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ABSTRACT

This report describes in detail the methods for predicting individual tree gross total volume, gross
merchantable volume to any specified top diameter inside bark, merchantable length, and number of trees
per cubic metre of merchantable volume (trees/m’) for major Alberta tree species. The report also lists
models and estimated natural region based coefficients associated with volume and other individual tree-
related variable estimations, along with appropriate instructions for using them. Other publications of this
series, Ecologically Based Individual Tree Volume Estimation for Major Alberta Tree Species, display
tables that were formulated according to procedures described herein. Advantages of these ecologically
based individual tree volume estimations include more accurate volume predictions from the taper
equation, an integrated use of individual tree relationships, use of the newly classified Natural Regions

instead of the Volume Sampling Regions, and a new layout form of the tables to facilitate practical use.
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1.0 INTRODUCTION
This report describes in detail the methods of formulation and statistical foundations for
ecologically based, individual tree volume estimation in Alberta. It provides the bases for construction
of the tables displayed in other reports of this series, and includes procedures for predicting individual
tree gross total volume, gross merchantable volume to any specified top diameter inside bark,
merchantable length, and number of trees per cubic metre of merchantable volume (trees/m®) for major
Alberta tree spécies. All models and estimated natural region based coefficients associated with volume
and other variable estimations related to individual trees are listed in this report, along with appropriate
instructions and procedures for using them. Natural Regions of Alberta are those defined Appendix 4 and
shown in Figure 1.
. Compared to the previously used volume estimation methods adopted by Alberta Land and Forest
Services (Alberta Forest Service 1985a), ecologically based individual tree volume estimation has several

distinct features including the following:

1. A taper equation is used to predict individual tree gross total volume, gross merchantable volume,
merchantable length, and number of trees per cubic metre of merchantable volume (trees/m®).
Taper equations have been shown to provide more accurate volume predictions for major Alberta
tree species (LeMay 1982). More recently, the use of taper equations for individual tree volume
estimation has become an increasingly popular trend (Flewelling 1993; Flewelling and Raynes

1993; Kozak 1988, 1991; Newnham 1992; Perez et al. 1990).

2. The relationships between tree height and tree diameter, diameter outside bark and inside bark,

stump diameter and breast height diameter are used in an integrated manner. This approach greatly

facilitates volume estimation.



3. " Natural regions are used instead of the Volume Sampling Regions (VSRs, see Alberta Forest
Service 1985b). Predictive relationships and volume tables were built on recently classified natural
regions to reflect a refinement over previously defined VSR boundaries, and to emphasize the

ever-increasing importance of ecology-based forest management in Alberta.
4, A new layout form of the volume tables was developed to facilitate practical use.

An example Statistical Analysis System (SAS) program showing the step-by-step computations
for merchantable length, gross merchantable volume, gross total volume, trees/m*> merchantable volume,
. total tree height, and stump diameter is attached (Appendix 3). Additional programs used for other

computations, or for creating tables or matrices of user-defined ranges, are available upon request.
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1 - Central Mixedwood
B 2 - ory Mixedwood
[ 3 - wettind Mixedwood
4 - Sub-Arctic

- 5 - Peace River Lowlands
Bl s Boreal Highlands
B 7 - apine

B s - subapine

B 5 - monwne

[ 10 - upper Foothis
[ 11 - Lower Foothilie

12 - Athahasea Plain
I 13 - Kkazen Upland

[ 14 - Foothilis Parkiand
B 15 - Peace River Parkiand
[ 16 - central Parkiang
[ 17 - Dry Mixedgrass

18 - Foothills Fescus
[T 19 - Northern Fescue
[:' 20 - Mixedgrass

Figure 1. NATURAL REGIONS OF ALBERTA
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2.0 THE BASE MODELS
The base models used to creat volume tables include the taper model, the diameter outside/inside
bark model, the height-diameter model, and the stump diameter and breast height diameter model. All

models are fitted on the provincial tree sectioning data (Alberta Forest Service 1988, 1993).

2.1 The Taper Model

Evaluation of alternative taper equations suggested that the variable-exponent taper equation -

(Kozak 1988) was appropriate for major Alberta tree species:

A

[1] d = ‘a,D%alxZ *Paln(2+0.001) sbyyZebye *eby (D/H)
0
where
[2] X = (1-yB/H) /(1-yD)
and

d = diameter inside bark (cm) ats -

h = height above the ground (m), 0 <A <H

H = total tree height (m)

D = diameter at breast height outside bark (cm)
Z=h!lH

p = location of the inflection point, assumed to be at 22.5% of total height above the ground

e = base of the natural logarithm (= 2.71828)

ay, a,, &, b,, b,, b, b,, bs = parameters to be estimated.

The location of the inf‘lection point has been found to have little effect on the predictive properties
of the taper model (Perez et al. 1990). A constant p value of 0.225 (the midpoint of the p ranges

suggested by Kozak) was found appropriate for all Alberta tree species. Fitting of the taper equation

5



requires nonlinear least squares procedures, with initial values of the parameters estimated from the
linearized equation (see Appendix 1 for details). Results of the estimated natural region based coefficients

for the taper model are listed in Appendix 2. Use of the model will be discussed in subsequent sections.

2.2 The Diameter Outside/Inside Bark Model

A linear equation expressing diameter outside bark as a function of diameter inside bark was fitted

on the provincial stem analysis data
[3] DOB = a+bDIB

where:

DOB = diameter outside bark (cm) at any point on the stem

DIB = corresponding diameter inside bark (cm)

a, b = parameters to be estimated.

A relationship between diameters outside and inside bark is commonly used for conversion
between these two diameters. The relationship can be 'used to predict diameter outside bark from diameter

inside bark, or to predict diameter inside bark from diameter outside bark. For the latter, equation [3] is

rearranged as follows:

DOB-a
b

(4] DIB =

The relationship between diameter outside and diameter inside bark can also be used to compute
bark thickness and, in conjunction with other equations, bark volume. Results of the estimated coefficients

by natural regions for the diameter outside/inside bark model are listed in Appendix 2.

2.3 The Height-Diameter Model

A Richards-type height-diameter model (Huang et al. 1992) was found appropriate for major

\—~§ \__.._-é] —B-:
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Alberta tree species:

[5] H = 1.3+a(l-e™bp)¢

where:
H = total tree height (m)
D = diameter at breast height outside bark (cm)
e = base of the natural logarithm (*2.71828)

a, b, ¢ = parameters to be estimated.

The height-diameter model is used to predict tree height from field measurement of tree diameter
at breast height outside bark. It has been incorporated into all the tables formulated for individual tree
volume estimation. A detailed description of the development of the height-diameter equations is presented

in Report #2,

Estimated height-diameter coefficients according to natural regions are listed in Appendix 2.

2.4 The Stump Diameter and Breast Height Diameter Model

A quadratic model expressing stump diameter outside bark as a function of breast height diameter

outside bark is fitted on the provincial stem analysis data:

(6]  DOB,,, = a+bD+cD?

where:
DOB,,, = stump diameter outside bark (cm) at 0.30 m stump height
D = diameter at breast height outside bark (cm)

a, b, ¢ = parameters to be estimated.

The regression function between stump diameter and breast height diameter is commonly used for



conversion between these two diameters. It can be used to predict stump diameter from field measurement
of breast height diameter, or to predict breast height diameter from field measurement of stump diameter.

For the latter, equation [6] can be rearranged as follows:

[7].. p . —b+/b?~4c(a-DOB,,,)
2c

As will be shown later, the relationship between stump diameter and breast height diameter allows
prediction of individual tree volumes from stump diameter or breast height diameter. The estimated
coefficients for the stump diameter and breast height diameter model, according to natural regions, are

listed in Appendix 2.
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3.0 METHODS OF COMPUTATION
Tables presented in subsequent reports in this series were constructed using the statistical
relationships described above. Examples of the computations for variables such as individual tree gross
total volume, gross merchantable volume, merchantable length, trees/m® merchantable volume, and others
are discussed in the following sections. Figure 2 provides a simple graphic illustration for all computations

described hereafter.

3.1 Merchantable Length
Merchantable length (ML) which extends from stump height to the height 6f a specified top
diameter inside bark (d), is calculated using the taper equation. The calculations involve the following
steps:
1. Specify the top diameter inside bark, 4. In Alberta, d values of 5, 7, 10, 11, 13 ‘;md 15 cm are most
commonly used.

2. Rearrange equation [1] into:

1/ 2
(8] h/H = [1— (i;) c(1—¢§)]
where k£ and ¢ are defined in equations [9] and [10], respectively:
(9] k = a,D"a;

[10] ¢ = b, (h/H)?+b,1n(h/H+0.001) +byy/A/H+b,e"*+b, (D/H)
3. Use a mathematical iteration rqutine to calculate merchantable height (MH).
In equation [8], d is set to the specified top diameter (e.g., d = 7.0 cm) and ¢ in [10] is calculated
from a guessed initial value of A/H, termed (h/H),. A good initial value for (4/H), for all Alberta tree
species is 0.9. Once the c is calculated using the initial value, the first estimation of h/H, termed (h/H),

is obtained from equation [8]. Having calculated (#/H),, the next h/H value, termed (h/H),, used to

9
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Figure 2. A graphic illustration for tree volume calculations. Where d, indicates diameter inside bark along
the stem, ML is merchantable length, MH is merchantable height, SH is stump height, and H

is total tree height.
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estimate ¢ in equation [10] can be estimated using eq{lation [11]:

(h/H),+(h/H),
: .

(11] (B/H), =

This process is repeated until a desired precision is obtained, for example:

[12] | (h/H) ;- (h/H);_,| < 0.00000001

The above calculations can be readily programmed using the Statistical Analysis System (SAS).

4 For instance, the following SAS statements will perform the iteration:

*This program calculates the merchantable length of the tree;
*Generate a set of trees with dbh from 8 to 80 by 2 cm, total tree height (H) from 4 to 40 by 2 m;

data v1;
do dbh = 8 to 80 by 2;
do H = 4 to 40 by 2; output;
end; :
end;

run;

*The iteration procedure, using estimated coefficients for softwood from natural regions 2, 15, and 16 (see Appendix 2, Table A2);
*A 7.0 cm top diameter inside bark is assumed;

data v2;
set vl;
a0 = 0.858012; al = 0.994667; a2 = 0.998503; bl = 0.957817;
b2 = -0.228150; b3 = 1.696453; b4 = -0.788021; bS5 = 0.142355;

*Define z=MH/H, set the initial value for z;

20 = 0:9;

*The following iteration process is repeated until a desired precision is obtained;

do until(abs(z0-z1) < 0.00000001);
c = b1*(z0)**2+b2*log(z0+0.001)+b3*sqr1(z0) + b4 *exp(z0) + b5*(dblvH);
zl = (1-(( 7/(a0*dbh**al *a2**dbh))**(1/c))*(1-sqr1(0.225)))**2;
20 = (20+z1)/2;

end;

*Keep the coefficients and the final z0 or z1;

keep a0-a2 bl-b5 dbh H z0 z1;
run;

Once the specified precision is obtained, merchantable height (MH) of the tree is calculated

11



according to: MH = z0 xH,.where H is the total tree height. Merchantable length (ML) of the tree is MH
minus stump height (SH), that is, ML = MH - SH. A stump height value of 0.30 metres is most
commonly used in Alberta. The tree dimensions of MH, SH, H and ML are easily discernable from Figure

2. See Appendix 3 for the calculations.

3.2 Gross Merchantable Volume
Once merchantable length (ML) has been calculated, gross merchantable volume can be calculated
through a four-step procedure (see Figure 2):
1. Divide merchantable length into 10 sections of equal length. |
2. Compute the height above the ground from the middle and the top of each section. For example, for
the section next to the stump, its midpoint (corresponding to d,) occurs at a height termed A,, which is

calculated as follows:
[13] h1 = lxML/20+SH

where ML and SH are merchantable length and stump height, respectively. The height above the ground

at the top of the same section (corresponding to d,) is termed A, and is calculated as follows:

[14] h, = 2xML/20+SH

It is quite clear that heights above the ground for other sections can be calculated in a similar manner,

using the following generalized equation:

[15] h; = ixML/20+SH

i
Since there are 10 sections, i = 1, 2, ... , 20. Height abéve the ground at which the specified top
diameter inside bark (d = d,) occurs is equal to the merchantable height, that is, A, = 20XML/20 '+
SH = MH. In total, 20 calculations of heights above the ground are obtained frdm step (2).

3. Diameters inside bark at the middle and the top of each section are calculated using the taper equation,

12



expressed as follows:

b, (hy/H)2+b,1n (h;/H+0.001) +b, . /EJB+b,e™/*+b. (D/H)

H6]  a = apugp |AT/ETR| /TR

; = a,DMa, | —X—=2— )
1-yp

There are 20 (i = 1, 2, ..., 20) diameters inside bark, d,, d,, d;, ..., dy, to be predicted at this stage.

Diameter inside bark at the top of the stump, termed d,, is also predicted from the taper equation with

h; equal to the stump height.

4. Merchantable volume is calculated using Newton's fdrmula (Husch et al. 1982). There are 21

diameters, d,, d,, d,, ..., dy, located at intervals of ML/20 m, from top of the stump to the point where

the minimum top diameter d (d = d,) is specified (see Figure 2). Three diameters are required to
compute the volume for each section of 2 XML/20 (= ML/ 10) length. Thus, using Newton's formula the

gross total merchantable volume of the tree is the summation of the volumes from 10 sections:

i
|

171 v, = MLélo (0.00007854) (dZ+4dZ+d?)
+£é_1_° (0.00007854) (d2+ad2+d?)
F +% (0.00007854) (d2+4d2+d?)
+mM_L_éi9 (0.00007854) (d2+4d?+d?2)
+LfLé_19 (0.00007854) (d2+adZ+d%)
+%‘(o.oooo7ss4) (diy+add +dh)
+£f:%.1_9. (0.00007854) (df,+4ady+d7,)
+.ML(/5J (0.00007854) (di+4d7+d)
+£f% (0.00007854) (d%+ad3 +d2)

+£é3-q (0.00007854) (dZ+4d%+d)

where V,, is the merchantable volume (m’) of the tree to the specified top diameter inside bark, ML is

merchantable length (m), d,, d,, d,, ..., d,, are diameters inside bark (cm) along the stem.

13



3.3 Gross Total Volume

Gross total volume of the tree is calculated by
(18] V = V +V +V,
where:
V = gross total volume of the tree (m’)
', = gross merchantable volume (m®) of the tree to a specified top diameter
V, = tip volume (m®)

V, = stump volume (m?).

The following steps are necessary in computing gross total volume of the treé:

1. Specify the top diameter inside bark, then calculate the gross merchantable volume of the tree (V)
using previously described procedures. In consultation with Land and Forest Services personnel, a 2.0
cm top diameter inside bark is specified for all Alberta tree species at this step.

2. Calculation of the tip volume. The tip of the tree is assumed to be a cone, so tip volume is calculated

using the equation for a cone:

(19] v, = m(d/200)2 (H-MH) /3

where:
V, = tip volume (m?®)
H - MH = tip length (m)
H = total tree height (m)
MH = merchantable height (m) to the specified top diameter (d = 2.0 cm)
d = top diameter inside bark (d = 2.0 cm).
3. Calculation of the stump volume. The stump of the tree is assumed to be a cylinder, so stump volume

is calculated using the equation for a cylinder:

14
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[20] Vy = m(d,/200)28H

s
where:

V, = stump volume (m®)

d, = stump diimgter inside bark (cm) predicted from the taper equation

SH = stump height (m).

The summation of the calculated merchantable volume, tip volume and stump volume gives the

gross total volume (m?) of the tree. See Appendix 3 for the calculations.

3.4 Trees/m* Merchantable Volume
Number of trees per cubic metre of merchantable volume is calculated using the following

equation:

[20] Trees/m*® = 1/V,

where V,, is the merchantable volume (m?®) of the tree to the specified top diameter inside bark.

Once the coefficients have been estimated, computations for merchantable length, merchantable
volume, and trees/m* merchantable volume depend on the choices of top diameters. Tables displaying
values for these variables were formulated using tdp diameters of 5, 7, 10, 11, 13 and 15 cm.
Computétiohs for total tree volume require "sectioning” the tree into three main portions (merchantable,
tip and stump), and calculating the volume for each portion using the pertinent formulas. It should be
remembered that in computing volume for the merchantable portion of a tree, the top diameter inside bark

of 2.0 cm is consistently used for all Alberta tree species.

15



3.5 Stump Diameter Outside Bark
The regression function between stump diameter and breast height diameter, equation [6], can be

used to predict stump diameter outside bark from field measurement of breast height diameter outside

bark. Stump diameter outside bark can also be predicted using the taper equation and the diameter

outside/inside bark relationship. For example, using' the taper equation, diameter inside bark at stump

height can be predicted, and this predicted valug can be used to predict stump diameter outside bark with
the diameter outside/inside bark relationship.

The two -stump diameters obtained from the two different approaches will differ. For this study,
equation [6] was used to predict stump diameter outside bark from breast height diameter outside bark.
Reasons for not using the second approach included the following: (1) the first approach is simple and
straightforward with high precision (see fit statistics in Appehdix 2), (2) the taper equation is less reliable
for predicting diameters at stump or top of the tree. A limitation to the use of equation [6] is that it can
predict stump diameter outside bark only at stump height of 0.3 m. For any other stump height defined
by the user, tape'r equation and diameter outside/inside bark equation must be used.

Computations for other vafiables such as diameter outside and inside bark, and total tree height
only require fitted base models. Appendix 3 provides an example of a SAS program illustrating all

computations discussed above.

16
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4.0 FORMULATION OF THE TABLES

4.1 The Format

The tables were designed to be easily understood and applied, while the information contained
in each table was maximized. A typical example of the gross total volume table is shown in Table 1.
Compared to conventional volume tables, natural region based individual tree volume tables developed
in this study represent expanded versions of volume tables that incorporate the use of the height-diameter
relationship and permit a choice of having either the breast height diameter or the stump diameter as the
main input variable.

Each type of table is distinguished by its title (e.g., from Table. 1, one can easily tell that the table
is for the gross total volume). Printed on the top left-hand side of each table are the applicable species
and natural regions. The first two columns of the table are diameter at breast height outside bark
(DBHOB) and diameter at stump outside bark (STUMP DOB). A stump height of 0.3 m is consistently
used for all Alberta treé species.

All tables were initia'lly created using values corresponding to the midpoints of 2.0 cm diameter
classes and 2.0 m height classes. The DBHOB column is arranged by intervals of 2.0 cm diameter
classes. To facilitate reading of the table, a fixed range is used instead of a single clasg value. For
example, for the 2.0 cm DBHOB class, a range of 1.1 cm to 3.0 cm is used, and for the 20.0 cm
DBHQB class, a range of 19.1 cm to 21.0 c¢m is used. In both cases, 2.0 cm and 20.0 cm are considered
the midpoints of the classes.

The two boundary values for STUMP DOB corresponding to each DBHOB class are predicted
with the stump diameter and breast height diameter relationship, using the two boundary values of the
DBHOB class as the inputs. The main‘body of the table follows the first 2 columns. Each column is
arranged by intervals of 2.0 m height classes up to 40.0 m. The far right-hand column of the table list

the heights predicted from the midpoints of DBHOB classes.
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i Underlined values in the middle portion of each table represent the average height-diameter
relationship. Values in two corners of the tables indicate unlikely tree sizes. Tables or matrices of user-
Eﬁ defined ranges can be readily created using the actual functions (see Appendix 2 for coefficients).

Assistance with re-creating similar tables is available upon request.

-

4.2 Applications of the Tables

The format of each table represents an integrated use of the taper equation and the relationships

between tree height and tree diameter, diameter outside bark and inside bark, stump diameter and breast

height diameter. In addition to its use as a standard volume table, the sample volume table (Table 1) can

also be used as a local volume table, a height-diameter prediction table, and a stump diameter and breast

[m
i
i

height diameter prediction table. Here are some of the most common uses of such a table:

1. Prediction of total tree height. From field measurement of tree diameter at breast height outside
bark (DBHOB), total tree height (HT) can be predicted from the far right hand side column of

i the table. For example, if a tree has a DBHOB of 29.4 cm, predicted HT of the tree from Table

1is 25.1 m.

2. Prediction of stump diameter outside bark (STUMP DOB). From field measurement of DBHOB,
STUMP DOB can be predicted. For example, if a tree has a DBHOB of- 29.4 cm, then the

[' predicted STUMP DOB of the tree from Table 1 falls between 32.5 cm and 34.7 cm.

3. Prediction of tree diameter at breast height outside bark (DBHOB). From field measurement of

STUMP DOB, DBHOB can be predicted. For example, if a tree has a STUMP DOB of 44.5 cm,

predicted DBHOB of the tree from Table 1 falls between 39.1 cm and 41.0 cm.
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Prediction of gross total volume from observed DBHOB and HT. Gross total volume (m®) to 0.0

cm top diameter inside bark (d) and 0.00 m stump height can be read directly from Table 1, based
on the field measurements of total tree height and diameter at breast height outside bark. For
example, if a 29.4 cm (DBHOB) tree has a HT of 21.8 m, the gross total volume of the tree from

Table 1 is 0.6170 m®. _

Wmmﬁmmmmmm_ﬂl If the field

measurement of tree height is not available, the far right-hand column of the table can be used
to predict HT from field measurement of DBHOB. Based on the DBHOB and the predicted HT,
gross total volume can be read from the table. For example, if a tree has a DBHOB of 29.4 cm,
then the predicted HT of the tree will be 25.1 m. The gross total cubic metre volume of the tree
from Table 1 is 0.7374 m®, which is underlined for easy reading. In the absence of field
measurement for tree heights, only the underlined values in ﬁ1e middle portion of the table, which
represent the result 6f the average height-diameter relationship, are needed for estimating the gross

total volumes (m®) of the tree.

Prediction of gross total volume from observed stump diameter and HT. The second column from

the left, in the standard table for gross total volume, represents stump diameter outside bark. If
the field measurements of stump diameter and total tree height are available, gross total volume
can be read from Table 1. For example, if a tree has a STUMP DOB of 23.2 cm and a HT of

15.8 m, the gross total volume of the tree from Table 1 is 0.2067 m®.

Prediction of gross total volume from observed stump diameter and predicted HT. If the field

measurement of stump diameter is all that is available, the far right-hand column of the table can

be used to predict HT from STUMP DOB. Based on the STUMP DOB and the predicted HT,

20

3




F\ gross total volume (m®) can be read from the table. For example, if a tree has a STUMP DOB

of 23.2 cm, predicted HT of the tree from the far right-hand column of Table 1 is 19.4 m, and
i, the gross total volume of the tree from Table 1 is 0.2621 m®. Once again, in the absence of field
lfm measurements forvtree height, only the underlined values in the middle portion of the table, which

represent the average height-diameter relationship,‘ are needed for estimating the gross total

F volume.

Tables for predicting merchantable volume, merchantable length, and trees/m* merchantable

volume can be used in a similar manner.

8. Prediction of log volume. Tables for predicting total volume, merchantable volume, and

F’" merchantable length can be used jointly to determine log volume. The procedure is described in

Reports 4 to 11 of this series.
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5.0 STATISTICS IN INDIVIDUAL TREE VOLUME ESTIMATION
Although the fitting of the equations and the construction of the tables appear relatively clear and
straightforward, ecologically based individual tree volume estimation involves a number of rather intricate

statistical concepts and problems that readers may not be readily aware of. They include:

5.1 The Choice of the Taper Equation

Kozak's (1988) variable-exponent taper equation was fitted for all Alberta tree species. A large
number of published taper equations, including those most recently presented by Flewelling (1993),
Flewelling and Raynes (1993), Newnham (1992), Perez et al. (1990), and those previously studied by the
Alberta Forest Service (Alberta Forest Service 1987), were compared based on the plots of residuals and
a certain number of fit statistics such as the mean squared errors, the coefficients of determination, and
the average biases. Kozak's (1988) variable-exponent taper equation was determined to be the preferred
model because variables required to fit the model were readily available from the provincial stém analysis
data base, and were consistent with th(;. data collection process in Alberta. The model also showed very
high accuracies in predicting diameters inside bark along the stém for all Alberta tree species, and was
relatively easy to fit.

However,‘ a few cautionary notes about the fit of Kozak's taper equation should be mentioned.
These problems involve methods for calculating merchantable height, use of logarithmatic transformation
(if any) and its associated error correction, and different ways for making volume predictions. Appendix
1 describes some of these problems and the corresponding solutions. The weaknesses of the Kozak's taper
equation, such as the need for numerical iteration in calculating merchantable length and the lack of
mathematical integration in estimating volume (see Kozak 1988; Kozak and Smith 1993), will likely cause
some small discrepancies in predicting merchantable lengths and volumes, depending on the choices of
top diameters and the assumed number of sections to be used in calculations. Nevertheless, these small

discrepancies are less profound and can be ignored in practice. The problem of inherent dependence of
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the tree sectioning data, caused by taking several measurements from the same tree, is also ignored in

fitting the taper equation.

5.2 Accuracy of the Volume Estimation

Using the actual tree volume calculated from Smalian's or Newton's formula and the predicted
tree volume calculatéd from proposed volume and taper equations, many researchers have compared
accuracies of volume estimations by different equations. -Such approaches, however, might not be
appropriate since the so called "actual” tree volume obtained with Smalian's or Newton's formula is not
‘the real “actual” tree volume. In other words, in making such comparisons, one volume estimate is
compared to a different volume estimate, rather than to the true volume of the tree.

The water displacement techniques discussed in detail by Martin (1984) and others provide the
appropriate approaches for testing the accuracies of volume and taper equations. But such experiments
require substantial resources including the use of some very specialized equipment (e.g., the xylometer),
and are not very practical if a large number of samples are involved.

With the limited resources available, direct testing of the accuracy of the taper equation in
predicting actual tree volume is not feasible at this time. However, using the procedures described by
Kozak and Smith (1993), "actual" tree volumes calculated from the Smalian’s formula were compared to
those obtained from the taper equation for comparisons of the two estimates. Results indicated that, on
average, volumes obtained from the Smalian's formula were approximately 2% to 5% more than those
obtained from the taper equation. Since it is known that, for long sections, Smalian's formula usually
overestimates tree volume (up to 12%, see Husch et al. 1982), volumes derived from the taper equation

should generally be regarded as more accurate.

53 Comparison Among Natural Regions

Tables were not formulated for each natural region, but for groups of natural regions that have
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similar patterns of relationships. Statistical tests were conducted to verify that significant differences do
exist from one natural region group to the next.

Comparison of the differences of height-diameter models among natural regions provides the
guidahce for all grouping of natural regions. The regression method of dummy variables (also called
indicator variables or binary variables) is used to make such comparisons. Dummy variables are
frequently applied to models that allow for behavioral differences in geographic regions (Neter et al. 1990,
Judge et al. 1988). For example, for the simple linear model y = a + bx, a dummy variable version of
the model for two natural regions can be written as y = (a + a,x; ) + (b+ byx, )x; this equation is the
full model, where tl;le dummy variable x, is defined as x, = 0 if natural region = 1, and x, = 1 if natural
region = 2. It is obvious that the dummy. variable version of the model represents two models: 1) for
natural region 1 where x, = 0, y = a + bx (the reduced model); and 2) for natural region 2 where x,
=1,y = (a + a,) + (b+ b )x. Identity of the two regression models for two natural regions is tested
by considering the following alternatives:

Hya =b =0
H,: not botha, = 0and b, =0

The appropriate test statistic, the extra sum of squares method (Neter et al. 1990), is given by

. _ SSE(R)-SSE(F) , SSE(F)
[22] F dF - dF, aF.

where F* follows the F distribution when Ho is true. The degrees of freedom dfy and dfy are associated
with the reduced and the full model error sums of squares (SSE(R) and SSE(F)), respectively. The
statistical decision rule is:
It FF £F (1-0; dfy - dfy, df), conclude H,
If F > F (1-0 dfy - dfy, dfs), conclude H,
The principle of dummy variables for linear least squares estimation can be readily extended to

nonlinear models presented for individual tree volume estimation. For example, consider the nonlinear
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height-diameter model [5], if the purpose is to test whether the difference of height-diameter relationships
between natural regions (or natural region groups) 1 and 2 is significant, the dummy variable version of
the full height-diameter model can be written as:

[23] H = 1-3+(a+a1-x1) [1_6‘(b*b1X1)D] (c+ey )

This six-parameter full model has the following error sum of squares:

[24] SSE(F) = SSE{a,,b,,c,,a,b,c)

~ with dfy = n - 6 degrees of freedom associated with it. The dummy variable x, in the full model is

defined as follows:

1 if natural region = 2
[25] X1 %0 otherwise

The reduced model for natural region 1, for which x, = 0, is as follows:

[26] H = 1.3+a(1-e™bP)c

The error sum of squares for this three-parameter, reduced model is:
[27] SSE(R) = SSE(a,b,c)

There are dfy = n - 3 degrees of freedom associated with this reduced model. Identify of the two height-
diameter models for two natural regions is tested by considering the alternatives:

Hya =b,=1¢ =0

H,: at least one of the equalities in H, is not true

The test statistic in this case becomes:

SSE(a,b,c)-SSE(a,,b,,c,,a,b,c) SSE(a,,b,,c,,a,b,c)

(28]  F* = (n-3) - (11-6) -6

To compute the test statistic here, both the full model and the reduced model are fitted to provide

error sums of squares. Specifying the level of significance at 0.05 (0t = 0.05), if the calculated F* <F
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(0.95; 3, n - 6), then H, is true and the reduced model is appropriate for combined natural region groups;
if F* > F(0.95; 3, n - 6), then H, is true and separate models are required for separate natural regions.
The test just déscribed can be conducted for éach possible pair of natural region groups, if the
differences of the height-diameter relationships are to be examined among three or more natural region
groups. A more detailed description of the procedure is presehted in Report #2 of this series, Ecologically
based individual tree height-diameter models for major Alberta tree species. Grouping of the differences
in geographic regions for the taper equation and other relationships can also be conducted in a similar
manner. Results of all classifications were almost identical to those obtained for the height-diameter
model. To facilitate the practical use of the tables, natural region groups classified for the height-diameter

mode] were consistently used for all other relationships.

5.4 The Simultaneous Nature of Equations

Tables developed through this study are based on a system of compatible, interdependent and
analytically related equations. Within such a system of equations, a variable appearing on the left-hand
side of an equation can also appear on the right hand of another equation in the system. Simultaneous
equation methodologies (see Gallant 1987; Judge et al. 1985, 1988; Kmenta 1986) may be considered
theoretically more appropriate for estimating the structural parameters of the system, and examples of
such approaches were adeptly illustrated by LeMay (1988, ]990). However, such estimation processes
depend heavily on asymptotic approximations (especially if nonlinear models are involved), and-in a
number of related analyses, show very little substantial gain over the conventional ordinary least squares
~ method applied to individual equations of the system (Huang 1992). Therefore, all equations in ecoregion-
based individual tree volume estimation were fitted separately. Further studies on the dynamic nature of
the taper equation and its relationship with other equations in an individual tree volume estimation system

should prove very useful. The dependence problem of the tree sectioning data should also be addressed.
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Appendix 1.

Cautionary Note on Fitting Kozak's Variable-Exponent Taper Equation

ABSTRACT

Kozak's variable-exponent taper equation was fitted for major tree species in Alberta. Examination
of the residual plots indicated that the taper equation in its nonlinear form with an additive error structure
was more appfopriate than the multiplicative error structure implied by the commonly used procedure of
linearizing the equation and estimating coefficients using multiple linear least squares methods. The
average bias caused by the logarithmic transformation was small but approximately two times as large as
that when nohlinear regression was used to estimate parameters. Adjustment for the bias improved
performance of the linearized model, but the nonlinear form with additive error terms eliminated

inequality of error variance.

INTRODUCTION
In his instrumental work on taper equation, Kozak (1988) opened up a new trend in developing
taper equafions and as a result, greatly improved the accuracy ‘and precision in estimating diameter inside
bark at any point on the stem, merchantable volume to any top diameter and from any stump height, and

individual log and whole tree volumes. Kozak's model is essentially an allometric function of the
following form:
[A1] y = kx°¢

where k is a constant and c is the exponent. The shapes of any solid of revolution obtained by rotating

a curve of the general form described by [A1] around the x axis resemble the forms of the stems of trees,
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which are often assumed to be neiloids, cylinders, paraboloids and cones. Kozak directly and indirectly

defined y, k, x and ¢ in [A1] and came up with the following variable-exponent taper equation:

[A2] d = a,D%alxt? *biln(2+0.001) +byZebe frbs (D/H)
0
where
[A3] X = (1-yR/H) /(1-yp)
and

d = diameter inside bark at 2 (cm)

h = height above the ground (m), 0 <h<H

H = total tree height (m)

D = diameter at breast height outside bark (cm)

Z=hlH

p = location of the inflection point, assumed to be at 22.5% of total height above the ground
e = base of the natural logarithm (~2.71828)

ay, ay, Gy, by, by, bs, b,, bs = parameters to be estimated.

The location of the inflection point, according to Perez et al. (1990), had little effect on the predictive
properties of the model. A constant p value of 0.225 suggested by Kozak (1988) was used in this study.
In order to estimate the parameters, Kozak's variable-exponent taper model [A2] is usually

linearized using a logarithmic transformation (Kozak 1988, 1991; Perez et al. 1990):

[A4] 1n(d) = 1ln{(a,) +a,1n(D) +1n(a,) D+b,1n(X) Z?+b,1n(X) 1n(Z+0.001
+b,1n (X)yZ+b,1n (X) e ?+b,1n(X) (D/H) .

The regression coefficients of this transformed equation can then be calculated using multiple linear least

squares methods, and predicted diameters inside bark obtained by exponentiation of the fitted linear
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equation.

Fitting of the linearized Kozak's taper equation [A4] has become a standard procedure, both for
application purposes (Kozak 1988, 1991; Perez et al. 1990) and for comparison with other types of taper
equations (Flewelling and Raynes 1993; Newnham 1992). Previous analyses, however, did not deal with
the implicit error structure of the model nor did they address the problem of bias and reduced accuracy
caused by the use of a logarithmic transfqrmation. The primary objectives of this appendix are to 1)
identify the error structure of the model, 2) compare linear and nonlinear forms of Kozak's taper
equation, and 3) determine the most appropriate model form to use for major Alberta tree species.

To facilitate the description of the analysis, Kozak's variable-exponent taper equation [A2] was

written more compactly as follows:

[A5] d = kX°¢

where X is defined in [A3], and

[a6] k = a,D™a;

[A7] c

b,Z?+b,1n(Z+0.001) +byyZ+b,e Z+by (D/H) .

THE DATA
Since a consistent pattern of results was obtained for all major Alberta tree species, only a
Douglas-fir (Pseudotsuga menzie.s'lji (Mirb.) Franco) data set, consisting of 77 stem analysis trees, was
used to illustrate the essence of this analysis. According to Kozak (1988), this number of sample trees
should be sufficient. Most of the Douglas-fir trees were felled and measured in the Montane natural region
located in the foothills and major valleys of the Rocky Mountains in Alberta. Diameter at breast height
outside bark (D) and total tree height (H) were recorded from each sample tree. Sections.of ﬁle tree were

cut at stamp height (0.30 m), breast height (1.30 m), 2.80 m above the ground, and an equal length of
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2.5 m thereafter to the top of the tree. Diameters inside and outside bark at the top of each section were
measured. Stem analysis data obtained in this manner are not independent since several measures were
taken from one tree. But this problem is less profound for nonlinear models with large sample sizes and

is often ignored in practice.

RESULTS AND DISCUSSION
Ordinary least squares (OLS) estimation of Kozak's model [A4] was relatively simple and
straightforward. It was accomplished using the PROC REG prdcedure on SAS/STAT software (SAS

Institute Inc. 1985), by minimizing the error sum of squares, which follows:

(28] fl (74902

where:

observed In(d))

=
il

predicted In(d,)

=
]

n = number of observations.

Table Al lists estimated coefficients and other regression statistics for [A4]. A typical residual
plot is displayed in Figure Al, which shows the residuals, calculated as the observed minus predicted
values of In(d,), plotted against the predicted values of the dependent variable In(d,).

Kozak's taper model can also be fitted in its original nonlinear form shown in equation [A2] (or

[AS]). This fitting was aécomplished using the PROC NLIN procedure on SAS/STAT by minimizing the

error sum of squares, which follows:

[A9] % (d;-a,)2
1=1

where: d; = observed diameter inside bark

2i = predicted diameter inside bark.

35



Table Al. Fit statistics for the taper model in different forms on Douglas-fir data

Equation Parameter Estimate Std. Error n MSE R? Ave. bias
[A4], [A10] In(ay) -0.213876 0.128556 638 0.02067 0.9704  0.000000
a, 1.008833 0.061109
In(a,) -0.002333 0.002711
b, 1.264797 0.484132
b, -0.259289 0.105896
b, 1.506128 0.937017
b, -0.745722  0.523191
bs 0.041639 0.016761
[A2], [A11] a, 0.913153 0.069876 638 1.1199 0.9868 -0.009557
a, 0.964386 0.036868 -
©a, 0.998391 0.001275
b, 1.386315 0.200658
b, -0.286495 0.047080
b, 1.783899 0.472877
b,  -0.916932 0.250627
bs 0.058830 0.014518
[A10] - on original data 638 1.1586 0.9863 0.016877

Note: n = number of observations, MSE, R? and Ave. bias are mean squared error, coefficient of determination
and average bias calculated according to [A13], [A14] and [A15] respectively.

The Gauss-Newton iterative method as described in Gallant (1987) was applied, and estimates of

the coefficients obtained from the linearized equation were provided as starting values in nonlinear least -

squares estimation to achieve fast convergence. Results of the nonlinear fit statistics are also listed in
Table Al. A residual plot is displayed in Figure A2, which shows the residuals, calculated as the observed
minus predicted values of d;, plotted against the predicted values of the dependent variable d;.

The two alternative approaches considered above for fitting of the Kozak's taper equation in its
lineérized or nonlinear form, although easily implemented, cannot both be correct. This is caused by the
substantial difference in underlying error specification. Fitting of the linearized and nonlinear equations

by the least squares principle assumes additive error terms, that is, equations [A4] and [A2] (written as
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[AS]) are estimated as follows, respectively:

[A10] 1n(d;) = ln(a,) +a,1n(D)+1n(a,)D+b,1n(X) Z?+b,1n (X)1n(Z+0.0

+b,1n (X) yZ+b,1n (X) e 2+by1n (X) (D/H) +g;

and

[Aa11] d; = kX+o;.

1

Notice however, that equations [A10] and [A11] are two very different statistical models, and their error
terms (e; and ) differ from one another. Equation [A10] is obtained by taking a Iogafithmic

transformation of equation [A12]:

[A12] d, = kXce®,

i
Equation [A11], on the other hand, cannot be linearized because the error term () is additive rather than
multiplicative as is the error term (g;) in equation [A12].

Thus, the proper identification of the error structure will determine whether [A11] or [A12], and
consequently [A10], is adequate. If the model is [Al lj, then nonlinear least squares procedures are
appropriate; if the model is [A12], multiple linear regression procedures can be used on equation [A10],
provided that the necessary least squares assumptions regarding the residuals are met. Nonlinear least
squares procedures can also be directly applied for [A12], if proper measures are taken to account for the
multiplicative errors, such as the use of the weighted nonlinear least squares method (Gallant 1987; Judge
et al. 1988).

Although more delicate procedures are available (see Judge et al. 1988), identification of the error
structure is routinely conducted by simply examining the plot of residuals (or studentized residuals) that
are calculated as the difference between the actual and predicted values of the dependent variable. Judging
from the residual plots for this analysis, it is obvious that Figure A1, the residual plot from the linearized

Kozak equation [A10], strongly indicates the problem of unequal variances of the error terms. On the
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other hand, Figure A2, the residual plot from Kozak's nonlinear equation [A11], shows a relatively
constant error variance. It was therefore inferred that by linearization of the nonlinear equation [A2]
without considering the error strpcture, an inappropriate regression problem of nonconstancy of error
variance was created , which caused the estimated parameters to be inefficient (Judge et al. 1988, p. 341).

The satisfactory residual plot (Figure A2), which showed a constant error variance from Kozak's
nonlinear model [A11], also indicates that the error structure of Kozak's taper equation is in fact, additive

rather than multiplicative. Thus, the correct model is [A11], not the linearized form [A10] obtained from

equation [A12].

Compari f the Fitted Li { Nonlinear Model

Mathematically, the correct equation [A11] cannot be linearized because the error term (3 is
additive rather than multiplicative. However, since the linearized Kozak's model [A10] was most
commonly estimated in practice, it is interesting to see how well this linearized model, compared to the
nonlinear model [A11], is in estimating the actual diameters inside bark d;.

To do this, éonsider the fit statistics shown in Table A1, where the mean squared error (MSE),
the coefficient of determination (R?), and the average bias (B) weré calculated for [A11] by

(Aa13] MSE = 2=
n-m

——
Q.
|
-~

LM

-
.

- 3
[A14] R? = 1—1';1
)]

£
Q.
Iu;’

N

[A15] B =

where:
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d, = observed diameter inside bark

RN
I

predicted diameter inside bark

d, = observed average diameter inside bark

n = number of observations, and m = number of parameters (m = 8).

Fit statistics for equation [A10] in Table A1 were also calculated using [A13], [A14] and [A15], with the
observed and predicted values of d; replaced by the observed and predicted values of In(d). ‘

Since different dépendent variables, d; and In(d)), were used, it was not possible to make direct
comparisons on the fit statistics for the purpose of assessing the performance of models [A11] and [A10].
Their goodness-of-fit on the original data, however, can be evaluated based on their precision (in terms
of MSE) and accuracy (in terms of average bias) in estimating actual stem diameters inside bark. Fit
statistics from equation [A11] are directly applicable to the original data since d; is used as the dependent
variable. Fit statistics from equation [A10] need to undergo exponentiation in order to make meaningful
inferences about its precision and accuracy on the original datq, since a transformed dependent variable,
In(d), is involved. A three-step procedure is commonly employed for equation [A10] so that it also applies
for the original data:

1. Using equation [A10] and the estimated coefficients from Table Al, the predicted values of In(d),
lnfdi), are obtained.

2. Take antilogs or exponentiation of the predicted values from the preceding step to give predicted Eli =
exp[lnfdi)] .

3. Calculate the mean squared error, the coefficient of determination (R?), and the average bias according
to [A13], [A14] and [A15], respectively, using the actual d; from the data set and the predicted ai from

step 2.

Results of the calculated mean squared error, coefficient of determination, and average bias are
also listed in Table A1 under the term "[A10] - on original data". Performance of model [A10] can now
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be directly compared to that of model [A11] based on these MSE, R?, and B values calculated on the
original data. It is clear that both MSE and R* values indicate the superiority of model [A11]. The absolute
value of the average bias from model [A11], 0.009557, is only 0.06% of d,, the average observed
diameter inside bark (d; = 15.67735 cm). On the other hand, the absolute value of the average bias from
model [A10], 0.016877, accdunts for 0.11% of the average observed diameter inside bark, almost double
the bias from model [A11], and therefore, indicates again that model [A11] provides a better fit on the

original data.

- . f Linearization Bi

The outcome of the above comparison is expected because of the use of a logarithmic
transformation. When a transformation is applied to the dependent variable d;, it is necessary to apply
inverse transformation and express the predicted values of 4; in untransformed forms so that, for example,
Newton's formula can be used to compute merchantable tree volume. Exponentiation of the fitted linear
model, from a logarithmic scale back to the original scale without appropriate adjustment, can produce
a severely biased model (Miller 1984) and affect the distribution of the predicted 4, vaiues. These
consequences are true even when the correct model is [A12] and the logarithmic transformation of the
model, equation [A10], is appropriate.

The problem of the detransformation bias has been discussed by a number of researchers
(Aitchison and Brown 1957; Bury 1975; Finney 1941; Miller 1984; SAS Institute Inc. 1988; Taylor
1986). Baskerville (1972) also presented a remedy to‘this problem in the estimation of plant biomass for
balsam fir trees (Abies balsamea (L.) Mill.). A more detailed description of the problem was provided
by Flewelling and Pienaar (1981). The fundamental reason for the exponentiation bias is that if the
logarithmic transformation is appropriate, the dependent variable, In(d,), follows a normal distribution with
mean p and variance G°. However, it can be shown (Bury 1975 pp. 277-298; Meyer 1975 p. 285) that

the distribution of 4, is log-normal with the mean
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[A16] E(d;) = exp(p+0?/2)

and the variance

[A17] Var(d;) = exp(2p+0?) [exp(0?)-1].

The median of g, is
[Aa18] Median d; = exp(j).

It is clear .from [A18] that the predicted values for d, obtaiﬂed by exponentiation of lnfdi), an unbié\sed
estimafor of p from the linear least squares fit of [A10], are not unbiased estimates of the means of d,
rather, they estimate the medians of d;. Exponentiation of the fitted linear model thus characterizes the
median rather than the mean‘ value of d;; This characterization causes a systematic underestimation of the
mean ‘response (Miller 1984). An average bias of +0.016877 (calculated according to [A15]) for model
[A10], based on .the detransformed data, confirms the notion of systematic underestimation.

Ignoring the dependence of the data, the biésing factor of exp(0%/2) from the logarithmic
transformation is easily discernable from equafions [A16j and [A18]. To adjust for this bias,

approximately unbiased predicted values for 4; can be computed by

[A19] d,

; = kXCexp(8%/2)
where X is defined in [A3], k and c are defined in equations [A6] and [A7]. Coefficients in [A6] and [A7]
are those obtained from the linear least squares fit of [A10]. The estimated error variance (ES2 = MSE)
is also obtained from [A10].

Since the biasing factor exp(0“/2) is always greater than or equal to one [exp(0%/2) 2 1], the
calculated values for 2i from [A19] are always greater than or equal to the 2i calculated without adjusting

for the biasing factor. Thus, if 2i is not calculated according to [A19], a systematic underestimation of

2i, and quite possibly the a'i-based volumes, will occur. Kozak's (1988) results indicated that the biases
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for diameter inside bark and volume estimations showed a general trend of slight undefestimation, and
he suggested that this problem might be caused by the use of the Smalian's formula, which overestimates
volume. Negative average biases between predicted and observed diameters inside bark (that is, 21 -d)
were also evident from the results obtained by Perez et al. (1990) on the independent testing data,
indicating again that the diameters inside bark had been underestimated.

A possible addendum to Kozak's interpretation is that if the (Aii values are calculated without
adjustment for the biasing factor, diameters inside bark and, consequently, volumes will generally be
underestimated. Perez et al.'s (1990) evidence of underestimations of diameters inside bark might also
be caused by ignoring the biasing factor, rather than the true underestimation of the diameters by their
model. Calculations of 2i according to [A1§] may not eliminate all of the underestimations; however, it
is the correct method given that the logarithmic transformation is assumed appropriate, and will at least
make Kozak's taper equation shift towards the right direction. Exponentiation of the lnfdi) from the least
squares estimation of [A10] systematically underestimates the true diameters inside bark by the factor of

exp(G¥/2).

It should be emphasized that the above discussions are based on the premise that the logarithmic
transformation of the Kozak's taper equatlion, shown in [A10] and commonly fitted by means of multiple
linear fegression packages, is correct. Under this assumption, predicted diameter inside bark should be
computed according to [A19]. However, as judged from the residual plot in Figure Al, the linearized
Kozak's taper equation [A10] is not appropriate in terms of the error specification for the Douglas-fir data
set, nor as is shown later, for all otherb major tree species in Alberta.

The correct error structure, as judged from the residual plot in Figure A2, is described by [A11].
Hence, the nonlinear least squares estimation of [A11] is the appropriate procedure to use for Kozak's

taper equation. Results of the nonlinear least squares fit statistics, along with those from linearized
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equatioﬁ [A10] for comparison purposes, are shown in Table Al.

In addition to the Douglaé-ﬁr data, Kozak's taper equation [A11] was also fitted for all other tree
species in Alberta, using the tree sectioning data from the large, provincial stem analysis data base.
Starting values of the parameters in nonlinear least squares estimation were obtained from OLS estimation
of the linearized equation [A10]. Results of fit statistics for various species are shown in Appendix 2.
Using data from the Lower Foothills natural region, four typical residual plots for white spruce (Picea
glauca (Moench) Voss) and lodgepole pine (Pinus contorta var. latifolia Engelm.), jack pine (Pinus
banksiana Lamb.) and aspen (Populus tremuloides Michx.) from [A11], along with those comparable
residual plots from [A10], are displayed in Figures A3 and A4. Once again, it is clear that the plots show
a consistent pattern for these species, implying that the error speciﬁcation in [A11] is correct, and in
[A10] is not. Similar plots were observed for all other species: tamarack (Larix laricina (Du Roi) K.
Koch), Engelmann spfuce (Picea engelmannii Parry ex Engelm.), white birch (Betula papyrifera Marsh.),
balsam poplar (Populus balsamifera L.), black spruce (Picea mariana (Mill.) B.S.P.), and balsam fir
(Abies balsamea (L.) Mill.). |

Using the procedures described by Gallant (1987), and if the dependence of the data is ignored,
significance of the asymptotic f-statistics of the parameters can be tested, and different parsimonious
versions of the Kozak's ﬁonlinear taper equation for different species can be formulated by dropping
parameters or variables that contribute little to the quality of the fit. Perez et al. (1990) demonstrated such
analysis for the linearized version of the model. Finding a parsimonious version of the nonlinear form
involves fitting nonlinear versions of the taper equation, and ranking them by residual plots and the fit
statistics such as R?, MSE, B and t-statistics of the parameters. However, such analysis was not pursued
further here since it would probably be a digression from the main purpose of this analysis. A consistent
model form for several tree species is sometimes desirable in applications, and was requested by Alberta
Land and Forest Services. In the case of high parameter correlation and non-convergence, where the

nonlinear solution is not found, parsimonious versions of the taper equation may be required.
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Merchantable Height Calculati
The merchantable height calculation formula for a given top diameter inside bark requires an

iterative procedure on the following equation derived from [A11]:

2

[a20) h,/H =

d. i/c
1- ('f) (1-y/p)

where & and ¢ are defined in equations [A6] and [A7], and the coefficients in [A6] and [A7] are those
obtained from nonlinear least squares fit of [A11]. Equation [A20] is appropriate only when the error
structure follows that of [Al1]. If the linearized equation [A10] is appropriate, the corresponding

merchantable height calculation formula should be adjusted with the biasing factor accounted for, that is

2
[a21)  h,/H =

keo®/?

. 1/c
1-( d ) (1-yB)

where k and c are defined in equations [A6] and [A7], and. the coefficients as well as the estimated error
variance in this case are those obtained from linear least squares fit of [A10]. It is not difficult to show

that equation [A21] can be derived from [A19].

CONCLUSIONS

Kozak's taper model provides a promising tool for accurate individual tree volume predictions in
Alberta. As it gains more prominent and widespread application, a certain number of cautionary notes on
fitting of the'model should be recognized. They relate to some fundamental regression concepts that may
be inadvertently ignored in model fitting. The correct method for estimating Kozak's taper equation may
be summarized in two steps:
1. Estimate the regression coefficients of equation [A10] by multiple linear least squares methods.
Examine the residual plot. If the distribution of values in the plot is satisfactory, equation [A10] is

appropriate. Diameters inside bark should be predicted using equation [A19]. Merchantable height
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calculation should follow [A21].

2. If the residu.al plot from [A10] is not satisfactory, estimate equation [A11] using a nonlinear least
squares procedure. Examine the residual plot. If satisfactory, equation [A11] is appropriate. Diameter
inside bark is directly predicted from [A11]. Merchantable height ;alculation follows [A20].

The stem analysis daia for all major tree species in Alberta suggested that model [A11] is the most
appropriate. It is possible that the error structﬁre for Kozak's taper equation is more complicated than
those specified in [A11] and [A12]. If this degree of complexity is confirmed, statistical methodologies
for weighted regressions described in Carroll and Ruppert (1988), Gallant (19875, and Judge et al. (1988)
can be explored.

Traditionally, linearizations were frequently used to linearize nonlinear models so that multiple
linear regression methods coﬁld be applied. Linearizations were also common as remedial measures for
unequal error variances, as well as for nonnormality and dependence of the error terms. However, as
demonstrated in this analysis, a difficulty with linearization is that it may create inappropriate regression
problems that are largely caused by inappropriate specification of the error structure of the original model.
Linearization for the purpose of simplicity in model fitting in lieu of estimating them in their original

forms must be implemented with caution.
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Appendix 2.
Natural Region Based Coefficients for Individual Tree Volume Estimation

This appendix provides estimated coefficients and associated fit statistics for the taper model, the
diameter outside/inside bark model, the height-diameter model, and the stump diameter and breast height

diameter model.
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1. Coefficients for the taper model

The taper equation fitted is:

d = a.D®a DXblzz*bzln(Z*O.Ool)*baﬂ*bde’-*bs(D/H)
= a, ) ,

where
X = (1-yA/H) /(1-yP)
and
d = diameter inside bark at 2 (cm)
h = height above the ground (m), 0 <k <H
H = total tree height (m)
D = diameter at breast height outside bark (cm)
Z=hl!H
. p = location of the inflection point, assumed to be at 22.5% of total height above the ground
e = base of the natural logarithm (~2.71828)
ay, 4, a5, by, by, by, b,, by = parameters to be estimated.
The coefficients of determination (R?) and the mean squared errors (MSE) are computed by
n N
.2 (y i~y i) 2
R = 1-i2.
n
.E (y i —}_’) 2
i=1 .
and
n
.2 (y i -y i) 2
MSE = 12
n-m

where: y, = observed diameter inside bark, )7, = predicted diameter inside bark, y, = observed average

diameter inside bark, n» = number of observations, and m = number of parameters (m = 8).
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Table A2. Coefficients for the taper model for softwood groups

Natural region®
Estimates
2,15, 16 9, 11, 14 7,8, 10 1,3,4,5,6, 12,13
a, 0.858012 0.864073 0.836332 0.907541
a, 0.994667 1.000696 1.023299 0.972889
a, 0.998503 0.998194 0.996897 0.999056
b, 0.957817 1.089652 1.142097 0.838891
b, -0.228150 -0.224349 -0.253295 -0.227784
b, 1.696453 1.584261 1.834277 1.620364
b, -0.788021 -0.813796 -0.914346 -0.686296
bs 0.142355 0.165997 0.121166 0.065843
0.225 0.225 0.225 0.225
795 17822 15685 13685
R? 0.9859 0.9813 0.9739 0.9819
MSE 1.1262 2.5324 1.6027

2.2872

d = a.D™a DXb122+b21n(Z*0.001)+b,\/2+b,ez+b5(D/H)
= a, s

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural

regions.
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Table A3. Coefficients for the taper model for hardwood groups

Natural region®

Estimates
2, 14,15, 16 9,11 7,8, 10 1,3,4,5,6,12, 13
rﬂ a, 0.986975 0.875806 0.553873 0.850133
: a, 0.908801 0.974791 1.182243 0.991087
? a 1.003121 0.999886 0.991753 0.998750
b, 0.628126 0.531879 0.600794 0.631153
o -
! b, -0.061440 -0.049690 -0.058390 -0.085234
b, -0.034635 -0.290443 -0.222472 -0.067347
r b, 0.049512 0.184209 0.113434 0.082414
’ ' - by 0.105204 0.073231 0.117909 0.039234
F\ p 0.225 0.225 0.225 : 0.225
n 3300 9019 2214 17216
R? 0.9801 0.9794 0.9771 0.9775
MSE 1.2378 1.7739 2.1076 . 1.8400
F d = a, D& aszb1z2+b,1n(z+o.ool) +by/Z+b,e Z+bg (D/H)
7 * See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
F regions.
]
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Table A4. Coefficients for the taper model for black spruce w]
Natural region® ﬂ]
Estimates »
7, 8,9, 10, 11 1,2,3,4,5,6, 12, 13, 14, 15, 16 Provincial
a, . 0.957624 0.929037 0.940695 j
a, 0.946740 0.967718 0.957211
a, 1.000452 0.998511 0.999640 E]
b, 1.430462 1.236597 1.395784
b, -0.356702 -0.308204 -0.344672 'ﬁ
b, 2.950725 2.535507 2.835917
b, -1.455471 -1.222060 -1.396460 "‘]
b 0.154263 0.146243 0.152487
P 0.225 0.225 ‘ 0.225 ]
n 2829 2894 ’ 5723 ’—'
R? 0.9803 0.9804 0.9807 -
MSE 0.8314 0.6239 0.7315 ']

d = a.D%a DXb,Zz+b21n(Z+o.001)+b,\/2+b¢ez+b5(D/H)
= a, 2

[

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
regions.
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Table AS. Coefficients for the taper model for balsam fir

Natural region®

Estimates
1w6,9, 11t016 7, 8,10 Provincial
a, 0.918647 1.108006 1.002016
a, 0.990225 0.898380 0.944076
a, 0.997292 1.001816 0.999921
b, 1.568514 1.338336 1.336330
b, -0.384262 -0.304630 -0.320352
b, 3.503466 2.694363 2.839497
b, -1.677185 -1.277617 -1.324815
by 0.128169 0.087438 0.077452
0.225 0.225 0.225
1096 2016 3112
R? 0.9839 0.9792 0.9803
MSE 1.0419 1.4907 1.4176

d = a,D%a)X

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural

regions.
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Natural region®

Table A6. Coefficients for the taper model for aspen

Estimates
2, 14, 15, 16 9,11 7, 8,10 1,3,4,5,6,12,13  Provincial
a, 0.944522 0.905615 0.588838 0.841897 0.790406
a 0.938030 0.964894 1.161895 0.997064 1.026943
a, 1.001644 1.000054 0.992096 0.998713 0.997524
b, 0.695363 0.553236 0.709300 0.536865 0.600584
b, -0.067849 -0.049737 -0.075446 -0.064020 -0.065681
b, 0.050603 -0.280768 -0.116041 -0.234471 -0.173812
b, -0.016330 0.170687 0.040949 0.179963 0.121363
b 0.116432 0.075789 0.113638 0.031550 0.063253
0.225 0.225 0.225 0.225 0.225
n 2475 7932 2474 14968 27848
R? 0.9848 0.9804 - 0.9791 0.9806 0.9804
MSE 0.9788 1.7208 1.9219 1.5698 1.6312

" d = a D*a DXb1zz+b21n(z+O.001)+b,\/2*b4ez+b5(D/H)
. - 0 24

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural

regions.
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Table A7. Coefficients for the taper model for balsam poplar

—_— e e e

Natural region®

Estimates
7,8,9, 10, 11, 14 1106, 12, 13, 15, 16 Provincial
F a 0.913329 0.804370 0.861179
a, 0.922590 0.982874 0.951483
1 a, 1.002574 0.999527 1.000957
b, 0.308448 0.996958 0.752581
b, -0.065670 10.223348 -0.167305
b, -0.102130 1106731 0.693611
b, 0.226336 0.459817 . -0.224137
b, . 0.023148 0.003392 0.008214
F p | 0.225 0.225 0235
' 0 1680 1790 3470
R? 0.9817 0.9710 0.9751
MSE 11578 2.6792 1.9692

d = a.D%a DXblzzébzln(Zm.OOl)+b,\/z+b4ez+b5(D/H)
= a, 5

i * See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
' regions.

=
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Table A8. Coefficients for the taper model for white spruce
—_— ]

Natural region*

Estimates

7,8, 10 1t06, 12, 13, 15, 16 9, 11, 14 Provincial -
a, 0.713393 0.903528 0.862685 0.860438 f]
a, 1.071533 0.975136 0.993148 0.995406
a, 0.996067 0.999018 0.998773 0.998493 j

b, 1.153679 0.846981 1.135018 1.040218
b, -0.283807 -0.244969 ©-0.252377 -0.252387 Wl

b, 2.022713 1.783097 1.885321 1.842818

b, -0.953783 -0.730236 -0.921437 -0.852227

b, 0.101608 0.040997 0.150228 0.110359
0.225 0.225 0.225 0.225 j

2853 7945 10005 20803
R? 0.9767 . 0.9825 0.9852 0.9831 =
MSE 4.0306 - 1.8197 2.1530 2.3370 PJ

d=a Daiaszblz"*-bzln(zm.oon+b,~/24-bdez+b5(D/H)
0

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
regions.

1
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Table A9. Coefficients for the taper model for lodgepole pine

Natural region*

3
53
E.
g

7,8 ©6,9,11, 14 4,10 | 1,2,3,5,12, 13, 15,16  Provincial

F a, 0.800648 0.957164 0.828665 1.033572 0.897617

v a, 1.053544 0.959992 1.024196 0.913621 0.988518

r a, 0.995568 0.999774 0.997492 1.000765 0.998735

b, 0.568347 0.766747 0.596193 0.256633 0.675759

b, -0.125114 -0.140758 - -0.118777 -0.049091 -0.130313

b, 0.610085 ©0.666037 0.465591 -0.252118 0.570634

F’ b, -0.238442 -0.355050 -0.196176 0.174267 -0.275457

b 0.045398 0.132140 0.083094 0.123722 0.105403

P 0.225 0.225 . 0.225 0.225 0.225

n 2042 7656 7376 743 17808

» R? 0.9733 0.9830 0.9817 0.9840 0.9823

F MSE 1.1281 1.5764 1.3475 1.0140 1.4503
- aODalaZDXb1z2+b21n (2+0.001) +byy/Z+bye Z+bs (D/H)

Q

* See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
regions.
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Table A10. Coefficients for the taper model for jack pine and other tree species

Species
Estimates
Jack pine Douglas-fir White birch Tamarack Engelmann spruce

a 0.940832 0.913153 0.894358 0.933517 1.072576

a, 0.955575 0.964386 1.007721 0.965471 0.897766

o, 0.999333 0.998391 0.991384 0.998393 1.001919

b, 0.116311 1.386315 -0.483072 2.079455 1.301834

b, -0.028172 -0.286495 0.155593 -0.462028 -0.305439

b, -0.384427 1.783899 -2.273122 3.732057 2.265717

b, 0.304055 -0.916932 1.326501 -1.950194 -1.119671

bs 0.072192 0.058830 0.168897 0.190425 0.123519

P 0.225 . 0.225 0.225 0.225 - 0.225

n 3562 638 416 225 847

R? 0.9828 0.9868 0.9828 0.9824 0.9790
MSE 1.0921 1.1199 0.4305 0.8189 2.5719

d = a.D™a DXbIZZ*-bzln(Z*O.OOl)+b3\/2+b‘ez*b5(D/m
= a, B
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2. Coefficients for the diameter outside/inside bark model

- The diameter outside/inside bark model fitted is:

DOB = a+bDIB

where:
r" DOB = diameter outside bark at any point on the stem (cm)
DIB = corresponding diameter inside bark on the stem (cm)
EW a, b = parameters to be estimated. |

The coefficients of determination (R?) and the mean squared errors (MSE) are computed by

n
.2 (y i -y i) 2
RZ = 1- 1=1
Il
: (¥; -y)?
1=1
[m and
i n
F 2 (¥i=91) 2
MSE = 12
n-m
F where: y; = observed diameter outside bark at any point on the stem
5;; = predicted diameter outside bark
y, = observed average diameter outside bark

n = number of observations

m = number of parameters (m = 2).
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Estimated coefficients

Table A11. Coefficients for the diameter outside/inside bark model

Species Natural regions' n R* MSE
a b

Softwood group 2,15, 16 0.496341 1.025974 795 0.9984 0.1316
9,11, 14 0.447477 1.024646 17196  0.9986 0.1836
7, 8,10 0.337955 1.029211 15685 0.9986 0.1482
_ 1,3,4,5,6,12,13 0.355429 1.031969 13685  0.9987 0.1224
Hardwood group 2,14, 15, 16 0.052537 1.084738 3300 0.9969 0.2261
9,11 0.161950 - 1.073830 =~ 8425 0.9972 0.2918
7,8,10 0.262986  1.072787 2214  0.9974 0.2788
1,3,4,5,6,12,13 0.052846 1.085439 17220 - 0.9964 0.3451
Aspen 2, 14, 15, 16 0.024127 1.081189 2476  0.9976 0.1819
9,11 0.135261 1.072734 7612  0.9976 0.2444
7,8,10 0.211340 1.073573 2474  0.9977 0.2471
1,3,4,5,6,12, 13 0.061755 1.079512 15016  0.9974 0.2407
Provincial = 0.091433 1.077082 27582  0.9976 0.2397
Balsam/alpine fir 7,8, 10 0.323616 1.050716 2016  0.9975 0.2007
1t06,9, 11to0 16 0.249035 1.050236 1096  0.9983 0.1228
Provincial 0.289940 1.051003 3125 0.9979 0.1751
Balsam poplar 7,8,9,10, 11, 14 0.257085 1.103150 1414  0.9952 0.3947
1106, 12, 13, 15, 16 0.109731 1.125120 1790 0.9947 0.6157
Provincial 0.149322 1.117988 3204 0.9948 0.5326
Lodgepole pine 7,8 0.240347 1.020105 2046  0.9991 0.0416
6,9, 11, 14 0.294015 1.024582 7307 0.9991 0.0903
4,10 0.308258 1.024549 7407  0.9990 0.0771
1,2,3,5,12, 13, 15, 16 0.189744 1.046810 743  0.9963 0.2572
Provincial 0.283173 1.025305 17608  0.9990 0.0905
Black spruce 7, 8,9, 10, 11 0.414614 1.030781 2829  0.9985 0.0663
1to 6, 12, 13, 14, 15, 16 0.349765 1.036689 2894  0.9982 0.0622
Provincial 0.382746 1.033405 5723 0.9984 0.0646

White spruce 9,11, 14 0.536767 1.022700 9681  0.9993 0.1122
7,8, 10 0.521645 1.024172 2853  0.9994 0.1161
1to 6, 12, 13, 15, 16 0.413577 1.028342 7955  0.9992 0.0851
Provincial 0.484768 1.024893 20473  0.9993 0.1033
White birch Provincial 0.077197 1.062798 416 0.9976 0.0666
Douglas-fir Provincial -0.095253 1.123153 661  0.9945 0.5852
‘Tamarack Provincial 0.378870 1.0340608 225 0.9984 0.0795
Jack pine Provincial 0.161727 1.045672 3563 0.9949 0.3570
Engelmann spruce Provincial 0.461270 1.023752 848  0.9993 0.0898

DOB = a+bDIB

! See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural

regions.
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3. Coefficients for the height-diameter model

where:

and

‘where:

The height-diameter model fitted is:

H = 1.3+a(l1-e™PP)c

H = total tree height (m)
D = diameter at breast height outside bark (cm)
e = base of the natural logarithm (~2.71828)

a, b, ¢ = parameters to be estimated.

The coefficients of determination (R%) and the mean squared errors (MSE;) are computed by

M:=.

w; (Yi_}?i) 2

R? = 1-2
n —
i§1Wi (Yi-.V) 2

¥, = actual tree height

predicted tree height

=
]

observed average tree height |

=
]

n = number of observations
m = number of parameters (m = 3)
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Table A12. Coefficients for the provincial height-diameter model

Estimated coefficients

Species : n R? MSE
a b c
/Aspen 25.6614 0.06834 1.1394 3604 0.8734 0.3083 ./ .
JWhite birch 27.9727 0.03522 0.8695 101 0.8565 0.3301
vBalsam/alpine fir 24.7532 0.06615 1.5695 497 0.9316 0.2662 /
v/Douglas-fir 21.3299 0.06090 1.5973 78 0.7912 0.1679 v~
JTamarack 26.3266 0.05375 1.4026 39 0.8651 0.4101
\/Balsam poplar 25.5700 0.05050 0.9865 528 0.8067 0.3219 .~
< «—Jack pine - 31.4263 0.03888 1.1279 589 0.9181 0.2669
\ "/Lodgepole pine 29.0075 0.04859 1.1782 3096 0.7873 0.3599-.-
lack spruce 24.5751 0.05432 1.2243 1570 0.8647 0.2468 -/
(ygf\/ Engelmann spruce 36.3184 0.02604 1.0930 153 0.7732 0.3271 .~
v~ White spruce 32.1261 0.04633 1.3032 2889 0.8762 - 0.4214 v

H = 1.3+a(1-ebP)¢
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Table A13. Coefficients for the natural region based height-diameter model

Estimated coefficients

Species : Natural regions’ n R? MSE
a b c

Softwood group 2,15, 16 30.7738 0.06562  1.6975 89 0.8831 0.3858
9,11, 14 32.4540 0.04648  1.3224 2828  0.8187 0.3905

7, 8,10 28.4311 0.04513  1.1839 3399 0.9126 0.3049

1,3,4,5,6,12, 13 31.9247 0.04372  1.2310 2594  0.8155 0.3722

Hardwood group 2,14, 15, 16 27.1014 0.05186  0.9954 410 0.8155 0.3722
9, 11 25.8069 0.06818  1.2063 1320 0.8491 0.3111

7,8,10 27.7784 0.05235 1.3156 363 0.7094 0.3981

1,3,4,5,6,12, 13 24.6591 0.07797 1.2017 2140  0.9043 0.2697

Aspen 2,14,15,16 | 26.5484 0.05699  0.9846 300 0.8688 0.2755
9,11 T 256731 0.07367 1.2608 1100 0.8701 0.2877

7,8, 10 3 28.0750 0.04860 1.2173 386 0.7073 0.4187

1,3,4,5,6, 12, 13,"—{ 24.8408: 0.08081  1.2405 1836  0.9136 0.2400

Balsam/alpine fir 7, 8,10 12 24.3383 0.06707  1.5909 252 0.9570 0.1798
1106,9,11t016. | 28.6319 0.05226 ° 1.4467 161 0.9118 0.3496

Balsam poplar 7,8,9,10, 11, 14 | 25.1413 0.06488 1.3192 206 0.7143 0.3361
1t06, 12, 13, 15, 16 7). 25.3810 0.05010 0.9270 236 0.8747 0.2840
Lodgepole pine 7,8 t 24.4114 0.03555 0.7846 320 0.5534 0.2690
6,9, 11, 14 7. 29.6276 0.05461  1.2997 1080  0.8217 0.2860
4, 10 24.8398 0.06468  1.2937 1602  0.7708 0.3666
1,2,3,5,12, 13,15, 16 23.9518 0.07865 1.4813 94  0.8712 0.2302
Black spruce 7,8,9, 10, 11 I 24,9305 0.05281  1.2552 1037  0.8660 0.2465
1106, 12, 13, 14, 15, 16 - 24.3666 0.05775 1.2313 617  0.8737 0.2372

White spruce 9,11, 14 3 .32.4278 0.05055 1.3940 1185 0.8801 0.3681
7, 8,10 ) 38.3117 0.02635 1.1152 526 0.8614 0.4580
1to0 6, 12, 13, 15, 16 22+ 29.8812 0.05557  1.3911 1176  0.9020_ 0.3339

H = 1.3+a(l1-e™PP)¢

! See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural

regions.
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4. Coefficients for the stump diameter and breast height diameter mode!

where:

The stump diameter and breast height diameter model fitted is:

DOB,,, = a+bD+cD?

DOB,, = stump diameter outside bark (cm) at stump height of 0.3 m

- D = diameter at breast height outside bark (cm)

and

where:

a, b, ¢ = parameters to be estimated.

The coefficients of determination (R?) and the mean squared errors (MSE) are computed by

y; = actual stump diameter outside bark

y; = predicted stump diameter outside bark

Y, = observed average stump diameter outside bark
n = number of observations

m = number of parameters (m = 3).
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. Table A14. Coefficients for the stump diameter and breast height diameter model

Estimated coefficients
Species Natural region' n R* MSE
b c

=%

Softwood group 2,15, 16 1.065686  1.006206  0.002586 85 0.9811 1.9421
9,11, 14 0.499206 1.044508 0.002113 1752 0.9735 4.4462

7,8,10 -0.710193 1.127362 0.000588 1874 0.9742 3.5347

1,3,4,5,6,12,13  -0.233569 1.119301 0.000390 1704 0.9828 2.4142

! Hardwood group 2, 14,15, 16 0.487002 0.990354 0.003679 409 0.9840 1.4813
l? 9,11 0.095438 1.068140 0.001468 984 0.9753 3.0927

7.8, 10 0.007333  1.091470  0.001121 251 0.9716 3.0350
1,3,4,5,6,12,13 0.047136  1.072125 0.001866 1967 0.9774 3.1221

Aspen 2, 14, 15, 16 0.114041 1.016604 0.003272 300 0.9852 1.4862
9, 11 -0.093612  1.083466 0.001270 815 0.9762 3.2255

7, 8,10  -1.646520 1.239705 -0.001720 225 0.9753 3.2291

1,3,4,5,6,12,13  -0.052028 1.076457 0.001805 1691 0.9774 3.0374

Provincial ~ -0.330572 1.106639 0.000986 3099 0.9780 2.9946

Balsam/alpine fir . 7, 8,10 1.265808 0.952207 0.003527 252 0.9756 2.2304
1t06,9, 11t 16 0.664028 1.019720 0.002754 161 0.9833 1.6215
Provincial 1.028869 0.979696 0.003078 413 0.9802 2.0308

Balsam poplar 7,8,9,10,11, 14 0.587071 1.070632  0.000464 176  0.9756 2.0649
' 16,12, 13, 15, 16 0.762353  1.017031 0.002918 211 0.9754 3.8825
Provincial 0.671062 1.037718  0.002077 387 0.9749 3.1733

Lodgepole pine 7,8 -0.159741 1.046160 0.001804 280 0.9711 1.2603
6,9, 11, 14 0.582463 1.034249 0.001970 706 0.9711 2.9597

4,10 -0.487166 1.112282 0.000347 831 0.9753 2.0865

1,2,3,5,12,13, 15,16  -0.321525 1.175896 -0.001650 91 0.9809 1.7527

Provincial  -0.245285 1.088419 0.000993 1929 0.9762 2.3222

Black spruce 7,8,9,10,11 0.982793  0.943279 0.006344 439 0.9676 1.8523
P 1106, 12, 13, 14, 15, 16 0.125198 1.058588 0.002137 481 0.9767 0.9909
F . Provincial 0.536125 0.996309 0.004617 920 0.9725 1.4253
White spruce 9,11, 14 0.190577 1.069563 0.001822 892 0.9700 6.0680

7,8,10 -2.112193 1.275528 -0.001564 298 0.9677 8.6912
l1w6, 12, 13,15, 16  -0.582516  1.156757 -0.000271 879 0.9806 3.1438
. Provincial  -0.567783  1.142153  0.000429 2069 0.9750 5.3164

F White birch Provincial 0.300399 1.157729 -0.001896 71 0.9760 0.7442
r. Douglas-fir Provincial  -1.689559 1.380771 -0.004699 80 0.9738 2.8534
Tamarack Provincial 0.499971 1.065686  0.002899 34 0.9868 0.9720
Jack pine Provincial 0.211020 1.144627 -0.001614 519 0.9794 2.1163
r‘ Engelmann spruce Provincial -0.107514 1.101339  0.001312 107 0.9732 4.6559
DOB,,, = a+bD+cD?
r‘ ! See Appendix 4 for list of natural regions and their designation numbers. Figure 1 shows the locations of natural
regions.
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Appendix 3.

An Example Program for Calculating Tree Volumes

This Statistical Analysis System (SAS) program shows step-by-step computations for merchantable
length, gross merchantable volume, gross total volume, tree:s/m3 merchantable volume, total tree height,
and stump diameter. It also places the calculated results into formats that can be easily modified into

desired tables. Actual programs used for-all calculations are available upon request.
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yﬁ r——g_— rﬁ_-g '—-_-§ === y—fg r—-a.«_ : r-q == [—-a__h_ r—g____ =

*This program calculates total tree volume, merchantable length/volume, trees/m® merchantable volume,

total tree height, and stump diameter;

*Read the height and diameter data, in this case, a set of trees with dbh from 2 cm to 80 cm by 2 cm

classes, total tree height (ht) from 4 m to 40 m by 2 m classes were generated;
*Make sure dbh 2 minimum top diameter inside bark;

data v1;
do dbh=2 to 80 by 2;
do ht=4 to 40 by 2; output;
end;
end;
run;

*The iteration procedure, using estimated coefficients for softwood from natural regions 2, 15, and 16;

data v2;
set vl; :
a0 = 0.858012; al = 0.994667,
b2 = -0.228150; . b3 = 1.696453;

*Define g = h/ht, set the initial value for g;

g0 = 0.9;

a2 = 0.998503;
b4 = -0.788021,

bl
b5

*The following iteration process is repeated until the desired precision is obtained;

*A 2.0 cm top diameter. inside bark is assumed;

do until(abs(g0-g1) < 0.00000001);

0
0

.957817;
.142355;

¢ = b1¥(g0)**2 + b2*log(g0+0.001) + b3*sqrt(g0) + bd*exp(gd) + bS*(dbh/ht);

gl = (1 - (( 2/(a0*dbh**al*a2**dbh))**(1/c))*(1 - sqrt(0.225)))**2;

g0 = (g0 + g)/2;
end;

*Keep the coefficients and the final g0 or gl;

keep a0-a2 b1-bS dbh ht g0 gl;
rum;

data v3;
set v2;

*Compute merchantable height (hi) and merchantable length (mlen);

*A stump height of 0.30 m is assumed;

hi = gO*ht;
mlen = hi - 0.3;

*Divide merchantable length into 10 sections of equal length;

*Compute the height above the ground from the middle and the top of each section;
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mlenl = 1*(hi - 0.3)/20 + 0.3; mlenll = 11*(hi - 0.3)/20 + 0.3;
mlen2 = 2*(hi - 0.3)/20 + 0.3; mlenl12 = 12*(hi - 0.3)/20 + 0.3;
mlen3 = 3*(hi - 0.3)/20 + 0.3; mlenl3 = 13*(hi - 0.3)/20 + 0.3;
mlen4 = 4*(hi - 0.3)/20 + 0.3; mlenl4 = 14*(hi - 0.3)/20 + 0.3;
mlenS = 5*(hi - 0.3)/20 + 0.3; mlenlS = 15*(hi - 0.3)/20 + 0.3;
mlen6 = 6*(hi - 0.3)/20 + 0.3; mlenl6 = 16*(hi - 0.3)/20 + 0.3;
mlen7 = 7*chi - 0.3)/20 + 0.3; mlenl7 = 17*(hi - 0.3)/20 + 0.3;
mlen8 = 8%*(hi - 0.3)/20 + 0.3; mlenl8 = 18*(hi - 0.3)/20 + 0.3;
mlen9 = 9%(hi - 0.3)/20 + 0.3; mlenl9 = 19*(hi - 0.3)/20 + 0.3;
mlen10= 10*Chi - 0.3)/20 + 0.3; mlen20 = 20*(hi - 0.3)/20 + 0.3;

*Prediction of diameter inside bark at the middle and top of each section, using the taper equation;
*Diameter inside bark at stump height is also predicted with stump height = 0.3 metres;

z1l = mlenl / ht; z11 = mlenll/ ht;
z2 = mlen2 / ht; z12 = mlenl2/ ht;
z3 = mlen3 / ht; z13 = mlenl3/ ht;
z4 = mlend / ht; z14 = mlenl4/ ht;
z5 = mlen5 / ht; z15 = mlenl5/ ht;
z6 = mlen6 / ht; z16 = mlenl6/ ht;
z7 = mlen7 / ht; z17 = mlenl7/ ht;
z8 = mlen8 / ht; z18 = mlenl8/ ht;
29 = mlen9 / ht; 219 ='mlen19/ ht;
z10 = mlenl0/ ht; z20 = mlen20/ ht;
x1 = (1 -sqrt(zl )) / (1 - sqrt(.225)); x11 = (1 - sqrt(z11)) / (1 - sqrt(.225));
x2 = (1 - sqrt(z2 )) / (1 - sqrt(.225)); x12 = (1 - sqrt(z12)) / (1 - sqrt(.225));
x3 = (1 - sqrt(z3 )) / (1 - sqrt(.225)); x13 = (1 - sqrt(z13)) / (1 - sqrt(.225));
x4 = (1 - sqrt(z4 )) / (1 - sqrt(.225)); x14 = (1 - sqrt(z14)) / (1 - sqrt(.225));
x5 = (1 -sqrt(z5)) / (1 - sqrt(.225)); x15 = (1 - sqrt(z15)) / (1 - sqrt(.225));
x6 = (1 - sqrt(z6 )) / (1 - sqrt(.225)); x16 = (1 - sqrt(z16)) / (1 - sqrt(.225));
x7 = (1 - sqrt(z7)) / (1 - sqrt(.225)); x17 = (1 - sqrt(z17)) / (1 - sqrt(.225));

x8 = (1 - sqrt(z8 )) / (1 - sqrt(.225)); x18 = (1 - sqrt(z18)) / (1 - sqrt(.225));
x9 = (1 -sqrt(z9)) / (1 - sqrt(.225)); x19 = (1 - sqrt(z19)) / (1 - sqrt(.225));
x10= (1 - sqrt(z10)) / (1 - sqrt(.225)); x20 = (1 - sqrt(z20)) / (1 - sqrt(.225));

dibm0 = (a0*dbh**al)*(a2**dbh)* ~
((1 - sqrt(0.3/ht)) / (1 - sqrt(.225)))**
(b1*(0.3/ht)**2 +b2*log(0.3/ht +0.001) +b3 *sqrt(0.3/ht)
+b4*exp(0.3/ht) +bS*dbh/ht);

dibm1 = (a0*dbh**al)*(a2**dbh)*x1**(b1*z1**2+b2*log(z1+0.001)
+b3*sqrt(z1) +b4*exp(z1) +b5*dbh/ht);

dibm2 = (a0*dbh**al)*(a2**dbh)*x2**(b1*z2**2 +b2*log(z2 +0.001)
+b3*sqrt(z2) + b4 *exp(z2) +b5*dbh/ht);

dibm3 = (a0*dbh**al)*(a2**dbh)*x3**(b1*z3**2 +b2*log(z3 +0.001)
+b3*sqrt(z3) +bd*exp(z3) +bS*dbh/ht);

dibm4 = (a0*dbh**al)*(a2**dbh)*x4**(b1*z4**2 +b2*log(z4 +0.001)
+b3*sqrt(z4) +b4*exp(z4) +bS*dbh/ht); '
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dibm5 = (a0*dbh**al)*(a2**dbh)*x5**(b1*z5**2 +b2*log(z5+0.001)
+b3*sqrt(z5) +bd*exp(zS5) +bS*dbh/ht);
dibm6 = (a0*dbh**al)*(a2**dbh)*x6**(b1*z6**2 +b2*log(z6+0.001)
F +b3*sqrt(z6) +b4*exp(z6) +bS*dbh/ht);
: dibm7 = (a0*dbh**al)*(a2**dbh)*x7**(b1*z7**2+b2*log(z7+0.001)
+b3*sqrt(z7) +b4*exp(z7) +bS*dbh/ht);
3 dibm8 = (a0*dbh**al)*(a2**dbh)*x8**(b1*z8**2 +b2*log(z8+0.001)
+b3*sqrt(z8) +b4d*exp(z8) +bS*dbh/ht);
dibm9 = (a0*dbh**al)*(a2**dbh)*x9**(b1*29**2 +b2*log(z9+0.001)
IT' +b3*sqrt(z9) +bd*exp(z9) + b5 *dbh/ht);
dibm10 = (a0*dbh**al)*(a2**dbh)*x10**(b1*z10%**2 +b2*log(z10+0.001)
+b3*sqrt(z10) +bd*exp(z10) +b5*dbh/ht);

F dibm11 = (a0*dbh**al)*(a2**dbh)*x11**(b1*z11**2+b2*log(z11+0.001)
+b3*sqrt(z11) +b4*exp(z11) +bS*dbh/ht);

[‘”‘ dibm12 = (a0*dbh**al)*(a2**dbh)*x12**(b1*z12**2 +b2*log(z12 +0.001)

[' +b3*sqrt(z12) +bd*exp(z12) + bS*dbh/ht);

dibm13 = (a0*dbh**al)*(a2**dbh)*x13**(b1*z13**2 +b2*log(z13 +0.001)
o . +b3*sqrt(z13) +bd*exp(z13) +b5*dbh/ht);
r dibm14 = (a0*dbh**al)*(a2**dbh)*x14**(b1*z14%*2 +b2*log(z14 +0.001)
+b3*sqrt(z14) + bd*exp(z14) +b5*dbh/ht);
dibm15 = (a0*dbh**al)*(a2**dbh)*x15%*(b1*z15**2 +b2*log(z15+0.001)
F +b3*sqrt(z15) +bd*exp(z15)+b5*dbh/ht);
dibm16 = (a0*dbh**al)*(a2**dbh)*x16¥*(b1*z16**2 +b2*log(z16 +0.001)
- +b3*sqrt(z16) + bd*exp(z16) +b5*dbh/ht);
F dibm17 = (a0*dbh**al)*(a2**dbh)*x17**(b1*z17**2 +b2*log(z17 +0.001)
' +b3*sqrt(z17) +bd*exp(z17) +bS*dbh/ht);
dibm18 = (a0*dbh**al)*(a2**dbh)*x18**(b1*z18**2 +b2*log(z18+0.001)
+b3*sqrt(z18) +bd*exp(z18) +bS*dbh/ht);
dibm19 = (a0*dbh**al)*(a2**dbh)*x19%*(b1*¥z19**2 +b2*log(z19+0. 001)
+b3*sqrt(z19) +bd*exp(z19) +b5*dbh/ht);
dibm20 = (a0*dbh**al)*(a2**dbh)*x20**(b1*220**2 +b2*log(z20 +0.001)
+b3*sqrt(z20) +bd*exp(z20) +bS*dbh/ht);

*Predicted top diameter inside bark dibm20 should be equal to the speciﬁed top dib, that is, dibm20 =
2.0cm;

*Compute the merchantable volume (mvol) of the tree to 2.0 c¢m top dib;

*Calculate mvol in terms of cubic metre using Newton's formula;

mvol = 0.00007854*(((hi-0.3)/10)/6)*(dibm0**2 +4*dibm1**2 +dibm2**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm2**2 +4*dibm3**2 +dibm4**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm4**2 +4*dibm5**2 +dibm6**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm6**2 +4*dibm7**2 +dibm8**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm8**2 +4*dibm9**2 +dibm10**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm10**2 +4*dibm11**2 +dibm12**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm12**2 +-4*dibm13**2 +dibm14**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm14**2 +4*dibm15**2 +dibm16**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm16**2 +4*dibm17**2 +dibm18**2) +
0.00007854*(((hi-0.3)/10)/6)*(dibm18**2 +4*dibm19**2 +dibm20**2) ;
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*Compute trees/m® merchantable volume, tip volume, stump volume, and total volume;

trees=1/mvol;

tipvol =0.00007854 *dibm20**2*(ht-hi)/3;
volstp =0.00007854*dibm0**2*0.3;

tvol = mvol + tipvol + volstp;

keep dbh ht mlen mvol trees tvol;

\run;

~

*The above program completes the calculation;
*The following statements are used to arrange the calculated values into different tables;

*Arrange total volume into the table format, only the selected variables are outputted;

~ data v4;

set v3; '

tvli=lagl8(tvol); tv7=lagl2(tvol); tvl13=lag6(tvol);
tv2=lagl7(tvol); tv8=lagll(tvol); tvld=lag5(tvol);
tv3=lagl6(tvol); tv9=laglO(tvol); tvl5=Ilagd(tvol);
tvd=lagl15(tvol); tv10=Ilag9(tvol); tvlé=Ilag3(tvol);
tvS=lagl4(tvol); tvll=Ilag8(tvol); tv17=lag2(tvol);
tv6=Ilagl3(tvol); tvl2=lag7(tvol); tvi8=Ilagl(tvol);

if ht = 40;
*Prediction of total tree height, two boundary values of stump diameter;

h = 1.3+30.773756*(1-exp(-0.065620*dbh))**1.697549;
D1 = DBH -0.9; D2 = DBH + 1.0;
STUMP1 = 1.065686 + 1.006206*D1 + 0.002586*D1%*2;
STUMP2 = 1.065686 + 1.006206*D2 + 0.002586*D2**2;
MX = '-';
run;

data pl;
file 'a:tsoft2x.dat' Irecl=220;
set v4;

PUTDI1 1-4 .1 MX $5D2 69 .1
STUMP1 12-15 .1 MX § 16 STUMP2 17-20 .1 :
tvl 21-28 4 tv2 29-36 4 tv3 37-44 4 tv4 45-52 4
tvs 53-60 .4 tv6 61-68 .4 tv7 69-76 .4 tv8 77-84 .4
tv9 85-92 4 tv10 93-100 .4
tvll 101-108 .4 tv12 109-116 4
tvl3 117-124 .4 tv14 125-132 4
tvlS 133-140 .4 tv16 141-148 4
tvl7 149-156 .4 tv18 157-164 4
tvol 165-172 .4 h 173-180 .1;

run;
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*Arrange merchantable length/volume into the table format, only the selected variables are outputted;

data v5;

T g

=g

set v3;

mvl =lagi8(mvol);
mv2 =lagl7(mvol);
mv3=lag16(mvol);
mv4 =l]ag15(mvol);
mvS =lagl4(mvol);
mv6=lagl3(mvol);

ml =lagl18(mlen);
m2 =lag17(mlen);
m3=lag16(mlen);
m4 =Jlagl5(mlen);
mS5 =lagl4(mlen);
m6=lagl13(mlen);

m=|/l;

if ht=40;

*Prediction of total tree height, two boundary values of stump diameter;

mv7=lagl2(mvol);
mv8=lagl1(mvol);
mv9=lag10(mvol);
mv10=]ag9(mvol);
mv11=lag8(mvol),
mv12=Jag7(mvol);

m7=lagl2(mlen);
m8=Ilagl1(mlen);
m9=1lagl0(mlen);
m10=]ag9(mlen);
ml1=l]ag8(mlen);
ml2=Ilag7(mlen);

mv13=lag6(mvol);
mv14=lag5(mvol);
mv15=1lagd(mvol);
mv16=lag3(mvol),
mv17=lag2(mvol);
mv18=lagl(mvol);

m13 =lag6(mlen);
ml4=JagS(mlen);
ml5=lagd(mlen);
ml6=lag3(mlen);
ml7=lag2(mlen);
m18=Ilagl(mlen);

h=1.3+30.773756*(1-exp(-0.065620*dbh))**1.697549;
D1=DBH-0.9; D2=DBH +1.0;
STUMP1= 1.065686+1.006206*D1 +0. 002586*D1**2
STUMP2= 1.065686+1.006206*D2 +0.002586*D2**2,

MX="-";
run;

data p2;

file 'a:m2s2.dat' Irecl=256;

set v5;

PUT D114 .1 MX $5 D2 69 .1
STUMPI 12-15 .1 MX $ 16 STUMP2 17-20 .1

ml 21-26 .2 m$27 mvl 28-33 4

m2 34-39 .2 m $ 40 mv2 41-46 .4

m3 47-52 .2 m $ 53 mv3 54-59 4

m4 60-65 .2 m $ 66 mv4 67-72 .4

m5 73-78 .2 m $ 79 mv5 80-85 .4

m6 86-91 .2 m $ 92 mv6 93-98 4

m7 99-104 .2 m $ 105 mv7 106-111 .4
m8 112-117 .2 m $ 118 mv8 119-124 4
m9 125-130 .2 m $ 131 mv9 132-137 4
ml10 138-143 .2 m $ 144 mv10 145-150 .4
mll 151-156 .2 m $ 157 mvl1 158-163 .4
ml2 164-169 .2 m $ 170 mv12 171-176 .4
ml3 177-182 .2 m $ 183 mv13 184-189 .4
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ml4 190-195 .2 m $ 196 mvi4 197-202 .4
ml5 203-208 .2 m $ 209 mv15 210-215 4
ml6 216-221 .2 m $ 222 mv16 223-228 4
ml7 229-234 2 m $ 235 mv17 236-241 .4
mi8 242-247 .2 m $ 248 mv18 249-254 4
mlen 255-260 .2 m $ 261 mvol 262-267 .4
h 268-275 .1;
run;

data v6;
set v3;
nl=Ilagl8(trees); n2=lagl7(trees); n3=lagl6(trees); n4=IlaglS(trees); nS=Ilagi4(trees);
n6=lagl3(trees); n7=lagl2(trees); n8=Ilagll(trees); . n9=IlaglO(trees); nl0=Ilag9(trees);
nll=lag8(trees); nl2=lag7(trees); nl3=Ilag6(trees); nld4=lag5(trees); nlS5=Ilagd(trees);
nl6=lag3(trees); nl7=Ilag2(trees); nl8=Ilagl(trees);

if ht=40;
*Prediction of total tree height, two boundary values of stump diameter;.

h=1.3+30.773756*(1-exp(-0.065620*dbh))**1.697549;
D1=DBH-0.9; D2=DBH+1.0;
STUMPI1 = 1.065686+1.006206*D1+0.002586*D1**2;
STUMP2 = 1.065686+1.006206*D2+0.002586*D2**2;
MX="'-';
run;

*Arrange trees/m> merchantable volume into the table format, only the selected variables are outputed;

data p3;
file 'a:tr2s2.dat' lrecl=200;

set v6; '

PUT D1 1-4 .1 MX $ 5 D2 6-9 .1
STUMPI 12-15 .1 MX $ 16 STUMP2 17-20 .1
nl 26-33 .3 n2 34-41 .3 n3 42-49 .3 n4 50-57 .3 n5 58-65 .3
n6 66-73 .3 n7 74-81 .3 n8 82-89 .3 n9 90-97 .3 n10 98-105 .3
nll 106-113 .3 n12 114-121 .3 n13 122-129 .3
nl4 130-137 .3 n15 138-145 .3
nl6 146-153 .3 n17 154-161 .3 n18 162-169 .3 n19 170-177 .3
h 178-185 .1;

run;
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Appendix 4.

List of Natural Regions of Alberta

3 3 T3

Natural region 1 — Central mixedwood

Natural region 2 — Dry mixedwood

Natural region 3 — Wetland mixedwood
Natural region 4 — Sub-Arctic
Natural region 5 — Peace River Lowlands

Natural region 6 — Boreal Highlands

r Natural region 7 — Alpine
Natural region 8 — Sub-Alpine
Eﬁ Natural region 9 — Monta;le
r‘ Natural region 10 — Upper Foothills
Natural region 11 — Lower Foothills
[w . Natural region 12 — Athabasca Plain

P Natural region 13 — Kazan Upland
Natural region 14 — Foothills Parkland
F Natural region 15 — Peace River Parkland

Natural region 16 — Central Parkland

Natural region 17 — Dry mixedgrass

F Natural region 18 — Foothills Fescue
F\ Natural region 19 — Northern Fescue
Natural region 20 — Mixedgrass
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Appendix 5.

List of Major Alberta Tree Species and Their Species Code

SPECIES

White spruce
Tamarack
Engelmann spruce
Lodgepole pine
Jack pine
Aspen

White birch
Balsam poplar
Black spruce
Balsam fir
Alpine fir

Douglas-fir.

SPECIES CODE

Sw

Lt

Se

Pl

Aw

Bw

Pb

Sb

Fa

Fd
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SCIENTIFIC NAME

Picea glauca (Moench) Voss

Larix laricina (Du Roi) K. Koch
Picea engelmannii Parry ex Engelm.
Pinus contorta var. latifolia Engelm.
Pinus banksiana Lamb.

Populus tremuloides Michx.

Betula papyrifera Marsh.

Populus balsamifera L.

Picea mariana (Mill.) B.S.P.

Abies balsamea (L.) Mill.

Abies lasiocarpa (Hook.) Nutt.

Pseudotsuga menziesii (Mirb.) Franco



r

I cm
I'm
1 ha
I m
I m
1 km
1 m*ha

1 m*/ha

1in.

1 ft.

1 acre

1 sq. ft.
1 cu. ft.
1 mile
1 fbm

1 Mfbm

1 m® log

1 Mfbm

Appendix 6.

Metric. Conversion Chart

= 0.39370 in.
= 3.28083 ft.
= 2.47105 acres

10.76385 sq. ft.

35.31435 cu. ft

= 0.62137 miles
= 4.3560 sq. ft/acre

= 14.2913 cu. ft/acre

= 2.5400 cm
= 0.3048 m
= 0.4047 ha
= 0.09290 m

=0.02832 m*_

1.6093 km

1ft. x 1ft. X 1in

~ 233 board feet lumber (provincial average conversion factor)

~ 4.3 m’® log (provincial average conversion factor)
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Appendix 7.
An Example Program for Fitting the Taper Model

This Statistical Analysis System (SAS) program shows the fitting of Kozak's (1988) taper model
on the stem analysis data from Forest Resource Information Branch, Land and Forest Services. The model
is fitted by nonlinear least squares, with initial values of the parameters estimated from linear least squares

fit of the transformed model. See Appendix 1 for a description of the taper model.
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*This program shows the fitting of Kozak's (1988) taper model;
*Read the stem analysis data;

data datal;
infile 'a:\data\treesec.dat';

retain hag twp rge merid stand plot tree spcode dead dbh ht sec length
dibl dobl dib2 dob2 trcatl trcat2 trcat3 trcat4 trcats;

input retype $ 28 @;

if retype = 'H' then do;

hag = 0;

input vsr 1-2 merid 9 rge 10-11 twp 12-14 stand 15-18 plot 20-25 tree 26-27 spcode $ 33-34
dead $ 35 secnum 36-37 dbh 38-41 .1 trcatl 44-45 trcat2 46-47 trcat3 48-49
trcatd 50-51 trcatS 52-53 ht 55-59 .2;

end;

if retype = 'S’ then do;
input vsr 1-2 merid 9 rge 10-11 twp 12-14 stand 15-18 plot 20-25 tree 26-27 sec 29-30 length 31-34 .2
dibl 35-38 .1 dobl 39-42 .1 dib2 43-46 .1 dob2 47-50 .1; )

*Calculate height above ground (hag);

hag = hag + length;

if dibl = 0 or dib2 = 0 then delete;
if dibl = . or dib2 = . then delete;

*Calculate diameter inside bark (dib) and diameter outside bark (dob);

dib = (dibl + dib2) / 2;
dob = (dobl + dob2)/2;

if dib > 200 then delete; if dob > 200 then delete;
if dib > 0 and dob = 0 then delete;
if degd = 'X' then delete;

B

*Delete the top section (this step is only needed for the linearized fit);

if ht = hag then delete;
*Delete trees that are forked or having broken top;

if trcat]l = 13 or trcat2 = 13 or trcat3 = 13 or trcat4 = 13 or trcat5 = 13 or
trcatl = 19 or trcat2 = 19 or trcat3 = 19 or trcatd = 19 or trcat5 = 19 then delete;

keep vsr hag twp rge merid stand plot tree spcode dbh ht sec length dib dob;
output; end;
run;
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*Fit the taper model;

data data2;
set datal;

hr = (ht-hag)/ht; if hr >1 or hr < O then delete;
dbhhr = dbh*hr; if dbhhr = 0 and dib > 0 then delete;

*Find the initial values by linearizing the taper equation;

Indib = log(dib);

Indbh = log(dbh);

x = (1 - sqrt(hag/ht)) / (1 - sqrt(.225));
= hag / ht;

/*

Inx = log(x);

Inxz2 ='Inx * z * z;

Inz001 = log(z + .001);

InxInz01 = Inx * Inz001;

Inxsqrz = Inx * sqrt(z);

Inxez = Inx * exp(z);

Inxdh = Inx * (dbh / ht);

proc reg data = data2;
model Indib = Indbh dbh Inxz2 InxInz01 Inxsqrz Inxez Inxdh;
output out = resl p = pred r = resid;
proc plot data = resl;
“plot resid*pred;

run,;

*/

*Estimated coefficients from linearized fit are used as initial values in nonlinear estimation;

*The comment portion of the program, /* ...... */, is deleted in the final fitting of the nonlinear taper
model;

proc nlin method = dud data = data2;
parms a0 = 0.95 al = 0.95a2 = 1.0020b1 = 1.60b2 = -0.32b3 = 2.53 b4 = -1.2712 b5 = 0.102;

¢ = bl*z**2 + b2*log(z + 0.001) + b3*sqrt(z) + bd*exp(z) + b5*dbh/ht;
model dib = a0*dbh**al*a2**dbh*x**c;
output out = resl p = pred r = resid;
run;
proc plot data = resl;

plot resid*pred;
run;
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