creek - G1	596	267	28,496	4,135	15%	2.5%	2027
Pinto Creek - G2	596	267	25,545	5,565	22%	4.1%	2027
Pinto Creek - G3	596	267	14,005	5,590	40%	4.1%	2013
Sundance - G1	567	112	10,715	4,035	38%	11.0%	2023
Sundance - G2	567	112	10,483	2,034	19%	6.5%	2027
Trout Creek - G1	567	112	19,057	4,588	24%	8.3%	2023
Upper Athabasca River - G1	553	161	28,515	781	3%	0.9%	2027
Upper Athabasca River - G2	573	133	30,893	1,132	4%	1.0%	2027
Upper Berland River - G1	596	273	32,405	9,724	30%	6.3%	2023
Upper Erith River - G1	508	152	16,226	2,424	15%	3.4%	2022
Upper Erith River - G2	621	192	17,301	4,650	27%	5.8%	2018
Upper Erith River - G3	591	267	19,531	4,521	23%	3.4%	2027
Upper McLeod River - G1	621	267	16,021	1,274	8%	1.3%	2013
Upper McLeod River - G2	621	267	12,237	1,807	15%	2.7%	2013
Upper McLeod River - G3	621	269	22,874	4,649	20%	3.2%	2013

Watershed	tershed Precipitation Water Area Harvest Harvest		um Water Yield Increase				
	(mm)	Yield (mm)	(ha)	(ha)	Harvest	Amount (%)	Year
Upper McLeod River - G4	621	279	6,978	623	9%	1.2%	2012
Upper McLeod River - G5	621	267	19,292	5,873	30%	7.0%	2013
Upper Wildhay River - G1	596	267	11,977	1,978	17%	2.3%	2013
Upper Wildhay River - G2	555	267	21,502	974	5%	0.4%	2027
Upper Wildhay River - G3	596	271	31,023	6,882	22%	2.3%	2013
Willow Creek - G1	567	112	19,644	3,975	20%	7.6%	2017
Windfall Creek - G1	567	112	4,676	1,575	34%	17.0%	2017

4.2.2 Wildlife Species of Management Concern

4.2.2.1 Woodland Caribou

Woodland Caribou are a Threatened Species in Alberta. Many of the 19 Alberta caribou populations (herds) are declining in numbers for a complex mix of reasons. The ranges of two Alberta caribou herds overlap the Hinton Wood Products Forest Management Area in the northwest corner. Most of the overlap consists of about 7% of the range of the A la Peche caribou herd, which has about 150 caribou and is ranked "stable" by the Alberta Government. Some caribou from the Little Smoky caribou herd occasionally cross onto the FMA, although most of the Little Smoky herd range is north of the FMA. The Little Smoky herd of about 80 caribou was declining until recently and is ranked "immediate risk of extirpation" by the Alberta Government.

HWP has maintained a voluntary deferral of timber harvesting in all of the currently recognized caribou range on the FMA since 1997. The deferral area is approximately 50,000 ha (see Figure 4-15). This includes a core area


used regularly by A la Peche herd caribou and other areas used periodically by A la Peche caribou and Little Smoky caribou. The deferral period is intended to allow time for a recovery plan to be developed and approved by Alberta.

HWP has not sequenced any harvest in the caribou range for the term of the current spatial harvest sequence (ending April 30, 2018), although the area contains significant areas of pine stands which are of high risk to mountain pine beetle (MPB) attack. The mountain pine beetle risk in the deferral area places an even greater sense of urgency on the need for a recovery plan. MPB control activities will be required to a) protect caribou habitat and b) protect the FMA from MPB spread to areas outside of the caribou range. HWP expects that SRD will remain aggressive and conduct appropriate MPB control activities throughout the caribou range. HWP will not implement Level II⁸ harvesting of green-attack stands in caribou range except under strictly limited conditions. The triggers for consideration will be:

- 1. Level I control implemented by Alberta is judged insufficient to reduce pine mortality and protect caribou habitat.
- 2. Level I control implemented by Alberta is judged insufficient to mitigate the spread of MPB from the caribou range into other regions of the FMA.
- 3. An assessment by Alberta that Level II harvests may achieve MBP eradication or control to achieve the same objectives.

Any consideration of Level II activity will be discussed with Alberta and other stakeholders before implementation. Figure 4-16 illustrates the pine stands that are at risk within the caribou range.

Figure 4-15. Location of Caribou Range

⁸ Alberta SRD Interpretive Bulletin - Planning Mountain Pine Beetle Response Operations v2.6 (Appendix C)

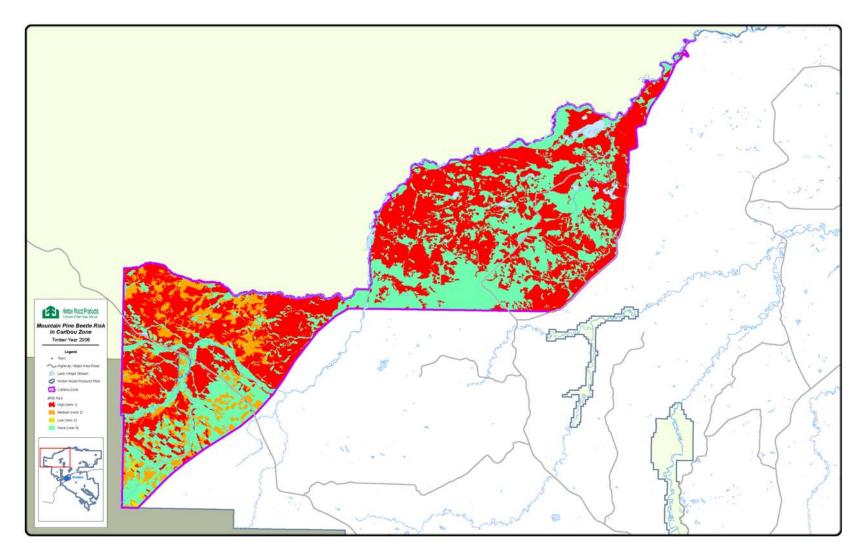


Figure 4-16. Rank 1 and Rank 2 Stands within the Caribou Range

4.2.2.2 Trumpeter Swans

Trumpeter Swans are classified as a Threatened Species in Alberta. SRD's direction for mitigating risk to Trumpeter Swans is to restrict harvesting activity for a distance of 200 metres, and to limit timing of other activities within an area of 800 metres, around identified nesting ponds. Three nesting ponds have been identified on the HWP FMA.

The requested buffer of 200 metres has been applied to the three nesting ponds and no harvest operations have been scheduled for these areas. The timing restrictions will be adhered to operationally in the event that activities are planned in the area from 201-800 metres from these ponds. HWP is developing a site-specific conservation proposal for the area surrounding each nesting pond that will be discussed with Alberta at a later date.

Figure 4-17. Location of Trumpeter Swan Ponds

4.2.2.3 Grizzly Bear

Grizzly bear has not been officially designated "at risk" under the Alberta Wildlife Act. In 2002, the Endangered Species Conservation Committee recommended designation as a Threatened species and this recommendation was reaffirmed in 2010. As of April 30, 2010, the Alberta government has not made a designation status decision. DNA-based grizzly bear population studies have been underway in Alberta since 2004 and a Recovery Plan was approved in 2008.

In Alberta, six Grizzly Bear Population Units have been identified. Grizzly Bear Population Units are management units based on genetic distinctions within the Alberta grizzly bear population. These population units are generally separated by major highway corridors. The population units are further subdivided into Grizzly Bear Watershed Units (GBWU), a management unit based on major watersheds subdivided along heights of land and occasionally along watercourses, to approximate the size of an adult female grizzly bear home range (~700 km2).

Each GBWU is characterized as being either Core or Secondary grizzly bear habitat based on current landscape conditions. Core Areas are areas of high habitat value (as measured by Resource Selection Function) and generally low mortality risk currently measured through Open Route Densities. Secondary Areas are areas of good habitat, reflecting the broader range of grizzly bears. The Hinton FMA is comprised of approximately:

- Core area: 48%
- Secondary area: 37%
- Not classified grizzly bear habitat: 15%

Alberta SRD conducted the necessary grizzly bear analysis and provided much of the information contained in this section of the FMP amendment. Four key values were analyzed and the results are reported for individual Grizzly Bear Watershed Units (Figure 4-18).

- Resource Selection Function: Resource Selection Functions (RSF) can be used as a surrogate for grizzly bear habitat and supply. Research shows a clear relationship between high RSF values and the current presence and distribution of grizzly bears as determined by DNA population inventory work. SRD's RSF objectives are:
 - o In Core GBWUs the objective is to maintain or increase the current maximum RSF values.
 - o In Secondary GBWUs the objective is to increase current maximum RSF values.
- Mortality Risk: Mortality Risk is a spatial model that represents the relative probability of human-caused grizzly bear mortality. The mortality risk should be used in conjunction with the open route density information to understand how access and habitat variables interact to impact grizzly bear survival rates. SRD's mortality risk objectives are:
 - In Core GBWUs the objective is to maintain or reduce current levels of mean mortality risk as determined through the mortality risk model.
 - o In Secondary GBWUs the objective is to reduce current levels of mean mortality risk.
- Open Route Density: Open Route Densities are defined as the total length of all open routes divided by the area of each grizzly bear watershed unit. Research conducted in both Alberta and many other parts of grizzly bear range in North America, have found that the key to maintaining grizzly bear populations is to keep human caused grizzly bear mortality rates low. Regulating human use of access (specifically motorised vehicle routes) in grizzly bear range reduces the risk of human-caused mortality. Because human use of access is difficult to measure, the Recovery Plan recommends using Open Route Densities as a surrogate for the amount of human use. SRD's open route density objectives are:
 - In Core GBWUs the open route density threshold is 0.6 km/km^2 .
 - The open route density threshold in Secondary GBWUs is 1.2 km/km².

- In both Core and Secondary GBWUs the objective is to maintain or reduce current levels of open route density.
- Safe Harbour: Safe Harbour is a combination of habitat quality and risk. A safe harbour is an area of good habitat (high RSF values), to which bears are attracted by an abundance of resources, but also where the bear faces a low risk of human caused mortality (low Mortality Risk). SRD's safe harbour objectives are:
 - In all Core GBWUs the objective is to maintain or increase both the quantity (area) and quality (mean safe harbour value) that is currently present.
 - In Secondary GBWUs the objective is to increase current values of safe harbour quantity and quality.

The results of the resource selection function (RSF), mortality risk and safe harbour analyses are presented in Table 4-3 and Table 4-4. The open route density analysis results are presented in Table 4-5 and Table 4-6.

HWP is committed to working with Alberta on the development and implementation of practical, cost-effective grizzly bear recovery strategies.

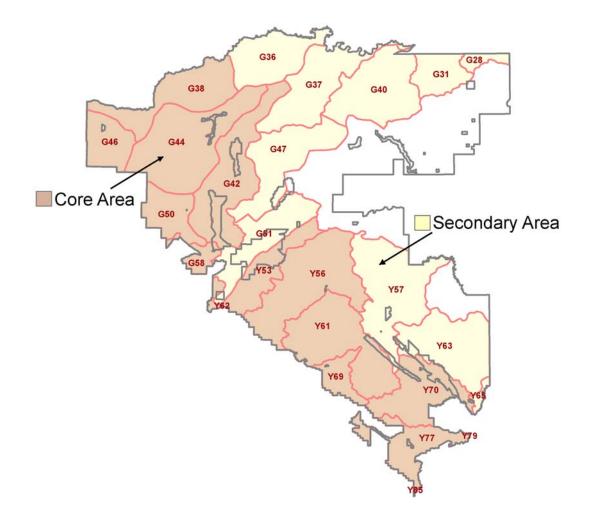
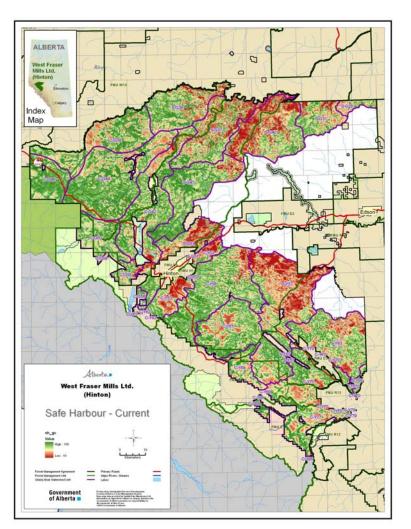


Figure 4-18. Grizzly Bear Watershed Units

Grizzly							
Bear	Habitat	Area	Current	Future	Difference	%	
Unit		Km Sq	Mean	Mean	+/-	Change	
Resource Selection Function (max)							
G42	Core	537.3	7.54	7.88	0.34	4.5%	
G44	Core	728.6	8.02	8.22	0.20	2.5%	
G50	Core	232.1	7.98	8.48	0.50	6.3%	
G58	Core	107.0	7.51	7.57	0.06	0.8%	
G28	Secondary	58.0	6.46	7.64	1.18	18.3%	
G31	Secondary	204.2	6.66	7.74	1.08	16.2%	
G36	Secondary	376.7	7.05	7.32	0.27	3.8%	
G37	Secondary	477.8	6.19	6.51	0.32	5.2%	
G40	Secondary	539.9	5.46	5.66	0.20	3.7%	
G47	Secondary	475.7	8.01	8.12	0.11	1.4%	
G51	Secondary	289.6	5.94	5.96	0.02	0.3%	
			Mortality Risl	ζ			
G42	Core	537.3	6.29	6.64	0.35	5.6%	
G44	Core	728.6	5.76	5.97	0.21	3.6%	
G50	Core	232.1	3.29	3.67	0.38	11.6%	
G58	Core	107.0	4.50	4.52	0.02	0.4%	
G28	Secondary	58.0	3.60	4.49	0.89	24.7%	
G31	Secondary	204.2	5.91	6.67	0.76	12.9%	
G36	Secondary	376.7	6.44	6.78	0.34	5.3%	
G37	Secondary	477.8	6.45	6.51	0.06	0.9%	
G40	Secondary	539.9	5.12	5.37	0.25	4.9%	
G47	Secondary	475.7	7.54	7.70	0.16	2.1%	
G51	Secondary	289.6	6.18	6.20	0.02	0.3%	
			Safe Harbour	,			
G42	Core	537.3	75.45	78.77	3.33	4.4%	
G44	Core	728.6	80.22	82.17	1.95	2.4%	
G50	Core	232.1	79.84	84.76	4.92	6.2%	
G58	Core	107.0	75.15	75.73	0.58	0.8%	
G28	Secondary	58.0	64.60	76.43	11.83	18.3%	
G31	Secondary	204.2	66.64	77.44	10.80	16.2%	
G36	Secondary	376.7	70.53	73.18	2.65	3.8%	
G37	Secondary	477.8	61.92	65.09	3.17	5.1%	
G40	Secondary	539.9	54.60	56.63	2.02	3.7%	
G47	Secondary	475.7	80.09	81.23	1.14	1.4%	
G51	Secondary	289.6	59.45	59.56	0.11	0.2%	

Grizzly Bear Unit	Habitat	Area Km Sq	Current Mean	Future Mean	Difference +/-	% Change	
Resource Selection Function (max)							
Y53	Core	230.6	5.05	5.64	0.59	11.7%	
Y56	Core	691.7	7.49	7.85	0.36	4.8%	
Y61	Core	624.5	7.14	7.92	0.78	10.9%	
Y69	Core	138.1	7.18	7.68	0.50	7.0%	
Y70	Core	343.4	6.83	6.89	0.06	0.9%	
Y57	Secondary	642.8	4.41	5.04	0.63	14.3%	
Y63	Secondary	495.1	6.27	6.51	0.24	3.8%	
		Ν	/lortality Risk				
Y53	Core	230.6	5.04	5.55	0.51	10.1%	
Y56	Core	691.7	6.59	6.83	0.24	3.6%	
Y61	Core	624.5	5.74	6.10	0.36	6.3%	
Y69	Core	138.1	4.09	4.35	0.26	6.4%	
Y70	Core	343.4	4.02	4.04	0.02	0.5%	
Y57	Secondary	642.8	5.82	6.32	0.50	8.6%	
Y63	Secondary	495.1	6.99	7.08	0.09	1.3%	
		5	Safe Harbour				
Y53	Core	230.6	50.45	56.39	5.94	11.8%	
Y56	Core	691.7	74.87	78.45	3.59	4.8%	
Y61	Core	624.5	71.45	79.15	7.71	10.8%	
Y69	Core	138.1	71.76	76.82	5.05	7.0%	
Y70	Core	343.4	68.29	68.93	0.64	0.9%	
Y57	Secondary	642.8	44.07	50.42	6.35	14.4%	
Y63	Secondary	495.1	62.70	65.12	2.43	3.9%	

Table 4-5. Open Route Density – Grande Cache Grizzly Bear Population

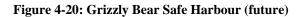

Grizzly Bear Unit	Habitat	Road Length (Km) Current	Area (Km Sq)	Road Density Km/Km Sq
G42	Core	354.6	537.3	0.66
G44	Core	335.6	728.6	0.46
G50	Core	131.1	232.1	0.56
G58	Core	67.6	107.0	0.63
Core Total		889.0	1605.0	0.55
G28	Secondary	23.0	58.0	0.40
G31	Secondary	140.1	204.2	0.69
G36	Secondary	326.5	376.7	0.87
G37	Secondary	463.9	477.8	0.97
G40	Secondary	382.2	539.9	0.71
G47	Secondary	340.9	475.7	0.72
G51	Secondary	164.0	289.6	0.57
Secondary Total		1840.6	2421.9	0.76

Grizzly Bear Unit	Habitat	Road Length (Km) Current	Area (Km Sq)	Road Density Km/Km Sq
Y53	Core	131.0	230.6	0.57
Y56	Core	493.1	691.7	0.71
Y61	Core	333.3	624.5	0.53
Y69	Core	44.1	138.1	0.32
Y70	Core	200.8	343.4	0.58
Core Total		1202.3	2028.3	0.59
Y57	Secondary	350.7	642.8	0.55
Y63	Secondary	324.2	495.1	0.65
Secondary Total		674.9	1137.9	0.59

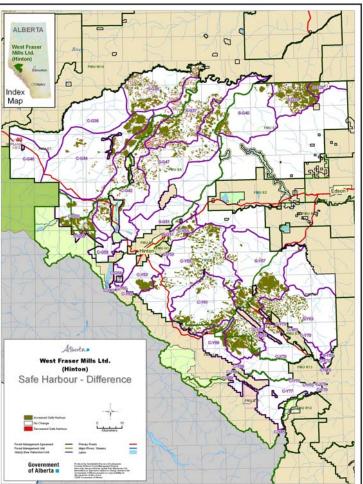
 Table 4-6. Open Route Density – Yellowhead Grizzly Bear Population

Figure 4-19: Grizzly Bear Safe Harbour (current)

Hinton Wood Products A Division of West Fraser Mills Ltd.

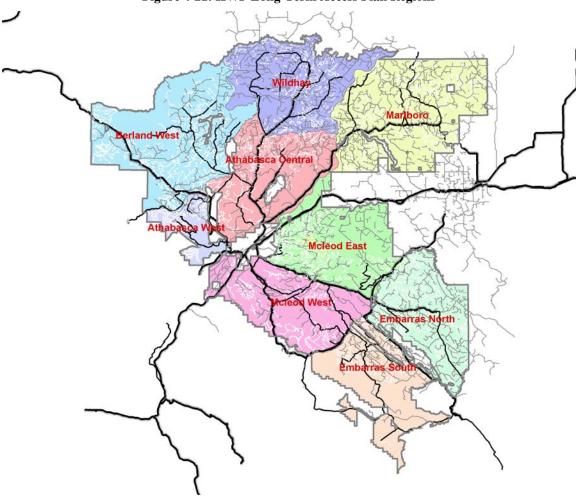

•

Index


Map

Future

Change from Current



4.2.3 Road Corridor Plan

Long Term Access Plans (LTAP) will define the location and standard for the permanent road network across the FMA. The forest industry eventually needs roads to access all forested lands on Forest Management Areas (FMA) and generally requires high-quality roads to safely support logging truck traffic. The oil and gas industry can also use this road network, with additional minor spur roads to service exploration and development needs.

An LTAP provides opportunity to put new roads in the best locations to access resources and minimize cumulative effects on other values. Existing road networks are being reviewed to determine if they continue to meet current needs. HWP roads that have been identified as not currently required and not required for long-term use will be prioritized for deactivation and/or reclamation. Roads belonging to other industrial users are also being assessed for long-term need.

For the term of the current SHS (up to April 30, 2018), one new permanent HWP road is currently planned for construction. The current road network will provide access to the majority of the scheduled harvest areas. As LTAP areas are completed, they will be submitted to SRD for review and approval. A progress report was submitted to SRD for information in March 2010.

4.3 Recommended Annual Allowable Cut

The following tables summarize the recommended annual allowable cut for the Hinton FMA. Please note the following:

- Structure retention will be monitored, reported annually and charged against the AAC. HWP will submit monitoring program procedures under separate cover.
- HWP is the only forest company operating on the FMA. Consequently, all landuse disposition applications are submitted to HWP for review and consent. As per existing practice, all timber lost to other uses will be charged against the AAC upon consent.
- Unless other uses have been identified and approved in the final harvest plan, HWP will reforest all in-block roads, decking and processing areas. These areas will be maintained within the block area and included in establishment and performance surveys.

Disposition Holder	Conifer AAC (15/11/15 TL - m ³ /yr)	Deciduous AAC (15/10/15 CTL - m ³ /yr)
Hinton Wood Products	1,758,076	248,332
Available for allocation by SRD as per FMA Agreement	8,500	1,500
Total	1,766,576	249,832

Table 4-7. Harvest Level Allocation

Table 4-8. Historical Allocations

Company Name	Disposition Number	FMU	Landbase Management Type	Effective Date of AAC	Deciduous AAC (%)	Deciduous AAC (m ³ /yr)	Incidental Deciduous (%)	Incidental Deciduous (m ³ /yr)	Coniferous AAC (%)	Coniferous AAC (m ³ /yr)	Incidental Coniferous (%)	Incidental Coniferous (m ³ /yr)
Hinton Wood Products	FMA8800025		Single	1-May-06					100.00%	1,526,500	n/a	n/a
Available for allocation by SRD as per FMA Agreement	N/A	E6, E7 and portions	Single	1-May-06					fixed volume	8,500	n/a	n/a
Hinton Wood Products	FMA8800025	- of E1, E3, E4,	Single	15-Jun-98	100.00%	167,949	n/a	n/a				
Available for allocation by SRD as per FMA Agreement	N/A	- E5 & E11	Single	15-Jun-98	fixed volume	1,500	n/a	n/a				
Total						169,449				1,535,000		

					Table 4-9	. Proposed Al	locations					
Company Name	Disposition Number	FMU	Landbase Managemen t Type	Effectiv e Date of AAC	Deciduous AAC (%)	Deciduous AAC (m ³ /yr)	Incidental Deciduous (%)	Incidental Deciduous (m ³ /yr)	Coniferous AAC (%)	Coniferous AAC (m ³ /yr)	Incidental Coniferous (%)	Incidental Coniferous (m ³ /yr)
Hinton Wood Products	FMA8800025	E6, E7 and	Single	1-May- 10	100.00%	248,332	n/a	n/a	100.00%	1,758,076	n/a	n/a
Available for allocation by SRD as per FMA Agreement	N/A	portions of E1, E3, E4, E5 & E11	Single	1-May- 10	fixed volume	1,500	n/a	n/a	fixed volume	8,500	n/a	n/a
Total						249,832				1,766,576		

T-11. 40 Dd Allocati

Table 4-10. Timber Utilization

Disposition Number	Harvest Method	Top Diameter (cm)	Butt Diameter (cm)	Minimum Length (m)	Stump Height (cm)
FMA8800025 - Coniferous	Tree Length	11	15	3.76	15
FMA8800025 - Deciduous	Cut-To-Length	10	15	1.78	15

Table 4-11. Timber Chargeability

Disposition Number	Deciduous Species Used in AAC	Coniferous Species Used in AAC	Species NOT Chargeable to AAC	Rights to Species NOT Chargeable to AAC	Structure Retention Target (%)	Structure Retention (%) Accounted for in AAC	Net Landbase Deletions and Deferrals	Net Landbase Deletions and Deferrals: Rights to Timber	Industrial Salvage Chargeability Strategy
FMA8800025	Aw, Pb	Pl, Sw, Sb, Se, Fb, Fa	Bw, Lt, all dead trees	Timber rights assigned to HWP in FMA	1%	Not accounted for in AAC. Retention is tracked, measured and reported at the end of each timber year.	As per Section 3.1	Timber Rights assigned to HWP in FMA	Each disposition will be charged against the AAC upon consent.

					Table 4-1	2. Timber Pro	duction			
Disposition Number	Cut Control Period	2008/2009 & 2009/2010 Approved AAC (m ³ /yr)	Periodic Cut Control Volume (m ³)	Current Quadrant Term	2003-2008 Production (m ³)	Quadrant Deciduous Under- Production 2003-2008 (m ³)	Quadrant Coniferous Under- Production 2003-2008 (m ³)	2010 AAC recommendation (m ³ /yr)	Proposed 2008-2013 Quadrant Allowable Cut (m ³)	Quadrant Allowable Cut Calculation Assumptions
FMA8800025 - Coniferous	1	1,535,000	7,675,000 (1,535,000 x 5 years)	May 1, 2008 - April 30, 2013	10,014,671	n/a	229,398	1,766,576	8,369,728	= 2.0 yrs x 1,535,000 + 3.0 yrs x 1,766,576. The reconciliation volume was directly incorporated into the accelerated harvest in the recommended AAC.
FMA8800025 - Deciduous	1	169,449	847,245 (169,449 x 5 years)	May 1, 2008 - April 30, 2013	833,543	79,434	n/a	249,832	1,088,394	= 2.0 yrs x 169,449 + 3.0 yrs x 249,832. The reconciliation volume was directly incorporated into the accelerated harvest in the recommended AAC.

Table 1 12 Timber Production

Table 4-13. Fibre Assignment Agreements

Assignment Type	Directed to	Disposition Number	Species (Coniferous or Deciduous)	Volume (m ³)
None	n/a	n/a	n/a	n/a

