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Executive Summary and Acknowledgement 
 

Based on the nonlinear least squares method and nonlinear mixed-effects modeling technique, 

provincial and subregion-specific height-diameter models were developed for major Alberta tree 

species. These models can be used to predict the missing heights of individual trees at both population 

and plot-specific levels with varying accuracies. Different procedures for obtaining the most reasonable 

predictions under different circumstances are presented and evaluated. Examples of model application 

from real data are provided.  

 

We appreciate the help and reviews of an early draft by Karl Peck, Daryl Price and Dave Morgan, who 

provided many constructive comments and suggestions. 
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1. Introduction 
 

Previous tree height-diameter models available in Alberta were developed based on the nonlinear least 

squares (NLS) method and stem analysis data (e.g., Huang et al. 1994, Huang et al. 2000). They were widely 

used for making population level predictions, where “population” may refer to the entire province or a specific 

natural region, subregion or forest management unit. However, the utility and accuracy of these population-

based models at a plot-specific level were often limited. 

 

This study uses both the NLS method and the nonlinear mixed-effects modeling (NMM) technique to develop 

new height-diameter models based on the expanded data (i.e., new measurements on existing plots and/or 

new plots) from stem analysis and Permanent Sample Plots (PSPs). The main objective of the study is to 

increase the predictive accuracy of the height-diameter models at a plot-specific level, while maintaining or 

improving their predictive accuracy at the population level as well. 

 

To facilitate the understanding and use of the fitted models, detailed application examples were provided 

based on real data. These examples demonstrate model application procedures that readers can use in 

practice to make the “best” prediction at population and plot-specific levels. 

 

1.1 Species, Species Code and Species Grouping 

 

Whenever possible and reasonable, models developed in this study were species-specific. Models were also 

developed for deciduous species combined and coniferous species combined. Due to their limited sample 

sizes, whitebark pine, limber pine, Engelmann spruce, alpine fir, western larch and alpine larch were grouped 

into relevant species as defined in Table 1. A total of 10 species are present after the grouping: three 

deciduous and seven coniferous. All models were developed for each of these 10 species (last column of Table 

1). Lodgepole pine, white spruce, aspen and black spruce are the four leading tree species in Alberta.  

 

Table 1. List of Alberta tree species, species code and species grouping. 

Deciduous/ 

coniferous 

Species 

 

Scientific name 

 

Species 

code 

Grouped 

species code 

Deciduous Aspen Populus tremuloides Michx. AW AW 

 Balsam poplar Populus balsamifera L. PB PB 

 White birch Betula papyrifera Marsh. BW BW 

Coniferous Lodgepole pine Pinus contorta var. latifolia Engelm. PL PL 

 Whitebark pine Pinus albicaulis Engelm.  PW PL 

 Limber pine Pinus flexilis E. James PF PL 

 Jack pine Pinus banksiana Lamb. PJ PJ 

 White spruce  Picea glauca (Moench) Voss SW SW 

 Engelmann spruce Picea engelmannii Parry ex Engelm. SE SW 

 Black spruce Picea mariana (Mill.) B.S.P. SB SB 

 Balsam fir Abies balsamea (L.) Mill. FB FB 

 Alpine fir Abies lasiocarpa (Hook.) Nutt. FA FB 

 Douglas-fir Pseudotsuga menziesii (Mirb.) Franco FD FD 

 Tamarack larch Larix laricina (Du Roi) K. Koch LT LT 

 Western larch Larix occidentalis Nutt. LW LT 

 Alpine larch Larix lyallii Parlatore LA LT 
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1.2 Natural Regions and Subregions of Alberta 

 

Alberta is divided into six natural regions and 21 natural subregions listed in Table 2 and shown in Figure 1. 

They are defined by the Natural Regions Committee (2006) based on the biogeoclimatic characteristics of the 

regions in Alberta. Natural regions and subregions have also been referred to as ecoregions.  

 

Table2. Natural regions and subregions of Alberta. 

Natural region Natural subregion 
Numeric       

code 

Character  

code 

Boreal Forest Central Mixedwood 1 CM 

 Dry Mixedwood 2 DM 

 Northern Mixedwood (Wetland Mixedwood) 3 NM 

 Boreal Subarctic 4 BSA 

 Peace-Athabasca Delta (Peace River Lowlands) 5 PAD 

 Lower Boreal Highlands (Boreal Highlands) 6 LBH 

 Upper Boreal Highlands (Boreal Highlands) 21 UBH 

 Athabasca Plain 12 AP 

Rocky Mountain Alpine 7 ALP 

 Subalpine 8 SA 

 Montane 9 MT 

Foothills Upper Foothills 10 UF 

 Lower Foothills 11 LF 

Canadian Shield Kazan Upland 13 KU 

Parkland Foothills Parkland 14 FP 

 Peace River Parkland 15 PRP 

 Central Parkland 16 CP 

Grassland Dry Mixedgrass 17 DMG 

 Foothills Fescue 18 FF 

 Northern Fescue 19 NF 

 Mixedgrass 20 MG 

 

The vast majority of the data used in this study were collected in four main forest production areas: lower 

foothills subregion, upper foothills subregion, and central and dry mixedwood subregions.  

 

For four species (one deciduous and three coniferous) with relatively small sample sizes or concentrated 

species distribution ranges, only provincial models were developed based on the data combined from all 

natural subregions: 

 

−BW, FD, LT, PJ 

 

For six other species (two deciduous and four coniferous) with relatively large sample sizes and wide species 

distribution ranges, the models were developed provincially and by natural subregion or group of natural 

subregions:  

 

−AW, PB, PL, SW, SB, FB 



 3

 
Figure 1. Natural regions and subregions of Alberta. Designated numeric and character codes for 

each natural subregion are listed in Table 2.  
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2. Data 
 

Data from the Alberta government stem analysis database and PSP database were combined to fit the height-

diameter models for major Alberta tree species. A summary of the data is presented in Table 3.  

 

Table 3. A summary of the data used to fit height-diameter models. 

Species Subregion       N m 
DBH (cm)  H (m) 

Mean Min Max SD  Mean Min Max SD 

AW 7-10 490 192 24.07 1.60 57.40 8.75  18.94 2.00 30.70 5.33 

11 8323 1330 26.25 1.10 67.10 11.39  21.50 1.50 34.70 5.87 

1-6, 12-21 7802 1358 21.43 0.20 73.10 10.68  19.46 1.40 37.20 6.03 

 Provincial 16615 2880 23.92 0.20 73.10 11.24  20.47 1.40 37.20 6.02 

PB 7-11 2412 537 20.74 0.70 67.30 12.95  16.44 1.60 33.80 7.84 

 1-6, 12-21 1501 415 21.71 1.10 80.80 12.61  17.98 1.70 36.60 6.90 

 Provincial 3913 952 21.11 0.70 80.80 12.83  17.03 1.60 36.60 7.53 

BW Provincial 2088 608 6.95 0.10 36.60 6.55  7.69 1.40 27.20 5.25 

Deciduous Provincial 22616 3431 21.87 0.10 80.80 12.21  18.69 1.40 37.20 7.28 

PL 7-9 3721 221 15.99 0.60 53.50 6.04  13.80 1.50 26.25 3.63 

 10 19458 1411 20.11 0.80 59.20 6.92  18.21 1.50 33.80 4.37 

 11 24814 1830 22.74 0.50 64.60 7.62  20.90 1.40 36.80 4.65 

 1-6, 12-21 2964 401 25.08 5.10 55.40 7.85  21.02 6.10 34.10 4.50 

 Provincial 50957 3863 21.38 0.50 64.60 7.56  19.36 1.40 36.80 4.90 

SW 7-9 1766 146 17.43 0.70 63.40 10.19  12.77 1.40 30.50 5.53 

 10 9063 864 21.50 0.50 78.50 11.67  16.52 1.40 36.00 6.96 

 11 14150 1604 24.35 0.20 74.00 13.44  19.17 1.40 40.20 8.74 

 1-6, 12-21 20314 1684 25.99 0.20 77.70 11.24  22.03 1.40 43.30 6.88 

 Provincial 45293 4298 24.24 0.20 78.50 12.21  19.67 1.40 43.30 7.90 

SB 7-10 5168 703 12.56 0.40 45.00 5.50  11.09 1.40 25.20 4.23 

 11 8597 935 13.26 0.40 55.30 5.74  12.65 1.40 32.00 4.48 

 1-6, 12-21 1321 245 15.39 0.80 41.10 7.19  14.04 1.60 30.70 5.41 

 Provincial 15086 1883 13.21 0.40 55.30 5.85  12.24 1.40 32.00 4.58 

FB 7-9 1369 93 11.30 1.10 53.00 5.49  9.73 1.50 24.50 4.29 

 10 4337 440 17.47 0.30 57.60 10.12  13.64 1.40 31.40 7.16 

 11 4748 507 10.00 0.20 51.30 8.29  9.13 1.40 31.50 6.84 

 1-6, 12-21 2399 251 12.96 0.30 44.90 7.61  11.47 1.40 32.00 6.38 

 Provincial 12853 1291 13.21 0.20 57.60 9.18  11.15 1.40 32.00 6.93 

FD Provincial 841 45 18.64 1.30 60.90 8.77  13.67 1.80 26.60 4.13 

LT Provincial 1378 150 9.00 1.10 37.70 5.67  8.51 1.60 27.90 5.33 

PJ Provincial 3681 217 15.55 1.00 45.00 6.89  14.49 1.60 28.80 4.58 

Coniferous Provincial 130089 6625 20.31 0.20 78.50 10.37  17.54 1.40 43.30 7.12 

Note:  

Species and subregions are defined in Tables 1 and 2, respectively; 

Provincial = all subregions combined; 

Deciduous = all deciduous species combined; 

Coniferous = all coniferous species combined; 

N = total number of observations (trees); 

m = number of plots; 

DBH = tree diameter (in centimeters, cm) at the breast height of 1.30 meters above ground; 

H = total tree height (in meters, m); 

Min, max and SD = minimum, maximum and standard deviation, respectively. 
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The stem analysis data (13,174 trees from 2,489 plots) were collected from felled trees in temporary sample 

plots. For PSPs, each measurement was considered a temporary sample plot. Due to several factors, including 

the changes in measurement protocol since 1981 (Alberta Sustainable Resource Development 2005), the large 

sample sizes, and the need to reserve some data for possible model validation, for the six species with large 

sample sizes and wide distribution ranges, only the PSPs established prior to 1981 plus the stem analysis data 

were used for model development in this study:  

 

−AW, PB, PL, SW, SB, FB 

 

For four other species with relatively small sample sizes or concentrated species distribution ranges, all data 

from PSPs and stem analysis were used: 

 

−BW, FD, LT, PJ 

 

In addition, as a standard data screening procedure in developing tree height-diameter models, trees 

identified with the following conditions were excluded from modeling: 

 

−Dead top or dieback 

−Multiple leaders 

−Poor form/stem form defect 

−Broken top 

−Standing dead 

−Dead top dieback with new leader 

−Severe leaning 

−Fork 

−Pronounced crook 

−Broken stem 

−Dead or down 
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3. Height-Diameter Models and Goodness-of-Fit Statistics 
 

3.1 Base Models 

 

Comparison of alternative base model forms suggests that the following base models are appropriate for 

describing the population level tree height-diameter relationship for deciduous and coniferous species in 

Alberta: 

 

[1] 3b
21 DBH)]bexp([1b1.30H −−+=    (Deciduous species) 

 

[2] 
ln(DBH)]bexp[b1

b
1.30H

32

1

++
+=   (Coniferous species) 

 

where H is total tree height (m), DBH is tree diameter (cm) at the breast height of 1.30 m above ground, b1, b2 

and b3 are model parameters applicable to the population, exp denotes the exponential function, and ln 

denotes the natural logarithm to the base e (e≈2.718281828).  

 

3.2 Mixed Models 

 

The mixed models take the following forms: 

 

[3] 3b
2211 )DBH)]ub(exp()[1ub(1.30H +−−++=  (Deciduous species) 

 

[4] 
ln(DBH)]b)uexp[(b1

)u(b
1.30H

322

11

+++

+
+=   (Coniferous species) 

 

where b1, b2 and b3 are fixed parameters applicable to every plot in the population, and u1 and u2 are random 

parameters unique for each plot in the population. Attempts to incorporate a third random parameter u3 to b3 

produced better fit statistics but failed to give stable predictions in some cases. This is illustrated in “Additional 

Notes” for interested readers (Section 8.1). For BW, only one random parameter u1 was used in the mixed 

model [3] due to data and prediction issues. This is also illustrated in “Additional Notes”. 

 

3.3 Parameter Estimates and Goodness-of-Fit Statistics 

 

Parameter estimates for base and mixed models are listed in Appendix 1 (Tables A1 to A7), along with relevant 

residual and spaghetti plots (Figures A1 to A16). Summary goodness-of-fit statistics associated with different 

types of predictions are listed in Appendix 2. The parameter estimates for base models were obtained from 

the ordinary NLS method. The parameter estimates for mixed models were obtained from the first-order 

method of the NMM technique.  

 

The fitted models can be used in different ways. The most common examples are demonstrated in Sections 5 

and 6, after some related background material is presented in Section 4.  

 

The summary goodness-of-fit statistics listed in Appendix 2 pertain to different types of predictions discussed 

in Section 4. Readers who are familiar with how to use the fitted models to make predictions at population and 

plot-specific levels can skip the background material and application examples, and go directly to 

“Recommendations” (Section 7). For interested modelers, several additional notes about the model 

development are presented in Section 8. 
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4. Prediction Types and Goodness-of-Fit Measures 
 

4.1 Population and Subject-Specific Models  

 

In this study, the word “population” refers to the entire province, or a specific natural subregion or a group of 

natural subregions. Readers can use the word to denote the aggregated data from a company, a region, or a 

specific area consists of m experimental units. For height-diameter models, the experimental units, also 

referred to as “subjects” in mixed model parlance, are sample plots. The elements within each sample plot are 

trees. Height and diameter observations are made on the trees within each plot, where “diameter” in this 

study always refers to the diameter at the breast height of 1.30 m above ground (DBH).  

 

Regression models can generally be classified as population-based models and subject-specific models. 

Traditional regression models estimated from least squares methods are typically population-based models. 

They are intended to describe the population averages, and as such, they are also referred to as “population-

averaged” models. As an example, a population-based height-diameter model estimated from the NLS method 

for a population consisting of m plots can be written as: 

 

[5] 3b
21 DBH)]bexp([1b1.30H −−+=  

 

where H is total tree height (m), DBH is tree diameter (cm) at breast height, and b1, b2 and b3 are estimated 

coefficients for the population. 

 

The estimated coefficients in [5] (b1, b2 and b3) obtained from the NLS method are derived as though all data in 

the population had come from one big plot. They apply to the entire population. There is no mechanism in [5] 

to differentiate the plots that the model applies to. Given the same DBH, the same H will be predicted 

regardless of which plot the DBH is observed in.  

 

Population-based models developed from the least squares method predict the population averages from the 

observed x-variable(s). As the name implies, they are “population-based”, not subject-specific. One common 

problem with population-based models is that, due to the intrinsic variation among the subjects within a 

population and the polymorphic nature of biological growth on different sites, the trends exhibited by the data 

from individual subjects within a population could be quite different from the trend exhibited by the 

population averages. This is illustrated in Figure 2, where the data from individual subjects display differing 

trends than that of the population averages. As a result, it is quite possible that a population-based model may 

fit or predict the data well on average for the entire population, but it could perform poorly for the individual 

subjects in the population. Sometimes population averages could be meaningless at a subject-specific level. 

 

Subject-specific models, on the other hand, are primarily designed to provide better fits and predictions for 

individual subjects within a population. They can be developed using different procedures (e.g., repeated 

subject-specific NLS fits, indicator variable and varying coefficient approaches). They can also be developed 

based on the NMM technique, which is the focus of this study as all models developed in this study are 

nonlinear models. As an example, a subject-specific nonlinear mixed height-diameter model corresponding to 

[5] can be written as: 

 

[6] )u(b
2211

33)])DBHub(exp()[1ub(1.30H i

ijiiij

++−−++=  

 

where Hij and DBHij are the observed height and diameter for the jth tree in the ith plot, i = 1, 2, …, m, j = 1, 2, 

…, ni, m is the number of plots in the population, ni is the number of trees in the ith plot, b1, b2 and b3 are fixed 
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parameters common to every plot in the population, and u1i, u2i and u3i are random parameters unique for 

each plot in the population. Since the random parameters are unique for each plot in the population, it is 

necessary to use subscripts to differentiate the plots within the population. 

 

 
Figure 2. Illustrations of population-based (solid line) and subject-specific (dashed lines) models, 

where 1, 2, 3 and 4 represent subject-specific models for subjects 1, 2, 3 and 4, respectively.  

 

The key difference between subject-specific models and population-based models is the inclusion of random 

parameters in subject-specific models. Random parameters are primarily used to: 

 

1). Account for the idiosyncrasies of individual subjects within a population; 

 

2). Account for the remnant impacts of the x-variables already included in the model – this can be 

important when the true model specification is unknown; 

 

3). Account for the impacts of other known and unknown variables left-out by the model without 

actually requiring these variables to be identified or measured – this can be a good or a bad trait; 

 

4). Alleviate or eliminate entirely the correlation and heteroskedasticity issues commonly occurred in 

forest modeling from repeatedly measured cross-sectional data.  

 

In essence, a subject-specific model has a unique set of coefficients for each subject in the population. For the 

subject-specific height-diameter model [6] developed from m plots, there are m unique sets of coefficients for 

m plots in the population: 

  

Plot 1: 31b
121111 )]DBHbexp([1b1.30H jj −−+=  ( 313312122111111 ubb,ubb,ubb +=+=+= ) 

Plot 2: 32b
222122 )]DBHbexp([1b1.30H jj −−+=   ( 323322222212112 ubb,ubb,ubb +=+=+= ) 

 ⁞  ⁞  ⁞   ⁞  ⁞  ⁞ 

Plot m: m

mjmmmj
3b

21 )]DBHbexp([1b1.30H −−+=  ( mmmmmm 333222111 ubb,ubb,ubb +=+=+= ) 

 

Because a unique set of coefficients is developed for each subject in the population, rather than assigning the 

same set of population-based coefficients obtained for the entire population to each subject in the population, 

 

1 

    
2 

3 
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a subject-specific model is much more flexible and powerful than a population-based model. It can mimic the 

data trends exhibited by individual subjects more closely. A subject-specific model typically provides more 

accurate predictions on a subject-specific level than a population-based model.  

 

Of course, subject-specific models also have some drawbacks, including high dependence on local data and 

more complexity in computation. Sometimes, depending on the model specification and the NMM method 

used, as well as the specific data involved, subject-specific models could have too much flexibility in curve 

shape. There are also confusions and inconsistences in the forest literature about the “appropriate” use of the 

nonlinear mixed model technique in estimating a model and using the estimated model to make predictions.   

 

Both population-based models estimated from the NLS method and subject-specific models estimated from 

the NMM method were developed in this study. Throughout this study, population-based models were 

referred to as “base models” and subject-specific models were referred to as “mixed models”.  

 

For mixed models, both the first-order (FO) method and the first-order conditional expectation (FOCE) method 

can be used to estimate parameters. The equations involved in both methods are listed in Table 4, which are 

taken from Huang et al. (2009a) (with minor corrections). Details about the two methods are also summarized 

in Meng and Huang (2009), Huang et al. (2009a, 2009b), and Yang and Huang (2011a). Interested readers may 

wish to read relevant chapters in Davidian and Giltinan (1995), Vonesh and Chinchilli (1997), and Pinheiro and 

Bates (2004), who provide comprehensive overviews as well as detailed theoretical developments about the 

NMM methods and their applications in different fields.  

 

The FO method was implemented in this study because the FOCE method did not achieve convergence in most 

cases. The FOCE method also requires numerical iteration when predicting random parameters, which made 

the computation more difficult (e.g., see Appendix 1 in Meng and Huang (2009) and Appendix A in Huang et al. 

(2009a)). Had convergence been achieved in most cases, the FOCE method would likely have been chosen 

because it has some advantages in maintaining the original shape of model specification, whereas the FO 

method could alter the original shape of model specification in prediction. 

 

It is worthwhile to emphasize that the equations listed in Table 4 for the FO and FOCE methods are different. 

Besides different ways of predicting random parameters, each method has its unique equations for, e.g.: 

 

   −Making subject-specific predictions; and 

   −Calculating residuals or prediction errors.  

 

Mixing the equations from the FO and FOCE methods would be mathematically incorrect, even though 

statistically the consequence of mixing could vary (and be masked) depending on the data and model involved. 

This explains why sometimes an unsuspecting user could mix the equations and still get a “correct” answer 

from the wrong equations.  

 

Indeed, when estimating a model and using the estimated model to make predictions, it is essential to ensure 

that the model prediction procedure to be implemented on new data is consistent with or equivalent to the 

model prediction procedure embedded in the model estimation process. Otherwise, the results could be 

inconsistent or simply wrong, and the model fitting statistics would not be as meaningful as they supposed to 

be. This principle of consistency or equivalence between model estimation and model prediction procedures 

applies to any type of modeling and model prediction, regardless of whether the models are simple linear 

models, nonlinear models, or mixed models. Before a model can be used to make prediction elsewhere, it is 

important to ensure that on the model fitting data, the prediction results are equivalent to the estimation 

results (e.g., prediction errors are equivalent to residuals). 
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Table 4. A summary of first-order (FO) and first-order conditional expectation (FOCE) methods. 

Method = FO Method = FOCE 

Taylor series expansion 

 iiiiii f εuZbbX0bxy ++−+≈ )(),,(
**

 iiiiiiii f εuuZbbXubxy +−+−+≈ )()(),,(
****

 

 

Pseudo-response function 

 
***

),,( bX0bxyy iiii f +−=  
*****

),,( iiiiiii f uZbXubxyy ++−=  

 

Linearized model 

 iiiii εuZbXy ++=*
       iiiii εuZbXy ++=*

       

 

Design matrices 

 
0bb

ubx
X

,ˆ'

),,(

∂

∂
= ii

i

f
 

*
,ˆ'

),,(

i

ii
i

f

ubb

ubx
X

∂

∂
=  

 

0b
u

ubx
Z

,ˆ'

),,(

i

ii
i

f

∂

∂
=  

*,ˆ'

),,(

i
i

ii
i

f

ub
u

ubx
Z

∂

∂
=  

 

Random parameters predictor 

 )],ˆ,([)ˆˆ(ˆˆ 1''
0bxyRZDZZDu iiiiiii f−+= −

 ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1''
iiiiiiiiii f uZubxyRZDZZDu +−+= −

 

 

Marginal prediction from fixed parameters 

 ),ˆ,(ˆ
_ 0bxy ifixi f=  ),ˆ,(ˆ

_ 0bxy ifixi f=  

 

Subject-specific prediction with independent and identically distributed error structure ( IR
2ˆ σ=i ) 

 iiii f uZ0bxy ˆ),ˆ,(ˆ +=  )ˆ,ˆ,(ˆ
iii f ubxy =  

 

Residuals or prediction errors 

 iiiii f uZ0bxye ˆ),ˆ,(ˆ −−=  )ˆ,ˆ,(ˆ
iiii f ubxye −=  

 

Subject-specific forecast with generalized error structure ( ΨR
2ˆ σ=i ) 

 iiiii f eΨV'uZ0bxy
1 ˆˆ),ˆ,(ˆ

000
−++=  iiii f eΨV'ubxy

1 ˆ)ˆ,ˆ,(ˆ
00

−+=  

 

Note:  

 iy  and iŷ  are observed and predicted values for subject i; 

 xi is a matrix of covariate(s); 

 iX  and iZ  are partial derivatives with respect to fixed parameters b  and random parameters iu , respectively; 

 b̂  and iû  are predictors of b  and iu , respectively; 

 D̂  and iR̂ are estimated variance-covariance matrices for iu  and iε , respectively; 

 i0ŷ , i0x  and i0Z  denote the variables associated with future observations; 

 V contains the correlations between the elements of past and future errors; 

 Ψ is the correlation matrix of past errors.  
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4.2 Predictions on Model Fitting and Model Application Data 

 

The word “prediction” in forestry often refers to the prediction on new data not used in model fitting, after a 

model has already been fitted. In this study, predictions were made on model application data not used in 

model fitting, as well as on model fitting data.  

 

Figure 3 shows the predictions on model fitting and model application data. The model application data could 

come from different regions, companies, data collection protocols, or a combination of these and other factors 

(model validation data can be considered a specific case of model application data). While the goodness-of-fit 

statistics obtained on the modeling data are important indicators of model performance, the true applicability 

and goodness-of-fit of a model are better judged on model application data not used in model fitting.  

 

 
Figure 3. An illustration of predictions on model fitting data (a) and model application data (b). The 

solid line represents the model fitted on model fitting data. 

 

On the model fitting data, if the model estimation procedure is consistent with or equivalent to the model 

prediction procedure, which it should be, the residuals and model fitting statistics are identical to the 

prediction errors and prediction statistics. For a population model estimated by the classical least squares 

method, as shown in Figure 3(a), the mean bias ( e ) is “equivalent” to zero for an appropriately fitted model: 
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where e  is the mean bias, 
ijy  and 

ijŷ  are the jth observed and predicted y-values for the ith subject, i = 1, 2, 

…, m, j = 1, 2, …, ni, m is the number of subjects in the population, ni is the number of observations in the ith 

subject, and N is the total number of observations in the population. Since e  is equivalent to zero, the percent 

mean bias defined in [8] is also equivalent to zero on the model fitting data: 
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where y  is the average of the observed values. 
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Several important notes regarding the mean bias and percent mean bias defined in [7]-[8] are described here: 

 

1. For linear models fitted by the ordinary least squares method, the mean bias ( e ) and the percent 

mean bias ( %e ) are guaranteed to be zeros on the model fitting data. This is one of the most 

noteworthy characteristics of the least squares principle. For linear models fitted by the linear mixed 

model technique, the e  and %e  are also guaranteed to be zeros on the model fitting data.  

 

2. For nonlinear models fitted by the ordinary nonlinear least squares method or the nonlinear mixed 

model technique, both e  and %e  are not guaranteed to be zeros on the model fitting data. But they 

should be “very close” or “asymptotically approximately equivalent” to zeros when the sample size is 

“large enough” and when the models are appropriately specified and fitted.  

 

Here, the word “asymptotically” means that the e  approaches zero when the sample size becoming 

increasingly large. The word “approximately” means that even if the asymptotic condition is met, the 

zero equivalence is still “approximately” true, because many of the nonlinear computations involved in 

nonlinear estimation and prediction need to be approximated, e.g., by linearization and/or by 

dropping some “negligible” terms such as quadratics, cubics, and cross-products.  

 

Of course, in practice, we seldom argue about the precise semantics of these words. We generally 

consider the e  to be “close enough” or “statistically equivalent” to zero for an appropriately specified 

and fitted nonlinear model as long as the sample size is “reasonably large” or “large enough”. But how 

“close” and what is “reasonably large” depend on a number of non-trivial factors, amongst others, the 

approximation method used, the complexity of the relationship to be built and the number of model 

parameters and variables involved. No definitive answer is given in the literature. A threshold of 30 

reasonably distributed observations has frequently been considered “large enough” in many statistical 

applications for some relatively simple relationships. 

 

3. In this study, we define the closeness to zero on the model fitting data as “ %e  less than half-a-

percent”. That is, the percent mean bias defined in [8] must be less than 0.5% (1/200) on either side of 

the observed mean to be considered “close” or “equivalent” to zero. Otherwise, the model is 

considered to have a non-zero mean bias or simply biased. We also define a sample size of “100 

reasonably spread observations from 30 subjects per x-variable” to be the minimum sample size for 

“large enough”. For instance, for a model involving three x-variables, 300 reasonably spread 

observations from 90 plots are considered to be the minimum “large enough” sample size for 

estimating a model, which typically has less than 10 parameters. 

 

4. On independent model application data not used in model fitting, following the common practice in 

Alberta, if the percent mean bias is within 10% of the observed mean on either side, the model is 

generally considered acceptable, provided that it makes biological sense and that the graphics showing 

the prediction errors do not indicate any gross abnormality. Of course, it is always possible to adjust 

the predictions on model application data such that the mean bias and percent mean bias of the 

adjusted predictions equal to zero exactly. But the adjusted “bias-free” predictions do not necessarily 

lead to the “best” or “most accurate” predictions, as the “best” or “most accurate” predictions are not 

determined by the mean bias alone.  

 

5. When a fitted model is used to make predictions on model application data not used in model fitting, 

the e  does not equal to zero (except by chance). In addition, the model application data may not 

follow the general trend exhibited by the fitted model. These are illustrated in Figure 3(b). They can 

occur if a provincial model is applied to a specific region or a sub-population from a company. 



 13 

4.3 Population-Based Predictions from Base Model 

 

4.3.1 Unadjusted Population Prediction 

 

Unadjusted population prediction refers to the direct use of a base model estimated from the NLS method for 

the prediction of population averages from the known x-values. As an example, assuming the base model 

(solid line) in Figure 4 depicts the height-diameter relationship for white spruce in Alberta, tree height H (y-

variable) can be predicted directly from the base model from the observed tree DBH (x-variable), regardless of 

the plot in which the DBH is observed from. For the example population in Figure 4, the predictions obtained 

directly from the base model deviate from the actual data considerably. 

 

 
Figure 4. An illustration of unadjusted (solid line) and adjusted (dashed line) population predictions 

from a base model applied to a model application data set. The adjusted predictions were obtained 

from the proportional adjustment method. 

 

4.3.2 Adjusted Population Prediction 

 

The unadjusted population prediction obtained directly from a fitted base model can be poor. Some better 

predictions may be obtained if we could adjust the model. The proportional adjustment method is the simplest 

and most effective method in many cases for obtaining adjusted predictions (e.g., Figure 4). This method is 

implemented through the calculation of a ratio, called the proportional adjustment ratio (PAR) in this study, 

from all data in the model application population: 
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where PAR is the proportional adjustment ratio for the population in which the base model is applied, 
ijy  is 

the jth observed y-value for the ith subject in the population and 
ijŷ  is its prediction from the base model, i = 

1, 2, …, m,  j = 1, 2, …, ni, m is the number of subjects in the population, ni is the number of observations in the 

ith subject, and N is the total number of observations in the population. Re-arrange [9] produces: 
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which implies that the summation of the observed values equals to the PAR times the summation of the 

predicted values. If we define the adjusted predictions as: 
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We have: 
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Therefore: 

 

[13] 0ˆPAR =⋅− yy  (or 0ˆ
_ =− adjijyy ) 

 

which means that the mean of the observed values equals to the mean of the proportionally adjusted 

predictions from the base model. What is really important about the expressions given in [9]-[13] is that, they 

all suggest that the mean bias (
adjij _e ) of the adjusted predictions for the model application population is zero:  
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As an example, the adjusted predictions (dashed line) in Figure 4 obtained from the proportional adjustment 

method are guaranteed to have a zero mean bias. 

 

The proportional adjustment method relies on the assumption which requires that the new data a model is to 

be applied to are (more or less) proportional to the model across the x-range. If this assumption does not hold, 

a mean bias of zero is still guaranteed for adjusted predictions, but it may not mean a good fit to the data.  

 

4.4 Subject-Specific Predictions 

 

Regardless of the adjustment, population-based predictions ignore the idiosyncrasies of individual subjects 

within a population. To account for the intrinsic variation and to reflect the polymorphic growth of individual 

subjects within a population, different procedures can be used to make subject-specific predictions. The most 

common ones are described here. 

 

4.4.1 Proportional Adjustment of Base Model 

 

Calculation for adjusted plot-specific prediction from a base model is similar to that for adjusted population 

prediction, except that it is carried out plot-by-plot rather than for the entire population. For instance, a plot-

specific PARi for plot i is calculated by: 
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where PARi is the proportional adjustment ratio for plot i in the population, and all other variables are as 

defined before. Following equations [10] to [14], for any specific plot i in the population, we have: 
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where 
adjij _e  is the mean bias of the adjusted prediction errors for plot i in the population.  

 

Adjusted predictions obtained for each plot from the plot-specific proportional adjustment method are 

guaranteed to have a zero mean bias. Since the mean bias for each plot in the population is zero, the mean 

bias of the adjusted predictions for the entire population is also guaranteed to be zero. 

 

While the proportional adjustment of a base model is the simplest and most effective method in many cases 

for deriving subject-specific predictions, the method relies heavily on the assumption which requires that the 

subject-specific data to be (more or less) proportional to the population averages represented by the base 

model across the x-range. If this assumption is violated or difficult to know, a mean bias of zero is still 

guaranteed for adjusted predictions, but it may not mean a good fit for a subject.  This is illustrated in Figure 5, 

where the proportionality between the population averages and subject-specific data does not exist (a), or is 

difficult to know due to the narrow range of the data (b).   

 

 
Figure 5. An illustration of subject-specific predictions (dashed lines) obtained from the 

proportional adjustment method, where 1, 2, 3, and 4 represent four subjects, H and DBH are tree 

height and diameter, and the solid lines represent the population averages from a base model. The 

graphs show that the proportionality between the population averages and subject-specific data 

does not exist (a), or is difficult to know due to the narrow range of the data (b). 
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4.4.2 Mixed Model 

 

The equations associated with subject-specific predictions from nonlinear mixed model methods are listed in 

Table 4. As noted earlier (Section 4.1), mixed models contain both fixed and random parameters, where the 

fixed parameters refer to population-level parameters common to all subjects in the population and the 

random parameters refer to subject-specific parameters unique for each subject in the population. Because of 

the inclusion of subject-specific random parameters, a mixed model essentially provides a localized fit to each 

and every subject in the population. It can closely track the data trends of individual subjects in the population. 

 

In addition, using the mixed model technique, a mixed model fit for any subject in the population can be 

supplemented and enhanced during the estimation and prediction processes by the information about the 

other subjects in the population. This effectively allows a subject to “borrow strength” across all subjects in the 

population to get a better local fit for the subject.  

 

4.4.3 Proportional Adjustment of Mixed Model 

 

Although for most practical purposes the mixed model technique can generally be considered unbiased, the 

unbiasedness property, and indeed, many other properties associated with the NMM technique, hold only in 

an “asymptotically approximated” sense. When the sample sizes of the subjects are not “large enough”, or 

when model specification is problematic, mixed model can produce biased predictions. 

 

The potential bias of the NMM leads naturally to the third method of subject-specific prediction, termed the 

combination method in this study. The combination method combines the mixed model method with the 

subject-specific proportional adjustment method.  

 

For the combination method, the biased subject-specific predictions from a mixed model are scaled up or 

down by a constant proportion determined by the subject-specific proportional adjustment ratio PARi. The 

PARi for subject i is calculated according to [15], with the predictions derived directly from a NMM method 

(e.g., Table 4). The predictions derived directly from the NMM method are called unadjusted mixed model 

predictions. The scaled predictions obtained via 
ijiadjij yy ˆPARˆ

_ ⋅=  are called adjusted mixed model predictions. 

Figure 6 shows the unadjusted and adjusted predictions for four subjects with small sample sizes.  

 

 
Figure 6. Unadjusted (solid lines) and adjusted (dashed lines) predictions for four subjects, where 

the unadjusted predictions were obtained directly from the mixed model method, and the adjusted 

predictions were obtained from the combination method. 
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In Figure 6, the unadjusted predictions were obtained directly from the mixed model method (in this case, the 

FO method), and the adjusted predictions were obtained from the combination method (actual data and 

computations for the examples shown in Figure 6 are available to interested readers). Note that for any 

subject with one observation only (e.g., subject 3 in Figure 6(b)), the adjusted predictions always pass through 

that observation, whereas the unadjusted predictions do not pass through that observation.  

 

Following the logic embedded in equations [16]-[20], it can be inferred that the adjusted mixed model 

predictions obtained from the combination method are guaranteed to have a zero mean bias. This is true on 

both the subject-specific level and the population level.  

 

The essence of the combination method is to utilize the power of the mixed model method to track the trends 

of subject-specific data in a population, while simultaneously combining this power with the proportional 

adjustment method to alleviate the sample size and nonlinear approximation and asymptotic issues (Huang 

2008). This “deadly” (i.e., towards the bias) combination of the mixed model method and proportional 

adjustment method allows for a mixed model to fit any subject-specific data as close as possible. With the 

combination method it is always possible, provided that model specification does not become a limiting factor, 

to achieve a “bias-free” fit that closely mimics the data of any subject in a population, even though the “bias-

free” fit still does not necessarily mean the “best” fit.  

 

The performance of the combination method is affected by the ability of the mixed model to track subject-

specific data trends. If the mixed model tracks the trends well, which should be the case for an appropriately 

specified and fitted mixed model, the combination method will likely produce the “best” results. If the mixed 

model does not track the trends well, the predictions from the combination method may not be the best even 

though the mean bias is still guaranteed to be zero. Knowledge, skill and experience in selecting the right 

mixed model specification play a more important role than fit statistics in this regard. The selected model 

specification should have enough but not too much flexibility for the relevant data and relationship to be built. 

 

4.5 Prediction Types Assessed for Height-Diameter Models 

 

For the height-diameter models developed in this study, four prediction types are assessed: 

 

1. B-U: denotes “base model, unadjusted”, i.e., the predictions are obtained directly from the base model 

fitted from the ordinary NLS method. 

 

2. B-A: denotes “base model, adjusted”, i.e., the predictions are obtained first from the base model, then 

adjusted through the proportional adjustment method.  

 

3. M-U: denotes “mixed model, unadjusted”, i.e., the predictions are obtained directly from the first-

order method of the NMM technique. 

 

4. M-A: denotes “mixed model, adjusted”, i.e., the predictions are obtained first from the first-order 

method of the NMM technique, then adjusted through the proportional adjustment method.  

 

For population-based predictions, only B-U and B-A types of predictions are relevant. They are illustrated in 

Figure 7 (a, b). The PAR for population-based predictions is calculated based on all data in the population.  

 

For subject-specific predictions, all four types of predictions could be used. The PARi used in B-A and M-A types 

of predictions is calculated based on the data from plot i only. Figure 7 (c, d, e, f) illustrates the four types of 

subject-specific predictions. 
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Figure 7. An illustration of prediction types: B-U (base model, unadjusted), B-A (base model, 

adjusted), M-U (mixed model, unadjusted), and M-A (mixed model, adjusted). Solid lines represent 

unadjusted predictions. Dashed lines represent adjusted predictions. For a comparison, relevant 

solid lines are also plotted on the right-hand side graphs.  
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4.6 Goodness-of-Fit Measures 

 

In order to judge the goodness-of-fit (or goodness-of-prediction) of different models and prediction types, a 

variety of goodness-of-fit measures listed in Table 5 were calculated. For mixed models on model fitting data, 

Akaike information criterion (AIC) and Schwarz’s Bayesian information criterion (BIC) were also calculated as a 

part of the standard model fitting output.  

 

Table 5. Goodness-of-fit measures calculated in this study. 

Goodness-of-fit measure Computation formula 
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In Table 5, yij and 
ijŷ  are the jth observed and predicted values for the ith subject, i = 1, 2, …, m, j = 1, 2, …, ni, 

m is the number of subjects in the data, ni is the number of observations for the ith subject, y  and ŷ  are the 

grand means of observed and predicted values, N is the total number of observations, L is the maximized value 

of the likelihood function for the estimated model, p (lowercase) is the number of fixed parameters, P 

(uppercase) is the total number of effective parameters in mixed model estimation (includes fixed parameters, 

variance-covariance components of the random parameters, plus the residual variance component), and AIC 

and BIC are information criteria used for mixed model on model fitting data only. 

 

Many of the measures listed in Table 5 have been used in various studies for determining the goodness-of-fit 

of a model. They have also been used for model selection. The “number of absolute percent errors greater 

than 10%” (e10) is a new measure used to represent the distribution/spread of the prediction errors. It 

describes the proportion of predictions whose errors are greater than ±10% of the observed values. A larger 

e10 corresponds to a poorer model.  

 

Two similar measures were also calculated. One is the number of absolute percent errors greater than 5% (e5), 

and the other is the number of absolute percent errors greater than 20% (e20): 
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where PEij is the percent error for the jth observation in the ith plot, and N is the total number of observations 

(see Table 5). Results of the calculated e5 and e20 statistics are available but not listed in this study.  

 

Below are some important notes with regard to goodness-of-fit measures: 

 

1. Each goodness-of-fit measure listed in Table 5 has its own pros and cons, and each usually reflects one 

aspect of a fitted model. In general, the overall accuracy measure δ ( 22
SDeδ += ), which combines the 

mean bias ( 2
e ) and the variance of the prediction errors (SD

2
), is considered a good overall indicator 

of accuracy. However, to get a more complete picture about the fit of a model, other goodness-of-fit 

measures should also be looked at, together with relevant graphics. Picking only a single measure to 

represent the goodness-of-fit of a model may not be enough if other measures particularly graphics 

are ignored. 

 

2. It is worthwhile to emphasize that: 

 

Accuracy = Bias + Precision 

 

which means that the goodness of a model cannot be judged by either “bias” or “precision” alone. An 

“unbiased” model could give poor predictions if the precision is low. The same is true if the precision is 

high but the model is biased. One shall not over-emphasize nor be duped by “unbiased models” or 

“unbiased something”, for they could still be very bad. Our goal is to minimize bias, while maximizing 

precision (i.e., by minimizing the variance or standard deviation).  

 

3. The goodness-of-fit measures listed in Table 5 apply to the population as a whole. To calculate the 

goodness-of-fit measures for any subject i in the population (i = 1, 2, …, m), the formulas given in Table 

5 are still correct, except that the calculation will be done on the ni observations from subject i, not the 

N observations from all subjects. For instance, subject-specific mean bias, standard deviation and 

overall accuracy for subject i are calculated as follows: 
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Other subject-specific goodness-of-fit measures can be calculated in a similar manner. They can be 

used to assess the fit of a model on individual subjects within a population. The distributions of these 

subject-specific measures from all subjects in the population can be graphed, compared and analyzed 

further to detect any possible outlier and abnormality. 

 

4. While subject-specific goodness-of-fit measures are valuable in assessing subject-specific goodness-of-

fit of a model, they could be overwhelming considering if there are hundreds or even thousands of 

subjects in a population (e.g., Table 3). Hence, some summary goodness-of-fit statistics for all subjects 

combined would be very useful. In this study, these summary statistics were calculated by the 

formulas given in Table 5, with the 
ijŷ  obtained from subject-specific predictions. The summary 

statistics were not averaged from the goodness-of-fit statistics obtained from individual subjects.  

 

5. Some readers may wish to calculate the summary statistics by taking the averages of the goodness-of-

fit statistics obtained from individual subjects. This is not recommended in general. At a minimum, if 

such summary statistics are to be calculated at all, they shall be weighted averages of the goodness-of-

fit statistics from individual subjects, weighted by the number of observations in each subject. For 

instance, for a population with eight subjects: 
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where ie , %ei , iSD , 2
iR  and in  are subject-specific mean bias, percent mean bias, standard deviation, 

coefficient of determination and sample size, respectively (i =1, 2,…, 8). 

 

6. In addition to the goodness-of-fit measures listed in Table 5, some other goodness-of-fit measures 

based on prediction, tolerance, and confidence intervals could also be constructed once the prediction 

errors were obtained. For instance, for a subject with ni observations, the prediction interval for a 

future observation, the tolerance interval to contain at least proportion γ of the subject, and the 

confidence intervals for subject mean bias ( ie ) and standard deviation (SDi), can be calculated 

respectively as follows (α=0.05 throughout this study): 
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where t, χ2
 and z are Student's t, χ2

 and standard normal distributions, respectively. The calculations 

assume that the prediction errors are normally distributed. If the normality assumption is not met, 

approximated distribution-free intervals could be constructed using a 10% trimmed mean and a 

jackknifed standard deviation (e.g., Huang et al. 2009a). 
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Since hypothesis testing and interval estimation were not commonly used as goodness-of-fit measures 

in most practical circumstances, we only listed the equations here for those who might wish to 

consider them as potential goodness-of-fit measures (selected results of the interval-based goodness-

of-fit statistics for the models developed in this study are available to interested readers).  

 

Mean squared error (MSE) or its square root (root mean squared error, RMSE) plays a similar role to 

that of the overall accuracy measure δ. It incorporates both the variance and the bias of the errors. 

The calculation for MSE was slightly different in different studies. In this study, the MSE on model 

fitting data is calculated consistently following Measure #5 in Table 5, for both base and mixed models:  
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where p is the number of fixed parameters.  

 

The MSE on model application data is calculated consistently following Measure #6 in Table 5, for both 

base and mixed models:  
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In regression literature, the denominator in MSE on model fitting data denotes the degrees of 

freedom, i.e., the total number of observations reduced by the number of “model parameters” had to 

be estimated in obtaining the 
ijŷ . For a base model, the number of model parameters had to be 

estimated in obtaining the 
ijŷ  is the number of fixed parameters p (lowercase p) in the model. 

However, for a mixed model, the number of model parameters had to be estimated in obtaining the 

ijŷ  is P (uppercase P), where P is the total number of effective parameters in mixed model estimation. 

The effective parameters in mixed model estimation include fixed parameters, variance-covariance 

components of the random parameters, plus the residual variance component. Hence, for a mixed 

model, the MSE could also be calculated as follows: 
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The MSEs calculated in this manner are not presented in this report but are available to interested 

readers.  
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5. Application Examples on a Small Data Set 
 

White spruce height-diameter data from a small population of eight plots were used to demonstrate the 

application of the fitted models. The actual data are listed in Table 6 (and shown later in Figures 8 and 9). We 

purposely chose this small population with eight plots only such that the procedures and computations 

demonstrated here could be duplicated step-by-step by interested readers. The procedures could also serve as 

an integral part of model validation (Huang 2002). Two larger populations were used later to further 

demonstrate model application in Section 6.  

 

Table 6. White spruce height-diameter data and predictions from the base model [2]. 

Plot Tree DBH H 
Population-based Plot-specific 

     Ĥ  PAR adjĤ      e eadj 
 Ĥ  H  Ĥ   PAR adjĤ  eadj 

1 1 32.5 24.70 25.49 0.9857 25.13 -0.79 -0.43 25.49 21.53 21.42 1.0055 25.63 -0.93 

1 2 11.9 14.90 11.82 0.9857 11.65 3.08 3.25 11.82 21.53 21.42 1.0055 11.89 3.01 

1 3 36.6 25.00 26.93 0.9857 26.55 -1.93 -1.55 26.93 21.53 21.42 1.0055 27.08 -2.08 

2 1 30.0 23.22 24.46 0.9857 24.12 -1.24 -0.90 24.46 17.99 22.32 0.8060 19.72 3.50 

2 2 22.0 12.76 20.17 0.9857 19.89 -7.41 -7.13 20.17 17.99 22.32 0.8060 16.26 -3.50 

3 1 29.8 22.72 24.38 0.9857 24.03 -1.66 -1.31 24.38 21.75 25.32 0.8588 20.93 1.79 

3 2 34.6 20.77 26.27 0.9857 25.89 -5.50 -5.12 26.27 21.75 25.32 0.8588 22.56 -1.79 

4 1 38.7 16.90 27.57 0.9857 27.18 -10.67 -10.28 27.57 16.90 27.57 0.6130 16.90 0.00 

5 1 25.7 17.10 22.37 0.9857 22.05 -5.27 -4.95 22.37 17.10 19.08 0.8961 20.05 -2.95 

5 2 11.7 11.60 11.62 0.9857 11.46 -0.02 0.14 11.62 17.10 19.08 0.8961 10.41 1.19 

5 3 27.4 22.60 23.25 0.9857 22.92 -0.65 -0.32 23.25 17.10 19.08 0.8961 20.84 1.76 

6 1 13.5 19.20 13.39 0.9857 13.20 5.81 6.00 13.39 21.18 19.03 1.1133 14.90 4.30 

6 2 19.0 19.20 18.07 0.9857 17.82 1.13 1.38 18.07 21.18 19.03 1.1133 20.12 -0.92 

6 3 26.2 24.40 22.64 0.9857 22.32 1.76 2.08 22.64 21.18 19.03 1.1133 25.20 -0.80 

6 4 20.1 22.60 18.88 0.9857 18.61 3.72 3.99 18.88 21.18 19.03 1.1133 21.02 1.58 

6 5 18.5 19.80 17.69 0.9857 17.44 2.11 2.36 17.69 21.18 19.03 1.1133 19.70 0.10 

6 6 27.9 21.90 23.50 0.9857 23.16 -1.60 -1.26 23.50 21.18 19.03 1.1133 26.16 -4.26 

7 1 30.4 29.10 24.64 0.9857 24.29 4.46 4.81 24.64 24.15 21.26 1.1361 27.99 1.11 

7 2 19.2 18.50 18.22 0.9857 17.96 0.28 0.54 18.22 24.15 21.26 1.1361 20.70 -2.20 

7 3 20.8 21.80 19.37 0.9857 19.10 2.43 2.70 19.37 24.15 21.26 1.1361 22.01 -0.21 

7 4 26.5 27.20 22.80 0.9857 22.47 4.40 4.73 22.80 24.15 21.26 1.1361 25.90 1.30 

8 1 26.2 25.91 22.64 0.9857 22.32 3.27 3.59 22.64 20.34 20.44 0.9947 22.52 3.39 

8 2 20.8 17.68 19.37 0.9857 19.10 -1.69 -1.42 19.37 20.34 20.44 0.9947 19.27 -1.59 

8 3 31.2 27.74 24.97 0.9857 24.62 2.77 3.12 24.97 20.34 20.44 0.9947 24.84 2.90 

8 4 22.1 16.46 20.24 0.9857 19.95 -3.78 -3.49 20.24 20.34 20.44 0.9947 20.13 -3.67 

8 5 15.5 15.24 15.22 0.9857 15.00 0.02 0.24 15.22 20.34 20.44 0.9947 15.14 0.10 

8 6 24.4 24.99 21.65 0.9857 21.34 3.34 3.65 21.65 20.34 20.44 0.9947 21.53 3.46 

8 7 20.3 14.33 19.02 0.9857 18.75 -4.69 -4.42 19.02 20.34 20.44 0.9947 18.92 -4.59 

Grand mean 20.65 20.95 
  

-0.30 0 
 

20.95 
   

20.65 0 

Note: DBH is tree diameter (cm), H is tree height (m), Ĥ  is the unadjusted predicted height (m), 
adjĤ  is the adjusted 

predicted height (m), e is the unadjusted prediction error (H - Ĥ ), eadj is the adjusted prediction error (H - 
adjĤ ), H  is the 

mean of H, Ĥ  is the mean of Ĥ , and PAR is the proportional adjustment ratio. 



 24 

5.1 Population-Based Predictions from the Base Model 

 

Using the white spruce base model [2] and the estimated provincial coefficients as the example (b1=35.7854, 

b2=4.8482 and b3=-1.6040, from Table A4 of Appendix 1), tree heights were predicted directly from [2]. For 

instance, for Tree 1 in Plot 1: 

 

 25.49=
)]532ln()60401(84824exp[1

785435
301Ĥ

...

.
.

⋅−++
+=  

 

 0.79- = 25.49 - 24.70 =Ĥ  -H = e  

 

Predicted heights and prediction errors for all eight plots are listed in Table 6 (5
th

 column and 8
th

 column). The 

average of the predicted heights is 20.95 =Ĥ  (last row, Table 6). The average of the observed heights is 

20.65. =H  The mean bias of the predictions is 0.30- =e  (last row, Table 6). 

 

The above height predictions involve the direct use of the fitted base model [2]. They are unadjusted. To 

derive adjusted predictions, the PAR value for the population is first calculated using equation [9], which gives: 

 

9857.0
95.20

65.20

Ĥ

H
PAR ===   

 

Consequently, using the first observation in Table 6 as an example:  

 

25.13 = 25.490.9857 =ĤPARĤadj ××=  

 

0.43- = 25.13 - 24.70 =e  adj  

 

Adjusted predictions for all other observations were calculated in a similar manner. They are listed in Table 6. 

 

The goodness-of-fit statistics associated with the unadjusted and adjusted population-based predictions are 

listed in Table 7. As expected, the mean bias ( e ) of the adjusted predictions from the proportional adjustment 

method is guaranteed to be zero. But the differences between the unadjusted and adjusted predictions are 

small (e.g., δ=15.4934 for B-U and δ=15.2342 for B-A). Both types of predictions appear to be reasonable on 

average.  

 

Table 7. Goodness-of-fit statistics for population-based predictions. 

Type 
Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

B-U -0.2975 -1.4405 3.9249 3.0537 14.9432 0.2919 0.6197 -3.80 16.04 53.57 15.4934 

B-A 0 0 3.9031 3.0423 14.6901 0.3039 0.6203 -2.32 15.90 57.14 15.2342 

Note: Type refers to prediction type. “B-U” denotes base model, unadjusted. “B-A” denotes base model, adjusted from 

the proportional adjustment method. The base model is [2] (with provincial coefficients). The data used in computations 

are listed in Table 6 (under “population-based”). The goodness-of-fit measures are defined in Table 5. 

 

The unadjusted and adjusted population-based predictions are also shown in Figure 8. It is evident that their 

difference is small. Apparently for this population, the base model could be used to make population-based 

predictions with or without adjustment. 
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Figure 8. White spruce height-diameter data from an example population of eight plots. The solid line 

is the unadjusted population prediction obtained directly from the base model [2]. The dashed line is 

the adjusted population prediction obtained from the proportional adjustment method. Table 6 lists 

the actual data and computations (under “population-based”).  

 

5.2 Plot-Specific Predictions from the Base Model 

 

Calculation for plot-specific predictions from the base model [2] is done by plot. Using plot 1 in Table 6 as an 

example, the averages of the observed and predicted heights for this plot are: 

 

H  = 21.53 (21.5333) Ĥ  = 21.42 (21.4164)  

 

Therefore, the proportional adjustment ratio for plot 1 is: 

 

PAF 0055.1
4164.21

5333.21

Ĥ

H
===    

 

Hence, the adjusted predictions for plot 1 are 1.0055 times the unadjusted predictions obtained directly from 

the base model [2]. For instance, for the first observation in Table 6, the adjusted prediction and prediction 

error are: 

 

adjĤ  = PAR × Ĥ  = 1.0055 × 25.49 = 25.63 

 

eadj = 24.70 – 25.63 = -0.93 

 

Adjusted predictions and prediction errors for other observations are calculated in a similar manner. Results of 

the plot-specific calculations are listed in Table 6 (under the heading of “plot-specific”). Figure 9 shows the 

unadjusted and adjusted predictions across the DBH range for all eight plots. Note that the unadjusted 

predictions are identical for each plot. They are all obtained directly from the base model [2].  
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Figure 9. Unadjusted (solid lines) and adjusted (dashed lines) plot-specific predictions from the white 

spruce base model [2]. The unadjusted predictions are identical for each plot. They are obtained 

directly from the base model. Table 6 lists the actual data and computations (under “plot-specific”).  
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Table 8 lists the plot-specific goodness-of-fit statistics for the unadjusted and adjusted predictions. For plot 4 

with one observation only, the SD and R
2
 are not applicable because the denominator is zero.  

 

Table 8. Goodness-of-fit statistics for plot-specific predictions from the base model [2]. 

Type 
Goodness-of-fit measure 

Plot e  %e  SD  MAD   MSE R
2
 CC MPE MAPE e10 δ 

B-U 1 0.1169 0.5431 2.6267 1.9348 4.6133 0.7905 0.9326 3.24 10.53 33.33 6.9131 

 2 -4.3296 -24.0668 4.3624 4.3296 28.2609 -0.0332 0.4426 -31.73 31.73 50.00 37.7762 

 3 -3.5765 -16.4472 2.7143 3.5765 16.4747 -16.3304 -0.1258 -16.88 16.88 50.00 20.1584 

 4 -10.6718 -63.1465 N/A 10.6718 113.8863 N/A 0 -63.15 63.15 100.00 113.8863 

 5 -1.9822 -11.5919 2.8664 1.9822 9.4066 0.5336 0.8193 -11.30 11.30 33.33 12.1453 

 6 2.1554 10.1752 2.4959 2.6883 9.8373 -1.6061 0.5002 10.53 12.96 50.00 10.8755 

 7 2.8932 11.9803 1.9834 2.8932 11.3214 0.3644 0.6551 11.04 11.04 75.00 12.3049 

 8 -0.1081 -0.5315 3.3814 2.7950 9.8120 0.6416 0.7242 -4.16 14.48 57.14 11.4454 

             

B-A 1 0 0 2.6718 2.0087 4.7591 0.7838 0.9309 2.71 10.77 33.33 7.1386 

 2 0 0 4.9509 3.5008 12.2559 0.5519 0.5961 -6.18 21.26 100.00 24.5118 

 3 0 0 2.5257 1.7859 3.1895 -2.3552 -0.9833 -0.37 8.23 0 6.3791 

 4 0 0 N/A 0 0 N/A 0 0 0 0 0 

 5 0 0 2.5692 1.9653 4.4006 0.7818 0.8967 0.26 11.75 66.67 6.6009 

 6 0 0 2.8507 1.9947 6.7722 -0.7941 0.6181 0.40 9.58 33.33 8.1267 

 7 0 0 1.6144 1.2050 1.9547 0.8903 0.9259 -1.07 5.36 25.00 2.6062 

 8 0 0 3.3900 2.8145 9.8502 0.6403 0.7224 -3.61 14.48 71.43 11.4920 

             

B-U All -0.2975 -1.4405 3.9249 3.0537 14.9432 0.2919 0.6197 -3.80 16.04 53.57 15.4934 

B-A All 0 0 2.5515 2.1066 6.2776 0.7025 0.8407 -1.12 10.96 46.43 6.5101 

Note: Type refers to prediction type. “B-U” denotes base model, unadjusted. “B-A” denotes base model, adjusted from 

the proportional adjustment method. “N/A” denotes “not applicable” (due to a zero denominator). Actual data used in 

computations are listed in Table 6 (under “plot-specific”). The goodness-of-fit measures are defined in Table 5. 

 

The plot-specific goodness-of-fit statistics listed in Table 8 suggest that, for the unadjusted predictions (B-U), 

the absolute values of the percent mean bias %e  exceeded 10% for six of the eight plots. This is an indication 

that the model if unadjusted would produce large biases for most plots in the population, even though it was 

shown earlier (in Table 7 and Figure 8) that the model appeared to have predicted well on average for the 

population. The differences between the unadjusted and adjusted predictions are obvious in Figure 9. 

 

The plot-specific goodness-of-fit statistics (Table 8) indicate that: 

 

1. The differences between the unadjusted and adjusted predictions can be large for many plots. For 

example, for plot 3, δ=20.1584 for unadjusted predictions, while δ=6.3791 for adjusted predictions. 

 

2. The adjusted predictions are not guaranteed to be better (i.e., more accurate) than the unadjusted 

predictions, and a zero mean bias does not imply better predictions. For instance, for plot 1, e = 

0.1169 and δ = 6.9131 for unadjusted predictions, while e = 0 and δ = 7.1386 for adjusted predictions. 

The unadjusted predictions are more accurate in terms of the overall δ value. 

 

Table 8 also lists the summary goodness-of-fit statistics for all eight plots combined (bottom two rows, with 

the plot number designated as “All”). They were calculated using the formulas given in Table 5, based on all 28 

observations listed in Table 6. To illustrate the calculation of the summary statistics, for instance, for the 

unadjusted predictions obtained directly from the base model [2], the grand means of the observed heights, 

predicted heights and prediction errors from all N=28 observations are obtained as follows: 



 28 

∑ ∑=
= =

m

i

n

j
ij

i

y
N

y
1 1

20.6543 =
1   ∑ ∑=

= =

m

i

n

j
ij

i

y
N

y
1 1

20.9518 =ˆ
1

ˆ   0.2975- =)ˆ(
1

e
1 1

ij

m

i

n

j
ij yy

N

i

∑ ∑ −=
= =

 

 

where y represents the dependent variable H (so the expressions are more generic), m=8, i=1, 2, …, 8, n1=3, 

n2=2, n3=2, n4=1, n5=3, n6=6, n7=4 and n8=7 (the calculated results listed in Table 6 only include two decimal 

places). Hence, e.g., the percent mean bias, standard deviation and R
2
 for the entire population are: 
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Other summary goodness-of-fit statistics can be calculated in a similar manner. They are listed in Table 8 

identified by the prediction type of “B-U” and Plot=All, where “All” refers to all plots combined. Note that the 

summary goodness-of-fit statistics for unadjusted predictions from all plots combined (Type=B-U and Plot=All 

in Table 8) are identical to those for unadjusted population-based predictions (Type=B-U in Table 7). This is 

because the two types of predictions have the same unadjusted height predictions ( s'Ĥ  in Table 6) obtained 

directly from the base model [2]. 

 

For the adjusted plot-specific predictions, calculations for the summary goodness-of-fit statistics are similar 

except that the adjusted predictions and errors ( adjĤ  and eadj in Table 6) are used in place of the unadjusted 

predictions and errors. For instance: 
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Other summary goodness-of-fit statistics can be calculated in a similar manner. Results are listed in the bottom 

row in Table 8 (Type=B-A, Plot=All).  

 

The summary goodness-of-fit statistics listed in Table 8 suggest that when all plots are combined, the adjusted 

predictions (δ=6.5101) are more than twice as accurate as the unadjusted predictions (δ=15.4934). A more 

detailed look of the plot-by-plot goodness-of-fit statistics reveals that this is mainly caused by the substantial 

accuracy gains for plots 2, 3, 4, 5, 6 and 7 after adjustment. Even for plots 1 and 8 where the accuracy is 

reduced after adjustment, the differences between unadjusted (δ=6.9131 for plot 1 and δ=11.4454 for plot 8) 

and adjusted (δ=7.1386 for plot 1 and δ=11.4920 for plot 8) predictions are small. These can also be seen in 

Figure 9. 
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5.3 Plot-Specific Predictions from the Mixed Model 

 

The same white spruce height-diameter data from the small population of eight plots (Table 9) were used to 

demonstrate the application of the fitted mixed model. Step-by-step computations relevant to the variables 

listed in Table 9 are described next. 

 

Table 9. Original data and height predictions from the white spruce mixed model [4]. 

Plot Tree DBH H 
fixĤ  der_u1 der_u2 Ĥ  e H  Ĥ  PAR adjĤ  eadj 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 

1 1 32.5 24.70 24.20 0.6416 -8.2069 24.64 0.07 21.53 21.17 1.0170 25.05 -0.35 

1 2 11.9 14.90 11.79 0.2939 -7.4060 13.14 1.76 21.53 21.17 1.0170 13.36 1.54 

1 3 36.6 25.00 25.58 0.6803 -7.7629 25.74 -0.74 21.53 21.17 1.0170 26.18 -1.18 

2 1 30.0 23.22 23.23 0.6145 -8.4550 20.82 2.40 17.99 18.70 0.9621 20.04 3.18 

2 2 22.0 12.76 19.29 0.5039 -8.9223 16.57 -3.81 17.99 18.70 0.9621 15.94 -3.18 

3 1 29.8 22.72 23.15 0.6122 -8.4737 21.25 1.47 21.75 22.03 0.9870 20.98 1.74 

3 2 34.6 20.77 24.94 0.6623 -7.9831 22.81 -2.04 21.75 22.03 0.9870 22.51 -1.74 

4 1 38.7 16.90 26.20 0.6976 -7.5288 18.97 -2.07 16.90 18.97 0.8910 16.90 0.00 

5 1 25.7 17.10 21.29 0.5601 -8.7940 19.97 -2.87 17.10 17.21 0.9938 19.85 -2.75 

5 2 11.7 11.60 11.61 0.2888 -7.3302 10.91 0.70 17.10 17.21 0.9938 10.84 0.76 

5 3 27.4 22.60 22.10 0.5829 -8.6777 20.74 1.86 17.10 17.21 0.9938 20.61 1.99 

6 1 13.5 19.20 13.19 0.3332 -7.9303 15.99 3.21 21.18 20.85 1.0161 16.25 2.95 

6 2 19.0 19.20 17.39 0.4509 -8.8366 20.18 -0.98 21.18 20.85 1.0161 20.50 -1.30 

6 3 26.2 24.40 21.54 0.5670 -8.7627 23.79 0.61 21.18 20.85 1.0161 24.17 0.23 

6 4 20.1 22.60 18.12 0.4712 -8.8931 20.85 1.75 21.18 20.85 1.0161 21.18 1.42 

6 5 18.5 19.80 17.05 0.4413 -8.7998 19.86 -0.06 21.18 20.85 1.0161 20.18 -0.38 

6 6 27.9 21.90 22.33 0.5892 -8.6386 24.42 -2.52 21.18 20.85 1.0161 24.82 -2.92 

7 1 30.4 29.10 23.39 0.6190 -8.4171 27.66 1.44 24.15 23.85 1.0127 28.01 1.09 

7 2 19.2 18.50 17.53 0.4546 -8.8493 20.46 -1.96 24.15 23.85 1.0127 20.72 -2.22 

7 3 20.8 21.80 18.56 0.4836 -8.9132 21.72 0.08 24.15 23.85 1.0127 21.99 -0.19 

7 4 26.5 27.20 21.68 0.5710 -8.7428 25.54 1.66 24.15 23.85 1.0127 25.87 1.33 

8 1 26.2 25.91 21.54 0.5670 -8.7627 22.84 3.07 20.34 20.36 0.9988 22.81 3.10 

8 2 20.8 17.68 18.56 0.4836 -8.9132 19.03 -1.35 20.34 20.36 0.9988 19.01 -1.33 

8 3 31.2 27.74 23.71 0.6279 -8.3391 25.76 1.98 20.34 20.36 0.9988 25.73 2.01 

8 4 22.1 16.46 19.34 0.5056 -8.9217 20.02 -3.56 20.34 20.36 0.9988 19.99 -3.53 

8 5 15.5 15.24 14.83 0.3792 -8.4021 14.58 0.66 20.34 20.36 0.9988 14.56 0.68 

8 6 24.4 24.99 20.62 0.5414 -8.8615 21.65 3.34 20.34 20.36 0.9988 21.62 3.37 

8 7 20.3 14.33 18.24 0.4748 -8.9001 18.64 -4.31 20.34 20.36 0.9988 18.62 -4.29 

Random parameters 
Plot 

1 2 3 4 5 6 7 8 

u1 -3.3692 1.2083 -4.0190 -11.0924 -2.2174 -4.2304 7.9135 9.1461 

u2 -0.3163 0.3725 -0.0667 -0.0672 0.0083 -0.5310 0.0749 0.4431 

Note: DBH (cm) and H (m) are observed tree diameter and height. All other variables are described in the main text. 

 

5.3.1 Prediction of Random Parameters 

 

To make a plot-specific prediction from the mixed model [4], the random parameters unique for each plot 

must be predicted first. Here, plot 1 is used as an example to demonstrate the computation, based on the 

estimated provincial coefficients listed in Table A4, Appendix 1 for white spruce: 

 

b1=35.6912, b2=4.4737, b3=-1.4524, 2
u1

σ =40.7210, 2
u2

σ =0.1348, 
21uu

σ =1.5971, 
2σ =3.0532. 
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where b1, b2 and b3 are fixed parameters applicable to every plot in the population, 2
u1

σ , 2
u2

σ  and 
21uu

σ  are 

variances and covariance for the two random parameters (u1 and u2) in model [4], and 
2σ  is the residual 

variance. 

 

The height predictions based on the fixed parameters only are listed in the 5
th

 column of Table 9. They are 

obtained directly from the mixed model [4], with the random parameters set to zero: 
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The partial derivatives of [4] with respect to the two random parameters are: 
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The derivatives (columns 6-7 of Table 9) constitute a design matrix, called the iZ  matrix, for the mixed model: 
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Given 2
u1

σ = 40.7210, 
21uu

σ = 1.5971, 2
u2

σ = 0.1348 and 2σ = 3.0532, for plot 1 with three observations and two 

random parameters, the variance-covariance matrices iR̂  and D̂  for the errors and random parameters are: 
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Therefore, the two random parameters for plot 1 can be predicted using the standard random parameter 

prediction equation listed in Table 4 for the FO method ( ii yH = , ),ˆ,(ˆ 0bxH ii_fix f= ): 

 

)ˆ()ˆˆ(ˆˆ 1''
i_fixiiiiii HHRZDZZDu −+= −  

 

which produces the following random parameter predictions for plot 1: 

   

' 0.3163]- [-3.3692,' ]u ,[uˆ
21 ==iu  

 

Random parameter predictions for other plots were obtained in a similar manner. Results are listed at the 

bottom of Table 9. Intermediate plot-by-plot computations are shown in the main body of Table 9.  
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5.3.2 Prediction of Tree Height 

 

Once the iû  for plot i are available (i = 1, 2, …, 8), plot-specific height predictions and associated prediction 

errors are calculated by (from Table 4): 

 

[21] 
iii_fixi uZHH ˆˆˆ +=  

 

[22] )ˆˆ( iii_fixii uZHHe +−=  

 

Hence, for plot 1:  
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Table 9 (columns 8 and 9) lists the predicted heights and prediction errors (to two decimal places) for all eight 

plots in the population.  

 

Height predictions obtained from equation [21] represent the standard application of a mixed model fitted by 

the FO method. Some better predictions may be obtained if we could adjust the model through the 

proportional adjustment method. To use the proportional adjustment method for mixed model [4], a plot-

specific proportional adjustment ratio (PARi) between the averages of the observed heights and predicted 

heights is calculated: 

 

PARi = ii HH ˆ/  

 

where iH  (column 10, Table 9) is the average of the observed heights for plot i, and 
iĤ  (column 11, Table 9) is 

the average of the unadjusted predicted heights for plot i from the FO method (equation [21]). 

 

For plot 1, PARi = 21.53/21.17 = 1.0170 (column 12, Table 9). This plot-specific PARi can then be used to 

calculate adjusted height predictions and associated prediction errors for plot i: 

 

[23] 
iiadji HH ˆPARˆ

_ ⋅=  

 

[24] 
i_adjiadji HHe ˆ

_ −=  

 

Results of the calculations for all eight plots are listed in columns 13 and 14 of Table 9.  

 

For a graphic comparison, the unadjusted and adjusted predictions from the mixed model [4] are shown in 

Figure 10. Notice the closeness between the unadjusted and adjusted predictions across the DBH range for all 

plots except for plot 4, which has only one observation. 
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Figure 10. Unadjusted (solid lines) and adjusted (dashed lines) plot-specific predictions from the white 

spruce mixed model [4] with provincial coefficients. The original data and calculations are listed in 

Table 9. Plot-specific goodness-of-fit statistics are listed in Table 10.  
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The goodness-of-fit statistics associated with the unadjusted and adjusted predictions from the white spruce 

mixed model [4] are listed in Table 10 for each of the eight plots in the population. Summary goodness-of-fit 

statistics for all eight plots combined are also listed in Table 10 (bottom two rows).  

 

Table 10. Goodness-of-fit statistics from the white spruce mixed model [4] on the example data. 

Type Plot 
Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

M-U 1 0.3604 1.6736 1.2773 0.8560 1.2176 0.9447 0.9777 3.03 5.02 33.33 1.7614 

 2 -0.7081 -3.9361 4.3888 3.1033 10.1321 0.6296 0.6871 -9.78 20.09 100.00 19.7629 

 3 -0.2860 -1.3153 2.4774 1.7518 3.1505 -2.3141 -0.9260 -1.68 8.13 0 6.2191 

 4 -2.0671 -12.2313 N/A 2.0671 4.2728 N/A 0 -12.23 12.23 100.00 4.2728 

 5 -0.1061 -0.6203 2.4678 1.8105 4.0713 0.7981 0.8985 -0.86 10.35 33.33 6.1013 

 6 0.3356 1.5843 2.0188 1.5211 3.5091 0.0704 0.6982 1.68 7.31 33.33 4.1883 

 7 0.3038 1.2580 1.6626 1.2842 2.1654 0.8784 0.9175 0.20 5.50 25.00 2.8564 

 8 -0.0238 -0.1172 3.1098 2.6108 8.2900 0.6972 0.7825 -3.24 13.72 57.14 9.6716 

             

M-A 1 0 0 1.3929 1.0239 1.2935 0.9412 0.9767 1.38 5.49 33.33 1.9402 

 2 0 0 4.5027 3.1839 10.1371 0.6294 0.6786 -5.62 19.33 100.00 20.2742 

 3 0 0 2.4631 1.7417 3.0334 -2.1910 -0.9718 -0.36 8.03 0 6.0669 

 4 0 0 N/A 0 0 N/A 0 0 0 0 0 

 5 0 0 2.4608 1.8345 4.0371 0.7998 0.8987 -0.24 10.49 33.33 6.0557 

 6 0 0 2.0543 1.5314 3.5169 0.0683 0.7011 0.09 7.43 33.33 4.2203 

 7 0 0 1.6250 1.2081 1.9804 0.8888 0.9249 -1.07 5.38 25.00 2.6405 

 8 0 0 3.1117 2.6153 8.2992 0.6969 0.7822 -3.11 13.72 57.14 9.6824 

             

M-U All -0.0082 -0.0398 2.2315 1.8684 4.8018 0.7725 0.8663 -1.44 9.88 42.86 4.9797 

M-A All 0 0 2.1896 1.8126 4.6232 0.7809 0.8755 -1.22 9.46 39.29 4.7945 

Note: Type refers to prediction type. “M-U” denotes mixed model, unadjusted. “M-A” denotes mixed model, adjusted. 

“All” denotes all plots combined. “N/A” denotes “not applicable” (due to a zero denominator). The goodness-of-fit 

measures are defined in Table 5. 

 

The results shown in Table 10 suggest that, in terms of the overall accuracy measure δ, the unadjusted 

predictions are more accurate for plots 1, 2, 6 and 8, whereas the adjusted predictions are more accurate for 

plots 3, 4, 5 and 7. When all plots are combined, the adjusted predictions (δ=4.7945) are slightly more accurate 

than the unadjusted predictions (δ=4.9797). Of course, the mean bias ( e ) and the percent mean bias ( %e ) for 

adjusted predictions are guaranteed to be zeros.  

 

Readers can make different types of comparisons based on the results listed in Tables 8 and 10. For instance, 

the summary statistics from all eight plots combined suggest that the overall accuracy (δ) has a ranking of: 

 

M-A (most accurate, δ=4.7945) → M-U (δ=4.9797) → B-A (δ=6.5101) → B-U (least accurate, δ=15.4934).  

 

5.3.3 Computation Program for Mixed Model Predictions 

 

An example program for mixed model calculations is provided in Table 11. The program produced the results 

in Tables 9 and 10. It requires SAS BASIC, SAS STATS and SAS IML (interactive matrix language) to run. 

Interested readers who may have difficulties in accessing the SAS modules could use other programs or carry 

out the calculations manually, as demonstrated above. All calculations are algebraic (i.e., they are non-

iterative). The only difficulty for some readers may be the derivation of the partial derivatives of a mixed 

model with respect to random parameters. Those who wish to seek possible help on derivatives may wish to 

contact the lead author, who will provide the partial derivatives for any model if such derivatives exist. 
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Table 11. An example program for mixed model calculations from the FO method. 

 

NOTE: The example data for white spruce are identical to those listed in Table 9 (plotid = plot); 
 

1    OPTIONS LS=118 PS=60; 

2    data examp1; 

3    input Plotid Tree DBH HT; 

4    cards; 

1 1 32.5 24.70 

1 2 11.9 14.90 

1 3 36.6 25.00 

2 1 30.0 23.22 

2 2 22.0 12.76 

3 1 29.8 22.72 

3 2 34.6 20.77 

4 1 38.7 16.90 

5 1 25.7 17.10 

5 2 11.7 11.60 

5 3 27.4 22.60 

6 1 13.5 19.20 

6 2 19.0 19.20 

6 3 26.2 24.40 

6 4 20.1 22.60 

6 5 18.5 19.80 

6 6 27.9 21.90 

7 1 30.4 29.10 

7 2 19.2 18.50 

7 3 20.8 21.80 

7 4 26.5 27.20 

8 1 26.2 25.91 

8 2 20.8 17.68 

8 3 31.2 27.74 

8 4 22.1 16.46 

8 5 15.5 15.24 

8 6 24.4 24.99 

8 7 20.3 14.33 

33   ; 

34   run; 

35 

36   proc sort data=examp1; by plotid; run; 

37 

38   data examp2; set examp1; by plotid; 

39      j+1; if first.plotid then do; i+1; j=1; end; 

40   run; 

NOTE: Fix parameters (b1, b2, b3) for the provincial white spruce model [4] are listed in Table A4, Appendix 1; 

NOTE: z1 and z2 are partial derivatives with respect to random parameter u1 and u2, respectively; 

NOTE: b1i and b2i are predicted random parameters; 
41 

42   data examp3; set examp2; by plotid  ; 

43     b1=35.6912; b2= 4.4737; b3=-1.4524; 

44     z1 = 1 / (1 + EXP(b2 + b3 * LOG(DBH))); 

45     z2 = -  b1*EXP(b2 + b3 * LOG(DBH))  / (1 + EXP(b2 + b3 * LOG(DBH)))**2; 

46     zu1=z1; zu2=z2; 

47     ht_fix=1.30+ b1/(1+exp(b2 + b3*log(dbh+0) )); 

48     res_fix=ht-ht_fix; 

49   run; 

50 

51   filename random 'c:\_localdata\random.txt' ; 

52   proc iml; 

53     file random; 

54     use examp3; 

55     do k=1 to 8; 

56       read all var {z1 z2} into Z where (i=k); 

57       read all var {res_fix} into RES where (i=k); 

58       read all var {j} into MM where (i=k); 

59     ss=nrow(mm); 
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60     R=3.0532 * I(ss); 

61     D= {40.7210 1.5971, 1.5971 0.1348}; 

62     b=D*Z`*  INV(Z * D * Z` + R)*RES; 

63       bTrans = b`; 

64       b1i= bTrans[1,1]; 

65       b2i= bTrans[1,2] ; 

66       put k 5. +2 b1i 10.6 +2 b2i 10.6 +2; 

67   end; 

68   closefile random ; 

69   quit ; 

70 

71   data prandom; infile random; input i b1i b2i; run ; 

72 

73   data all; merge examp3 Prandom; by i; run; 

74 

75   proc sort data=all; by plotid; run ; 

NOTE: ht_pred is unadjusted height prediction, and ht_adj is adjusted height prediction; 
77   data allpx; set all; 

78     ht_pred = ht_fix+b1i*zu1+b2i*zu2; 

79   run; 

80 

81   proc means data=allpx noprint; 

82     var ht ht_pred; 

83     output out=resu1 mean=m_ht_ss m_ht_pred_ss; 

84     by plotid; 

85   run; 

86 

87   data examp4; merge allpx resu1; by plotid; drop _TYPE_ _FREQ_; run; 

88 

89   data examp5; set examp4; 

90     PAR=m_ht_ss/m_ht_pred_ss; 

91     ht_adj=PAR*ht_pred; 

92     diff_pred=ht-ht_pred; diff_adj =ht-ht_adj; 

93   run; 

94 

NOTE: This produces the results shown in Table 9; 
95   proc print data=examp5; 

96     var Plotid Tree DBH HT ht_fix z1 z2 b1i b2i ht_pred diff_pred m_ht_ss m_ht_pred_ss PAR ht_adj diff_adj; 

97   run; 

98 

NOTE: The follow statements calculate the goodness-of-fit measures defined in Table 5; 
99   data allp; 

100    set examp5; 

101     y_pred = ht_pred; 

102    *y_pred = ht_adj; 

103     Y_res=ht-y_pred; 

104     e_percent=(Y_res/ht)*100; 

105    if e_percent> 5 or e_percent<-5  then do; e5 =1; end; 

106    if e_percent>10 or e_percent<-10 then do; e10=1; end; 

107    if e_percent>20 or e_percent<-20 then do; e20=1; end; 

108       e_abs=abs(ht-Y_pred); e_percent1=abs(Y_res/ht)*100; 

109    ident=1; 

110  run; 

111 

112  proc means data=allP noprint; 

113    id ident; 

114    var ht y_pred Y_res e_percent e_abs e5 e10 e20  e_percent1; 

115    by plotid; 

116    output out=result  mean=m_ht m_pred m_res  MPE MAD m_e5 m_e10 m_e20  MAPE 

117                       sum =s_ht s_pred s_res  s_e_percent s_e_abs s_e5 s_e10 s_e20  s_e_percent1 ; 

118  run; 

119 

120  data res2; merge allP result; 

121    by plotid; 

122  run; 

123 

124  data res3; set res2; 
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125    diff0 = (ht - y_pred); diff1 = (ht - y_pred)**2; diff2 = (ht - m_ht)**2; diff3 = (y_pred - m_pred)**2; 

126    diff4 = (y_res - m_res)**2; 

127   run; 

128 

129  proc means data=res3 noprint; 

130    id m_ht m_pred MPE MAD s_e5 s_e10 s_e20  MAPE; 

131    var Y_res diff0 diff1 diff2 diff3 diff4; 

132    by plotid; 

133    output out=res4 sum=Y_sum sum0 sum1 sum2 sum3 sum4 

134                    mean=Y_mean mean0 mean1 mean2 mean3 mean4 

135                    std=std_r std_0 ; 

136  run; 

137 

138  data ttk4; 

139    set res4; 

140    Mean_Bias=mean0; 

141    Percent_Bias=100*mean0/m_ht; 

142    bias2=100*(m_ht -m_pred)/m_ht; 

143    rmse=sqrt(sum1/(_freq_-0)); 

144    MSE =    (sum1/(_freq_-0)); 

145    if _freq_>1 then do; Std_dev =sqrt(sum4/(_freq_-1)); end; 

146    if _freq_=1 then do; Std_dev = 0                   ; end; 

147    if sum2>0 then do; R2 = 1 - sum1/sum2; end; 

148    if sum2=0 then do; R2 = 0            ; end; 

149    if (sum2+sum3)> 0      then do;  CC = 1- sum1/(sum2 + sum3 + _freq_*(m_ht-m_pred)**2); end; 

150    if (sum2=0 and sum3=0) then do;  CC = 0                                              ; end; 

151    if s_e5>0  then do;  e5 =100*s_e5/_freq_; end; 

152    if s_e10>0 then do; e10=100*s_e10/_freq_; end; 

153    if s_e20>0 then do; e20=100*s_e20/_freq_; end; 

154    if s_e5=.  then do;  e5=0; end; if s_e10=. then do; e10=0; end; if s_e20=. then do; e20=0; end; 

155 

156    Accuracy=Mean_Bias**2+std_dev**2; 

157 

158  proc print data=ttk4; 

159    var Plotid Mean_Bias Percent_Bias Std_dev MAD MSE R2 cc MPE MAPE e10 Accuracy; 

160  run; 

 

The final print statement produces the plot-specific M-U results listed in Table 10. 

 

To produce the plot-specific M-A results listed in Table 10, one simply needs to remove the “*” in line 102 of 

the program (i.e., change “*y_pred = ht_adj” to “y_pred = ht_adj”). 

 

To produce the M-U and “Plot=All” results listed in Table 10, one needs to:  

 

1). Remove line 113;  

2). Change “by plotid” in lines 115, 121 and 132 to “by ident”;  

3). Remove variable “plotid” in line 159.  

 

To produce the M-A and “Plot=All” results listed in Table 10, one needs to:  

 

1). Remove the “*” in line 102;  

2). Remove line 113;  

3). Change “by plotid” in lines 115, 121 and 132 to “by ident”;  

4). Remove variable “plotid” in line 159. 

 

The example program given in Table 11 was designed to demonstrate the logic and step-by-step computations 

involved in using the FO method of the NMM technique. More generalized and efficient programs could be 

written using SAS or other programming languages, so long as the logic embedded in the example program is 

fully understood. Several computationally more efficient programs are available to limited users. 
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6. Application Examples on Larger Data Sets 
 

The performances of the fitted models and different types of predictions were evaluated on many 

independent data sets not used in modelling. Due to the amount of the work involved, here, only the 

procedures and results on two independent white spruce data sets collected after 1980 were presented. 

Interested readers could apply the same procedures to other data sets collected from other populations. Once 

again, the procedures presented here could also serve as an integral part of model validation. 

 

The first data set (data I) was collected in the boreal forest natural region of Alberta. It consists of 4,396 height-

diameter observations (trees) from 485 plots (subjects), with the number of observations per plot ranging from 

1 to 56. The second data set (data II) was collected in the Rocky Mountain natural region of Alberta. It consists 

of 2,675 height-diameter observations from 183 plots, with the number of observations per plot ranging from 

1 to 99. Figure 11 displays the two data sets. Due to the relatively large sample sizes, some figures presented in 

this section were cluttered. They were used to show patterns rather than details. 

 

 
Figure 11. White spruce data sets I (left) and II (right). The solid lines are unadjusted population-based 

predictions from the white spruce base model [2] with the provincial coefficients. The dashed lines are 

adjusted population-based predictions from the proportional adjustment method.  

 

6.1 Population-Based Predictions from the Base Model 

 

For the two types of population-based predictions (B-U and B-A) from the base model [2] with the provincial 

coefficients (b1=35.7854, b2=4.8482 and b3=-1.6040, Table A4, Appendix 1), their difference is minimal for data 

set I, but substantial for data set II. This can be seen in Figure 11 and from the calculated summary goodness-

of-fit statistics in Table 12.  

 

Table 12. Goodness-of-fit statistics for population-based predictions on two white spruce data sets. 

Type 
Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

    Data set I     

B-U -0.1174 -0.6662 2.8235 2.1511 7.9839 0.8539 0.9224 -2.61 13.36 51.25 7.9857 

B-A 0 0 2.8220 2.1480 7.9620 0.8543 0.9221 -1.93 13.28 51.48 7.9638 

    Data set II     

B-U -2.5253 -17.9770 2.6399 2.7888 13.3436 0.6496 0.8549 -20.25 22.45 68.90 13.3462 

B-A 0 0 2.3609 1.7623 5.5719 0.8537 0.9228 -1.93 13.98 53.64 5.5740 

Note: B-U = base model, unadjusted. B-A = base model, adjusted. The goodness-of-fit measures are defined in Table 5.  



 38 

The results shown in Table 12 suggest that, for data set I, the percent mean bias for unadjusted predictions is 

small ( -0.6662%e = ), and the overall accuracies for unadjusted predictions (δ=7.9857) and adjusted 

predictions (δ=7.9638) are very close. These suggest that the base model performed well with or without 

adjustment on data set I. This is also evident in Figure 11 (left graph). 

 

On data set II, the percent mean bias for unadjusted predictions is large ( 17.9770- =%e ), and the overall 

accuracies for unadjusted predictions (δ=13.3462) and adjusted predictions (δ=5.5740) are very different. If 

unadjusted, the base model performed poorly on data set II. This can be seen in Figure 11 (right graph). The 

adjusted predictions provided much improvement over the unadjusted predictions on data set II. 

 

6.2 Plot-Specific Predictions from the Base and Mixed Models 

 

Using the base model [2] and mixed model [4] with the provincial coefficients listed in Table A4, Appendix 1, 

and following the procedures demonstrated earlier for the small population of eight plots, four types of plot-

specific predictions were made on the two white spruce data sets. Summary goodness-of-fit statistics from the 

four types of predictions are listed in Table 13. Relevant spaghetti plots are shown in Figures 12 and 13.  

 

Table 13. Summary goodness-of-fit statistics for plot-specific predictions on two white spruce data sets. 

Type Plot 
Goodness-of-fit measure 

e  %e  SD  MAD    MSE R
2
 CC MPE MAPE e10 δ 

     Data set I     

B-U All -0.1174 -0.6662 2.8235 2.1511 7.9839 0.8539 0.9224 -2.61 13.36 51.25 7.9857 

B-A All 0 0 1.7885 1.3381 3.1979 0.9415 0.9712 0.29 8.62 32.42 3.1986 

M-U All 0.0164 0.0929 1.5737 1.1792 2.4762 0.9547 0.9769 -0.58 7.69 26.68 2.4768 

M-A All 0 0 1.5635 1.1581 2.4438 0.9553 0.9773 -0.56 7.45 25.89 2.4444 

     Data set II     

B-U All -2.5253 -17.9770 2.6399 2.7888 13.3436 0.6496 0.8549 -20.25 22.45 68.90 13.3462 

B-A All 0 0 1.5997 1.1960 2.5580 0.9328 0.9668 -0.07 9.48 36.82 2.5589 

M-U All -0.0956 -0.6804 1.4873 1.1187 2.2203 0.9417 0.9700 -2.36 9.21 33.72 2.2211 

M-A All 0 0 1.4694 1.0899 2.1584 0.9433 0.9709 -1.23 8.73 32.04 2.1592 

Note: B-U (base model, unadjusted), B-A (base model, adjusted), M-U (mixed model, unadjusted) and M-A (mixed model, 

adjusted) are prediction types, and “All” denotes all plots combined. The goodness-of-fit measures are defined in Table 5.  

 

The goodness-of-fit statistics (Table 13) suggest that for both data sets, the overall accuracy (δ) for all plots 

combined follows a consistent ranking of:  

 

M-A (most accurate) → M-U → B-A → B-U (least accurate) 

 

The results in Table 13 also suggest that for the base model, the overall accuracies of the adjusted predictions 

(δ=3.1986 for data set I and δ=2.5589 for data set II) are much improved over their unadjusted counterparts, 

especially for data set II (δ=7.9857 for data set I and δ=13.3462 for data set II).  

 

For the mixed model, the difference between the unadjusted (M-U) and adjusted (M-A) predictions is small. 

On data set I, δ=2.4768 for M-U and δ=2.4444 for M-A. On data set II, δ=2.2211 for M-U and δ=2.1592 for M-A. 

Both M-U and M-A are more accurate than the proportionally adjusted B-A predictions from the base model. 

But the improvement of either M-U or M-A over B-A is not as drastic as B-A over B-U for both data sets. 

 

Note that the summary goodness-of-fit statistics for B-U in Table 13 are identical to those for the population-

based B-U in Table 12. This is because the unadjusted plot-specific predictions were identical to the unadjusted 

population-based predictions. Both types of predictions were obtained directly from the base model [2]. 
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Figure 12. Plot-specific B-A predictions across the DBH range, from the white spruce base model [2] for 

data sets I and II shown in Figure 11. The curves are proportional to each other with no cross-overs.  

 

 

 
Figure 13. Plot-specific M-U (a) and M-A (b) predictions across the DBH range, from the white spruce 

mixed model [4] for data sets I and II shown in Figure 11. The curves may cross-over each other. 
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A comparison of the spaghetti plots in Figures 12 and 13 suggests that for data set I, some adjusted plot-

specific height predictions from the base model could exceed 45 meters. This is unlikely for trees in Alberta. 

Hence, besides the better summary goodness-of-fit statistics, the mixed model predictions (M-U and M-A) are 

also considered biologically more reasonable than the adjusted predictions from the base model (B-A).  

 

However, since only two plots (out of 485 for data set I) produced unrealistic predictions, and the rest of the 

plots (99.6%) for data set I and all plots for data set II produced reasonable predictions, the adjusted 

predictions from the base model can still be considered reasonable in the vast majority of cases, albeit they 

are somewhat inferior to the mixed model predictions when judged by the results in Table 13.  

 

6.3 Further Assessment of Plot-Specific Predictions 

 

Sometimes, in order to compare the plot-specific predictions in more details, or to reveal the relationships 

between prediction errors and other variables, some additional analyses are needed. These analyses could also 

be used to identify outlying observations, variables or plots that caused large prediction errors, which may 

require cautions or further actions. Here, we selected the plot-specific percent mean bias ( %ei ), proportional 

adjustment ratio (PARi), overall accuracy (δi), number of observations per plot (ni) and DBHi as examples, and 

used some graphical means to briefly show how these analyses could be carried out on the white spruce data 

sets I and II. 

 

Figure 14 shows the residual plots from the four types of predictions for data set II (the residual plots for data 

set I were all satisfactory). It can be seen that the “B-U” (base model, unadjusted) type of predictions (Figure 

14(a)) shows an unreasonable pattern, whereas other types of predictions all appear to be reasonable.  
 

 

 
Figure 14. Residual plots for white spruce data set II from B-U (a), B-A (b), M-U (c) and M-A (d) types of 

predictions. Relevant summary goodness-of-fit statistics for the predictions are listed in Table 13. 
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Figure 15 shows the plot-specific %e  values for the unadjusted predictions from the base and mixed models. 

The %e  values for the adjusted predictions are not shown because they all equal to zeros. It can be seen from 

Figure 15 that the mixed model predictions are much better than the base model predictions, and that the 

predictions for data set I are better than those for data set II. For the mixed model predictions none of the 

absolute %e  values exceeds 10% when the number of observations in a plot is greater than five. For the base 

model predictions the absolute %e  values vary considerably across the number of observations per plot. 

 

 
Figure 15. Plot-specific percent mean biases ( %e ) for the unadjusted predictions from the base model 

(a) and mixed model (b) for the two white spruce data sets (I and II), where the x-axis denotes the 

number of observations per plot. 

 

Figure 15 also shows that, for data set I, except for a few points where the number of observations in the plots 

is small (i.e., ≤5), the %e  values are scattered more evenly around zero. This is not the case for data set II, 

where the %e  values are skewed downward, suggesting that the base and mixed models both over-predicted 

the data. The over-predictions from the mixed model are less profound than those from the base model.  

 

Figure 16 shows the plot-specific PAR values against the number of observations per plot and DBH. Since a PAR 

value of one indicates a zero prediction bias, the closer the PAR value to one, the better the predictions. From 

Figure 16 it can be inferred that, for example:  

 

− The predictions from the mixed model are better than those from the base model;  

− The predictions for data set I are better than those for data set II; 

− The spread of the PAR values across the gradients of the number of observations per plot (ni) and DBH is 

much wider for the base model than that for the mixed model, especially when ni>5. 
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Figure 16. Plot-specific proportional adjustment ratios against the number of observations per plot 

and DBH from the base model (a, b) and mixed model (c, d) for the white spruce data sets I and II. 
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Figure 17 shows the plot-specific overall accuracy (δ) values against the number of observations per plot for 

data set II (the graphs for data set I showed similar patterns). It confirms that the differences between the B-A 

and B-U predictions are much larger than those between the M-A and M-U predictions. It also suggests that 

the M-U, M-A and B-A predictions are similar for most plots, and that they are typically better than the B-U 

predictions.  

 

 
Figure 17. Plot-specific overall accuracy (δ) values for data set II (183 plots) from the unadjusted (a) 

and adjusted (b) base model, and the unadjusted (c) and adjusted (d) mixed model. Note: a different 

scale is used for graph (a) in order to include all data points.  

 

More detailed numerical analyses revealed that, for the 183 plots for data set II, the M-U prediction was more 

accurate than the B-U and B-A predictions for 170 (92.9%) and 82 (44.8%) plots, respectively; and the M-A 

prediction was more accurate than the B-A and M-U predictions for 147 (80.3%) and 150 (82.0%) plots, 

respectively.  

 

The fact that the M-U predictions were found to be more accurate than the B-A predictions for 82 (44.8%) out 

of 183 plots suggested that the B-A predictions were more accurate than the M-U predictions for 101 (55.2%) 

out of 183 plots. This implied that the computationally simpler B-A predictions were more accurate than the 

computationally more complex M-U predictions for more plots in data set II, even though the summary 

goodness-of-fit statistics obtained for all plots combined indicated that the M-U predictions (i.e., δ=2.2211, 

Table 13) were more accurate than the B-A predictions (δ=2.5589, Table 13). This explains why, in order to get 

a more complete picture about model performance, the goodness-of-fit statistics obtained from individual 

plots and the distribution of these statistics should be assessed jointly with the summary goodness-of-fit 



 44 

statistics obtained for all plots combined (Huang et al. 2009a). Otherwise, some of the unique characteristics 

about model performance could be overlooked. 

 

Further analyses of the white spruce data set II revealed that, among the 101 plots where the B-A predictions 

were more accurate than the M-U predictions, most had five or fewer observations per plot. The biggest 

differences between the M-U and M-A predictions also occurred when the number of observations per plot 

was five or less. 

 

Based on Figures 14 to 17 and the spaghetti plots shown in Figures 12 and 13, one can identify the specific 

plots that produced large prediction errors and take appropriate actions if warranted. One can also identify the 

potential causes that resulted in the large prediction errors. For the two example data sets for white spruce, 

the potential causes for the large prediction errors could be: a small number of observations in a plot, a small 

x-value (i.e., a small diameter), a unique data set that a fitted model does not automatically apply to, or a 

combination of these. 
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7. Recommendations 
 

Since making population-based predictions from a fitted base model is straightforward, the recommendations 

made here pertain to the plot-specific predictions. 

 

1. For any species in a plot without any height measurement, the base model is used.   

 

2. For any species in a plot with at least one observed height, there are four options for obtaining the 

predictions for missing heights: B-U (base model, unadjusted), B-A (base model, proportionally adjusted), 

M-U (mixed model, unadjusted) and M-A (mixed model, proportionally adjusted). Extensive evaluation on 

the model fitting data (Appendix 2) as well as on independent model application data suggested that 

under fairly general conditions, when all plots in a population were combined, the following ranking in 

terms of the overall accuracy measure δ ( 22 SDeδ += ) always holds for the height-diameter models in 

Alberta:  

 

M-A (most accurate) → M-U → B-A → B-U (least accurate) 

 

 Therefore, if a generic approach is to be used:  

 

 −Mixed model, proportionally adjusted M-A prediction should be the first choice 

 −Mixed model, unadjusted M-U prediction should be the second choice 

 −Base model, proportionally adjusted B-A prediction should be the third choice 

 −Base model, unadjusted B-U prediction should be the last choice 

 

3. For any particular plot in a population, the “best” prediction could be obtained by comparing the δ values 

(and other goodness-of-fit measures) from the four types of predictions. Depending on the quantity, 

quality and the unique characteristics of the plot-specific data, the “best” prediction for a particular plot 

could be from any one of the four types of predictions. 

 

4. For most practical purposes, it is recommended that adjusting mixed model predictions should be 

considered only when the percent mean bias of the unadjusted predictions exceeds ±5% (i.e., |%e| >5%). 

Otherwise, the gains from adjusting the predictions may not be substantial.  

 

Some important additional notes with regard to the above recommendations are presented here: 

 

1).  For plot-specific predictions, the number of observed prior observations per plot (ni) plays a critical 

role. When ni>5, M-U is generally as good as M-A. When ni≤5, M-A is often better in more cases than 

M-U. Large values of prediction errors usually occur when ni≤5. Of course, the spread or the 

distribution of the prior observations also plays an important role.  

 

2).  In many cases B-A and M-U predictions are similar, suggesting that B-A is a valid choice in many cases, 

especially when the mixed model option is unviable due to various reasons, or when the 

computational complexity and efficiency become blocking issues. However, in these cases the 

spaghetti plots of the B-A predictions should be checked to ensure that there is not unreasonable 

prediction across the DBH range in which a model is to be applied. In general whenever possible the 

M-U predictions are preferred over the B-A predictions. 

 

3).  In some cases where the predictions from a mixed model are unrealistic or biologically not meaningful 

(as usually revealed from spaghetti plots, assisted by a model users’ knowledge and experience), the B-
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A predictions should be considered. Or else the mixed model predictions must be constrained to 

biologically meaningful values. Similarly, if the B-A predictions are unrealistic or do not make any 

biological sense, they must be constrained or the mixed model predictions should be considered. 

 

4). If there is a strong indication of proportionality among the individual plots within a population, the 

adjusted plot-specific predictions from a base model are viable options. Otherwise, the predictions 

from a mixed model are better in general as they can account for different shapes (proportionalities) 

of the plots. In cases where the proportional adjustment ratio obtained from some peculiar data may 

lead to extremely large or small adjustments that are unrealistic or biologically not meaningful (again, 

this can be checked from spaghetti plots), one should use the proportional adjustment method with 

caution. For instance, if the observed height is 5.0 m and the predicted height is 2.5 m at a small 

diameter, a PAR value of 2 will be obtained. If this ratio is used to multiply the predicted height across 

the diameter range, over-predictions at larger diameters are expected.  

 

5).  The goodness-of-fit of the base model predictions is largely determined by the validity of the 

proportionality assumption amongst the plots in a population. The goodness-of-fit of the mixed model 

predictions is highly influenced by the mixed model specification and the number of prior observations 

per plot.  

 

6).  Typically when there is only one observed prior observation for a species in a plot, the B-A prediction is 

simple and more efficient to obtain. They are also more accurate than the B-U prediction, and as 

accurate as the M-A prediction. However, since there is only one observation, spaghetti plots from 

different types of predictions must be assessed before determining the “best” prediction. 

 

7). Since most of the large prediction errors occur when ni≤5, whenever feasible, plot-specific predictions 

should be done with six or more reasonably spread observations per plot (even though a minimum of 

three observations were found to be enough in many cases). 

 

8). For predictive models (e.g., height-diameter models developed in this study), examining the spaghetti 

plots is more important in most cases than evaluating the residual plots and goodness-of-fit statistics.  

Spaghetti plots provide a very powerful and intuitive tool for exposing model behaviors, not only 

within but also beyond the observed data range where predictions are likely to be made in model 

application. Standard residual plots and goodness-of-fit statistics (such as those used in this study) 

typically reflect model performance within the observed data range. Their utility for predictive models 

is limited. 

 

9). The performance of the models and prediction types is highly dependent on the quality, quantity and 

relevance (e.g., data range and distribution) of the data. The prediction problems observed in this 

study were mostly caused by too few data in the plots and/or too narrow range of the data (e.g., the 

data were concentrated on the small DBH side or at the outer edges of the likely ranges). Improving 

the quality, quantity and distribution of the data shall be the focus of any data collection. 

 

10). Short-term solutions for data and prediction problems may include: verifying the data to remove any 

potential measurement error, constraining the model to within some biologically meaningful bounds, 

adjusting the model predictions for some specific data ranges, or a combination of these.  
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8. Additional Notes 
 

8.1 Alternative Model Specifications 

 

There are many other base model forms suitable for describing the height-diameter relationship for different 

species in Alberta (e.g., Huang et al. 1992). Although exceptions do exist, models [1] and [2] were found to be 

better than other model forms in most cases. The mixed models shown in [3] and [4] were derived from [1] 

and [2], respectively. They could also be expanded to include a third random parameter (u3) to become: 

 

[25] )u(b
2211

33)DBH)]ub(exp()[1ub(1.30H ++−−++=  

 

[26] 
)ln(DBH)]ub()uexp[(b1

)u(b
1.30H

3322

11

++++

+
+=  

 

Indeed, estimations based on [25] and [26] were obtained for major Alberta tree species (they are available to 

interested readers). Furthermore, results showed that in many cases, the goodness-of-fit statistics indicated 

that models [25] and [26] were better than the recommended models [3] and [4]. For instance, Table 14 lists 

the fit statistics for aspen in subregions 1-6 and 12-21 from models [25] and [3]: 

 

Table 14. Fit statistics for aspen in subregions 1-6 and 12-21 from models [25] and [3]. 

Parameter 
Model [25] 

 

Model [3] 

Estimate Std. Err. t value Pr > |t| 

 

Estimate Std. Err. t value Pr > |t| 

b1 24.4098 0.1450 168.37 <.0001 

 

24.2731 0.1387 174.96 <.0001 

b2 0.09283 0.002303 40.31 <.0001 

 

0.09511 0.001989 47.81 <.0001 

b3 1.4262 0.03557 40.10 <.0001 

 

1.4440 0.03075 46.96 <.0001 
2
u1

σ  8.3669 0.7838 10.67 <.0001 

 

8.6884 0.6614 13.14 <.0001 

21uu
σ  -0.04787 0.01017 -4.70 <.0001 

 

-0.03443 0.004205 -8.19 <.0001 
2
u2

σ  0.001224 0.000193 6.35 <.0001 

 

0.000305 0.000034 8.93 <.0001 

13uuσ  -0.09473 0.1331 -0.71 0.4767 

     
23uuσ  0.01387 0.002791 4.97 <.0001 

     2
u3

σ  0.2047 0.04375 4.68 <.0001 

     2σ  2.3589 0.04404 53.57 <.0001 

 

2.4253 0.04469 54.27 <.0001 

AIC 31634.5 

    

31717.5 

   BIC 31686.7 

    

31753.9 

   δ 1.9570     2.0389    

Note: AIC, BIC and the overall accuracy measure δ are defined in Table 5. 

 

Judging from the fit statistics listed in Table 14, it could be inferred that model [25], which has smaller AIC, BIC 

and δ values, is better than model [3] (except for a minor issue of insignificant 
13uuσ  at α=0.05). The residual 

plots from [25] and [3] are similar. They are shown in Figure 18. 

 

However, a comparison of the spaghetti plots outputted from [25] and [3] indicated that [25] could be too 

flexible to be realistic when predictions were made across the DBH range. This is also shown in Figure 18.  
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Figure 18. Residual and spaghetti plots from models [25] (top graphs) and [3] (bottom graphs) for 

aspen in subregions 1-6 and 12-21. 200 randomly selected plots (out of 1,358 plots) are shown in the 

spaghetti plots.  

 

Similar to the results for aspen in subregions 1-6 and 12-21, the results for aspen in subregions 7-10 also 

showed that model [25] had better goodness-of-fit statistics than model [3], and the residual plots from both 

models are similar. However, the spaghetti plots showed that [25] could sometimes produce unrealistic 

predictions (Figure 19).  

 

 
Figure 19. Residual and spaghetti plots from model [25] for aspen in subregions 7-10. Corresponding 

residual and spaghetti plots from model [3] are shown in Figure A2 of Appendix 1. 
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The recommended mixed models [3] and [4] can be considered reduced forms of models [25] and [26], 

respectively. For some species with unique data, further reductions may be necessary. For instance, for white 

birch (BW), when model [3] was estimated, fit statistics (Table 15) and residual plot (Figure 20(a)) indicated 

that [3] fitted the BW data well. However, an examination of the spaghetti plot (Figure 20(b)) suggested that 

[3] could produce biologically unrealistic predictions at many DBH ranges where predictions are likely to be 

made in model applications. 

 

Table 15. Fit statistics for white birch from model [3]. 

Parameter Estimate Std. Err. t value Pr > |t| 

 

    AIC    BIC     δ 

b1 25.9979 1.9218 13.53 <.0001  6899.4 6930.3 0.749 

b2 0.04878 0.006109 7.99 <.0001     

b3 1.0080 0.02590 38.92 <.0001     
2
u1

σ  262.19 42.2803 6.2 <.0001 

 

   

21uuσ  -0.6393 0.1051 -6.08 <.0001 

 

   
2
u2

σ  0.001636 0.000262 6.24 <.0001 

 

   
2σ  0.9709 0.03649 26.61 <.0001 

 

   
Note: AIC, BIC and the overall accuracy measure δ are defined in Table 5. Corresponding fit statistics from model [27] (i.e., model [3] 

with one random parameter u1 only) are listed in Table A2 of Appendix 1.  

 

 
Figure 20. Residual and spaghetti plots from mixed models [3] (a and b) and [27] (c and d) for white 

birch (BW). The original data for BW are shown in Appendix 1 (Figure A3). 
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Since the spaghetti plot shown in Figure 20(b) indicated that [3] was too flexible to be a prediction model for 

BW, a reduced form of [3] expressed in [27] with only one random parameter u1 was fitted (alternative model 

forms with one random parameter only were found to be inferior to [27]): 

 

[27] 3b
211 DBH)]bexp()[1ub(1.30H −−++=  

 

Residual and spaghetti plots from [27] are also shown in Figure 20 (fit statistics are listed in Table A2 of 

Appendix 1). Had the residual plot and goodness-of-fit statistics been used as criteria, one could have 

concluded that [3] were better. But the spaghetti plot clearly shows that, as a predictive model, [27] is more 

reasonable than [3] for BW. 

 

8.2 Model Selection Criteria 

 

As a general rule, when selecting the “best” model, three fundamental principles should be followed: 

 

1. First and foremost, biological considerations and logical interpretations are of the greatest significance 

and importance when selecting the “best” model. No matter how good a model may appear to be, it 

matters little if the model does not make any biological sense, or if it divagates from the relevant 

subject matter considerations. The best model is the one that makes biological sense. 

 

2. Second, appropriate graphical techniques are generally more important and more powerful than other 

diagnostic techniques and statistical measures in revealing model behaviors. Standard, studentized, 

normalized (and lagged if applicable) residual plots are most common in this regard. But they are not 

enough. Indeed, as demonstrated in the above examples, they could even be misleading if a 

satisfactory residual plot was interpreted to symbolize a good model. Residual plots or their variants 

(e.g., observed versus predicted values) are much less powerful in revealing model behaviors than 

spaghetti plots.  

 

 For models developed for prediction purposes, which almost all models are in forest growth and yield 

studies, spaghetti plots are most capable in revealing model behaviors not only within but also beyond 

the observed data ranges where predictions are likely to be made in model application. They should be 

examined routinely before the “best” model is chosen, particularly when mixed models are involved. 

Depending on the NMM method used, mixed models can alter the inherent shapes of their fixed 

model counterparts. A sigmodal non-declining function such as the Chapman-Richards function can 

become a non-sigmodal declining function in predictions (e.g., Figures 19 and 20).  

 

3. Third, once the last two principles are duly considered, many statistical measures can be used to 

quantify and to further assess the goodness-of-fit of models. For models fitted for prediction purposes 

(as oppose to for descriptive and/or hypothesis testing purposes), the goodness-of-fit on model 

application data is more important than that on model fitting data. The goodness-of-fit statistics 

obtained on model fitting data typically inflate the goodness-of-fit of a model. This could explain, at 

least in part, why sometimes the reported goodness-of-fit of a model was hard to achieve in real-world 

model applications. 

 

In practice, when conflicts occur amongst the three fundamental principles, the recommended approach is 

that graphical techniques trump statistical measures, and biological and subject matter considerations trump 

graphical techniques. In fact, biological and subject matter considerations trump graphical techniques and 

statistical measures combined. It is the goal of and a challenge for model developers to develop models that 

make reasonable senses on all three fronts. 
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The fundamental principles also connote to some more specific caveats that practitioners should be aware of, 

for instance: 

 

 1). The “best” model cannot be selected or judged based on fit statistics (e.g., AIC, BIC, MSE, δ) alone; 

 2). The “best” model shall not be selected based on the significance of statistics alone; 

 3). A satisfactory residual plot does not necessarily mean a good model; 

 4). Fit statistics and residual plots usually only reflect model behaviors within the observed data range. 

 

Indeed, simply based on the better fit statistics and residual plots to choose a prediction model could be very 

misleading. This is particularly true for mixed models.  

 

It may be worth repeating that the shape of a mixed model could be very different from that of the base model 

the mixed model was derived from. The shape of a mixed model could also become too flexible to be 

biologically meaningful due to the inclusion of statistically significant random parameters and the use of the 

specific NMM technique such as the first-order method, even though the fit statistics and residual plots could 

still appear “nice” or “increasingly better” when more random parameters were included.  

 

For predictive models, fit statistics and residual plots are not enough. Predictive models are frequently 

extrapolated beyond the observed data range (with some limits of course). The spaghetti plots fill in the gaps 

left by the fit statistics and residual plots. They can be used to ensure that a specified mixed model has enough 

but not too much flexibility to track the trends of specific data in a population, without resorting solely to 

some kind of statistical measures (or worse yet, statistical tests) to determine if additional random parameters 

are needed in model specification and selection. 

 

In this study we recommended models [3] and [4] after an extensive evaluation of fit statistics, residual plots, 

and more importantly, spaghetti plots and biological considerations. Our emphasis was to find models that 

have broad application scopes and ranges for many species in many different geographical regions across the 

province, and that are robust under different conditions for different data sets, rather than to find the “best” 

model for a specific species in a specific region. Of course, for a specific data set, it is possible that a different 

model could be better than [3] and [4]. If that is the case, one could use the different model for the specific 

data set, so long as the model is appropriately evaluated across the likely model application range.   

 

8.3 Expanded Height-Diameter Models 

 

The height-diameter relationship developed in this study can be written in a general form as: 

 

 H = f(DBH) 

 

where f denotes some nonlinear function. The height-diameter relationship can be expanded to include other 

variables (e.g., Huang and Titus 1994, Meng et al. 2008, Huang et al. 2009c): 

 

 H = f(DBH, other variables) 

 

where “other variables” can mean other tree and/or stand related variables, such as: 

 

− Stand density and competition (e.g., basal area/ha, stems/ha, relative density index, stand density 

index, point densities, different spatial and/or a-spatial point densities and competition measures); 

− Site quality (e.g., site index, dominant/co-dominant height, top height); 

− Age (e.g., tree age, stand age); 
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− Bio-geo-climatic variables (e.g., ecosite, habitat type, slope, aspect, elevation, growing degree-days, 

mean annual temperature/precipitation, moisture/dryness index, solar radiation, GPS coordinates); 

− Species composition (e.g., tree number proportion, basal area proportion); 

− Crown size, crown length, crown ratio and/or crown closure class; 

− Others (e.g., soil type/depth/salinity/nutrient regime, distance to the coastline, wind speed, etc.). 

 

For instance, a study in Alberta showed that including wind speed and/or crown class into the height-diameter 

model of lodgepole pine significantly improved the fit of the model (Meng et al. 2008). Another study in 

Finland showed that including distance to/from the coastline into the height-diameter model significantly 

improved the height predictions for the Finnish National Forest Inventory (Eerikäinen 2009).  

 

Since many of the variables listed above are related in one way or the other, unless the study objective is to 

assess their impacts on height-diameter relationship, it is uncommon to include more than three additional 

variables into a height-diameter model. Of course, when more (statistically significant) variables are added into 

a model, the model generally becomes more accurate (i.e., δ becomes smaller, 22 SDeδ += ). 

 

However, in practical applications, the true benefit of including additional variables into height-diameter 

models must be weighed carefully against the time and costs associated with collecting and analyzing the 

additional variables. The increased costs of obtaining these variables need to be balanced out against the 

realized, palpable gains in practice. Otherwise, the prime purpose of model building, which is to use “simple 

and inexpensive” x-variable(s) to predict “difficult, complex and expansive” y-variable, could become a 

practically meaningless academic exercise. 

 

It has generally been taken for granted that the inclusion of additional (statistically significant) variables into a 

model would automatically result in better predictions (helping to justify the increased time and costs 

associated with measuring the additional variables). But this is not always true for nonlinear mixed models, 

which have some capability to account for the impacts of known and unknown variables left-out by the models 

without actually requiring that these variables to be identified or measured.  

 

For major Alberta tree species, expanded height-diameter models with up to seven x-variables were 

developed. They are currently available to interested readers and will be released to general public later. 

 

8.4 Multi-level Height-Diameter Models 

 

The height-diameter data used in this study are hierarchical in nature. They could also be modeled using multi-

level NMM technique. In the simplest scenario, plots can be considered level one and trees within plots can be 

considered level two. Since some of the plots are clustered together, within known forest management units, 

and have been measured repeatedly, other levels of analyses could be added to represent, e.g.: 

 

 −Plot clusters 

 −Forest management units 

 −Measurement years 

 

Interested readers could carry out such analyses following the procedures demonstrated in, e.g., Robinson and 

Wykoff (2004), and Yang and Huang (2011b). Our analyses (not presented here) suggested that the practical 

benefit in terms of accuracy gains of such analyses was very limited, relative to the substantially increased 

complexity in computation. In many cases, we had to reduce the sample size, the number of hierarchical levels, 

or the number of random parameters to achieve convergence. Hence, for practical purposes, we do not 

recommend fitting multi-level height-diameter models at this time. 
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Appendix 1. Fit Statistics and Diagnostic Plots for Height-Diameter Models. 
 

Table A1. Parameter estimates and fit statistics for aspen and deciduous species combined. 

 Aspen  Deciduous combined 

 Model [1]  Model [3]  Model 

[1] 

Model 

[3] 

Sub-

region 

7 to 10 11 Others Prov.  7 to 10 11 Others Prov.  Prov. Prov. 

b1 27.8444 26.9085 25.9208 26.6988  21.5750 25.3145 24.2731 24.7105  26.7947 25.1911 

b2 0.0554 0.0717 0.0780 0.0707  0.09508 0.08479 0.09511 0.08791  0.0693 0.07710 

b3 1.3352 1.2526 1.2472 1.1996  1.4822 1.4096 1.4440 1.3934  1.2518 1.2939 

2
u1

σ       16.4815 7.7043 8.6884 8.9402   10.7569 

21uu
σ       -0.05070 -0.02313 -0.03443 -0.02921   -0.03519 

2
u2

σ       0.000530 0.000248 0.000305 0.000295   0.000306 

2σ       1.5407 2.7003 2.4253 2.5523   2.7128 

AIC      2127.0 34645.7 31717.5 68759.1   94109.2 

BIC      2149.8 34682.1 31753.9 68800.8   94152.1 

N 490 8323 7802 16615  490 8323 7802 16615  22616 22616 

m 192 1330 1358 2880  192 1330 1358 2880  3431 3431 

e  0.0058 -0.0036 -0.0034 -0.0049  0.0012 0.0016 0.0040 0.0017  -0.0007 0.0084 

%e  0.0306 -0.0166 -0.0174 -0.0238  0.0063 0.0076 0.02077 0.0081  -0.0035 0.0447 

SD 2.9245 2.4038 2.2880 2.4093  0.9614 1.5140 1.4279 1.4604  2.4448 1.5209 

MAD 2.3299 1.8694 1.7482 1.8525  0.7136 1.1393 1.0766 1.0980  1.8636 1.1343 

MSE 8.5880 5.7798 5.2364 5.8055  0.9224 2.2918 2.0386 2.1325  5.9774 2.3130 

R
2
 0.6994 0.8324 0.8562 0.8400  0.9675 0.9335 0.9440 0.9412  0.89 0.9563 

CC 0.8238 0.9083 0.9224 0.9128  0.9831 0.9652 0.9709 0.9694  0.94 0.9776 

MPE -2.76 -1.69 -1.87 -1.97  -0.68 -0.77 -0.76 -0.82  -2.43 -0.98 

MAPE 13.90 9.59 10.04 10.15  4.67 6.11 6.58 6.30  11.97 7.81 

e10 54.49 36.54 37.63 38.04  9.39 16.54 18.47 17.32  43.74 24.05 

δ 8.5529 5.7784 5.2351 5.8048  0.9243 2.2921 2.0389 2.1327  5.9768 2.3131 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, and m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. 
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Table A2. Parameter estimates and fit statistics for balsam poplar and white birch. 

 Balsam poplar  White birch 

 Model [1]  Model [3]  Model [1] Model [3] 

Subregion 7 to 11 Others Prov.  7 to 11 Others Prov.  Prov.       Prov. 

b1 27.0288 31.0457 28.3642  26.2016 27.1012 26.5900  22.4814 19.7369 

b2 0.0577 0.0405 0.0510  0.05536 0.05746 0.05622  0.0673 0.08067 

b3 1.2407 0.9862 1.1338  1.0899 1.1380 1.1094  1.1496 1.1258 

2
u1

σ      14.1752 19.3487 17.4954   11.2387 

21uuσ      -0.03296 -0.05695 -0.04696    

2
u2

σ      0.000204 0.000256 0.000240    

2σ      2.1735 2.9184 2.4426   1.1304 

AIC     9833.6 6498.3 16371.4   7027.5 

BIC     9863.6 6526.5 16405.4   7049.6 

N 2412 1501 3913  2412 1501 3913  2088 2088 

m 537 415 952  537 415 952  608 608 

e  0.0313 -0.0224 -0.0023  0.0118 -0.0065 .0057  0.0253 0.0121 

%e  0.1905 -0.1244 -0.0137  0.0720 -0.0362 0.0335  0.3288 0.1573 

SD 2.3211 2.4120 2.3911  1.3134 1.5141 1.3852  1.6307 0.9612 

MAD 1.7593 1.8738 1.8250  0.9609 1.1379 1.0230  1.1691 0.6991 

MSE 5.3930 5.8258 5.7201  1.7246 2.2911 1.9184  2.6623 0.9236 

R
2
 0.9123 0.8779 0.8992  0.9719 0.9519 0.9662  0.9034 0.9664 

CC 0.9545 0.9344 0.9469  0.9857 0.9749 0.9827  0.9496 0.9829 

MPE -1.48 -4.05 -2.98  -1.09 -2.33 -1.53  -3.49 -2.19 

MAPE 13.21 13.22 13.22  8.24 8.76 8.41  18.00 12.01 

e10 49.25 44.37 47.94  24.75 24.18 24.58  62.40 44.06 

δ 5.3885 5.8180 5.7172  1.7253 2.2926 1.9189  2.6598 0.9240 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. For white birch (BW), only one random parameter u1 was used in the mixed model [3] due to data and prediction issues. 
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Table A3. Parameter estimates and fit statistics for lodgepole pine. 

 Model [2]  Model [4] 

Subregion 7 to 9 10 11 Others Prov.  7 to 9 10 11 Others Prov. 

b1 21.2291 28.6413 36.3029 38.9208 35.7547  18.8448 26.0553 29.2765 33.4784 27.5659 

b2 4.1138 3.7850 3.7620 3.8340 3.8234  3.4986 3.0418 3.0320 3.0063 3.0715 

b3 -1.6672 -1.4192 -1.2816 -1.2172 -1.2824  -1.5232 -1.2077 -1.1951 -1.0743 -1.2163 

2
u1

σ        18.0265 21.7236 17.6153 30.9620 23.5958 

21uu
σ        1.2058 1.2360 0.7772 2.0049 1.0124 

2
u2

σ        0.1391 0.1900 0.1136 0.2050 0.1452 

2σ        0.9720 1.3496 1.5973 1.9026 1.4718 

AIC       11461.7 67424.1 89362.3 11553.6 181256.9 

BIC       11485.5 67460.9 89400.9 11581.5 181300.7 

N 3721 19458 24814 2964 50957  3721 19458 24814 2964 50957 

m 221 1411 1830 401 3863  221 1411 1830 401 3863 

e  0.0074 -0.0020 -0.0005 0.0028 -0.0013  -0.0006 -0.0007 -0.0007 0.0002 -0.0008 

%e  0.0533 -0.0108 -0.0025 0.0133 -0.0066  -0.0041 -0.0038 -0.0036 0.0008 -0.0039 

SD 1.8436 2.5894 2.3057 2.4822 2.6058  0.9438 1.0999 1.2014 1.2656 1.1487 

MAD 1.4332 2.0678 1.7963 1.9717 2.0542  0.7091 0.8361 0.9156 0.9784 0.8724 

MSE 3.4008 6.7058 5.3165 6.1653 6.7906  0.8906 1.2098 1.4433 1.6013 1.3195 

R
2
 0.7421 0.6496 0.7538 0.6955 0.7175  0.9324 0.9368 0.9332 0.9208 0.9451 

CC 0.8532 0.7871 0.8596 0.8210 0.8353  0.9648 0.9671 0.9651 0.9581 0.9716 

MPE -1.66 -2.41 -1.55 -1.44 -2.23  -0.66 -0.57 -0.51 -0.48 -0.55 

MAPE 10.96 12.26 9.40 9.78 11.64  5.58 5.01 4.73 4.88 4.91 

e10 44.72   48.80 34.77 38.93 44.96  13.73 10.78 9.12 10.56 10.16 

δ 3.3990 6.7051 5.3161 6.1612 6.7903  0.8908 1.2099 1.4433 1.6018 1.3196 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. 
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Table A4. Parameter estimates and fit statistics for white spruce. 

 Model [2]  Model [4] 

Subregion 7 to 9 10 11 Others Prov.  7 to 9 10 11 Others Prov. 

b1 32.3269 34.9926 34.6665 36.2971 35.7854  24.2756 32.2041 38.6180 35.5340 35.6912 

b2 3.9573 4.2859 5.3149 4.6580 4.8482  4.2848 4.3066 4.5318 4.5852 4.4737 

b3 -1.2246 -1.3676 -1.7700 -1.5743 -1.6040  -1.5075 -1.3920 -1.4163 -1.5398 -1.4524 

2
u1

σ        28.6345 45.5216 36.9042 25.2084 40.7210 

21uu
σ        1.3682 1.9412 1.5107 1.3413 1.5971 

2
u2

σ        0.09606 0.1394 0.1284 0.1211 0.1348 

2σ        1.4274 2.1279 3.2690 3.4560 3.0532 

AIC       6109.7 35225.2 61177.8 88061.1 193005.9 

BIC       6130.6 35258.5 61215.5 88099.1 193050.5 

N 1766 9063 14150 20314 45293  1766 9063 14150 20314 45293 

m 146 864 1604 1684 4298  146 864 1604 1684 4298 

e  -0.0241 -0.0182 0.0446 -0.0013 0.0074  -0.0103 -0.0032 0.0033 -0.0007 -0.0003 

%e  -0.1887 -0.1101 0.2326 -0.0060 0.0377  -0.0808 -0.0194 0.0170 -0.0032 -0.0014 

SD 1.7383 2.4395 2.9029 2.6301 2.9481  1.1361 1.3748 1.6937 1.7554 1.6423 

MAD 1.2528 1.8550 2.2101 2.0055 2.2681  0.8683 1.0315 1.2644 1.3321 1.2319 

MSE 3.0256 5.9529 8.4300 6.9182 8.6915  1.2900 1.8899 2.8686 3.0814 2.6971 

R
2
 0.9012 0.8770 0.8897 0.8537 0.8606  0.9578 0.9609 0.9624 0.9348 0.9567 

CC 0.9475 0.9341 0.9422 0.9210 0.9253  0.9783 0.9800 0.9808 0.9660 0.9778 

MPE -3.26 -3.32 -1.05 -1.90 -2.38  -1.64 -1.28 -1.14 -1.00 -1.12 

MAPE 11.49 12.85 13.44 10.33 13.02  8.05 7.51 8.10 6.95 7.48 

e10 42.64 49.27 50.98 37.58 49.54  29.11 24.47 27.60 21.09 24.06 

δ 3.0222 5.9516 8.4288 6.9175 8.6911  1.2907 1.8901 2.8688 3.0815 2.6972 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. 
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Table A5. Parameter estimates and fit statistics for black spruce. 

 Model [2]  Model [4] 

Subregion 7 to 10 11 Others Prov.  7 to 10 11 Others Prov. 

b1 24.1828 31.0767 41.1666 32.3393  30.1593 30.3027 36.9007 31.4656 

b2 4.1123 3.9215 4.0910 3.9894  3.8672 3.7906 3.8145 3.8184 

b3 -1.5121 -1.3339 -1.2291 -1.3141  -1.2362 -1.2628 -1.1753 -1.2312 

2
u1

σ       86.0875 112.06 103.29 121.78 

21uu
σ       4.1653 5.7989 4.1131 5.8217 

2
u2

σ       0.2578 0.3506 0.2097 0.3361 

2σ       1.5639 1.3796 1.6199 1.4595 

AIC      18567.1 29853.7 4958.2 53577.7 

BIC      18599.0 29887.6 4982.7 53616.5 

N 5168 8597 1321 15086  5168 8597 1321 15086 

m 703 935 245 1883  703 935 245 1883 

e  -0.0004 -0.0064 -0.0140 -0.0083  -0.0031 -0.0035 -0.0064 -0.0037 

%e  -0.0033 -0.0506 -0.0998 -0.0675  -0.0278 -0.0277 -0.0455 -0.0305 

SD 1.9530 1.8462 2.0435 1.9844  1.1642 1.0985 1.1516 1.1226 

MAD 1.5021 1.4491 1.5702 1.5396  0.8793 0.8260 0.8790 0.8467 

MSE 3.8156 3.4092 4.1826 3.9383  1.3551 1.2065 1.3252 1.2603 

R
2
 0.7869 0.8303 0.8571 0.8121  0.9243 0.9399 0.9546 0.9399 

CC 0.8807 0.9069 0.9225 0.8958  0.9601 0.9687 0.9765 0.9686 

MPE -3.30 -2.85 -3.22 -3.42  -1.71 -1.28 -1.51 -1.45 

MAPE 14.68 12.75 12.83 14.04  8.89 7.32 7.49 7.89 

e10 55.82 50.27 49.36 53.84  33.42 24.01 23.62 27.02 

δ 3.8141 3.4084 4.1762 3.9378  1.3554 1.2066 1.3262 1.2603 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. 
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Table A6. Parameter estimates and fit statistics for balsam fir. 

 Model [2]  Model [4] 

Subregion 7 to 9 10 11 Others Prov.  7 to 9 10 11 Others Prov. 

b1 22.3112 34.2277 33.7327 35.0921 32.2788  19.8891 29.8705 38.7029 36.3526 32.5355 

b2 4.8034 4.6921 4.7704 4.8799 4.6623  4.7659 4.7651 4.5386 4.7330 4.6422 

b3 -1.8182 -1.4838 -1.5809 -1.5840 -1.5370  -1.8645 -1.5958 -1.4116 -1.5003 -1.5239 

2
u1

σ        17.8958 42.0409 171.90 53.0408 64.3154 

21uu
σ        1.1288 2.0883 6.3316 1.6889 2.5988 

2
u2

σ        0.08223 0.1282 0.2736 0.08218 0.1401 

2σ        1.4992 1.9746 1.4513 2.2005 1.7860 

AIC       4637.7 16335.0 16453.3 9211.6 47027.8 

BIC       4655.4 16363.6 16482.9 9236.3 47063.9 

N 1369 4337 4748 2399 12853  1369 4337 4748 2399 12853 

m 93 440 507 251 1291  93 440 507 251 1291 

e  0.0024 0.0072 0.0789 0.0218 0.0274  0.0062 0.0256 0.0199 0.0100 0.0225 

%e  0.0249 0.0530 0.8649 0.1896 0.2460  0.0638 0.1875 0.2184 0.0874 0.2013 

SD 1.4293 1.9832 1.7408 2.0718 1.9337  1.1877 1.3284 1.1412 1.4132 1.2684 

MAD 1.0597 1.4274 1.1824 1.5081 1.36373  0.9106 0.9674 0.7783 1.0461 0.9112 

MSE 2.0459 3.9349 3.0380 4.2966 3.7403  1.4095 1.7648 1.3024 1.9965 1.6092 

R
2
 0.8892 0.9233 0.9351 0.8944 0.9220  0.9235 0.9656 0.9722 0.9509 0.9665 

CC 0.9414 0.9602 0.9669 0.9446 0.9597  0.9602 0.9825 0.9859 0.9747 0.9830 

MPE -2.08 -1.39 0.78 -1.72 -1.22  -1.51 0.21 -0.99 -1.21 -0.52 

MAPE 11.98 10.94 14.58 14.03 13.24  10.66 8.45 10.62 10.55 9.97 

e10 45.43 44.09 56.02 55.94 51.87  40.03 30.30 40.04 41.52 37.28 

δ 2.0429 3.9331 3.0367 4.2930 3.7398  1.4106 1.7652 1.3027 1.9973 1.6094 

Note: Subregions are defined in Table 2, “Prov.” denotes provincial (i.e., all subregions combined), N is the total number of 

observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 
2σ  is 

residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in Table 

5. 
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Table A7. Parameter estimates and fit statistics for Douglas-fir, larch, jack pine, and all coniferous combined. 

 Model [2]  Model [4] 

Species FD LT PJ All coniferous 

combined 

 FD LT PJ All coniferous 

combined 

b1 31.3354 25.1942 29.6471 37.0245  21.6981 25.6393 20.2435 30.2546 

b2 3.5952 4.6404 3.7192 4.4310  4.2180 3.3332 3.0007 4.2341 

b3 -1.1138 -1.7314 -1.3144 -1.4401  -1.5347 -1.0836 -1.3632 -1.4934 

2
u1

σ       32.7207 68.5390 21.5268 60.8756 

21uu
σ       3.1756 2.7006 1.0492 3.5585 

2
u2

σ       0.3557 0.2629 0.1248 0.2911 

2σ       1.7938 0.7084 1.2315 2.6934 

AIC      3047.8 4015.5 12158.0 529208.9 

BIC      3060.5 4036.5 12181.7 529256.5 

N 841 1378 3681 130089  841 1378 3681 130089 

m 45 150 217 6625  45 150 217 6625 

e  -0.0082 0.0425 -0.0021 -0.0061  0.0017 0.0002 0.0001 0.0015 

%e  -0.0598 0.4989 -0.0143 -0.0350  0.0123 0.0023 0.0005 0.0084 

SD 1.9165 2.4700 1.9721 2.7271  1.2922 0.7867 1.0675 1.5742 

MAD 1.5078 1.7728 1.5340 2.1090  0.9805 0.5349 0.8028 1.1679 

MSE 3.6817 6.1117 3.8914 7.4374  1.6678 0.6184 1.1392 2.4782 

R
2
 0.7850 0.7848 0.8148 0.8533  0.9023 0.9782 0.9457 0.9511 

CC 0.8787 0.8809 0.8978 0.9207  0.9483 0.9889 0.9720 0.9748 

MPE -3.01 -3.68 -2.35 -3.18  1.17 -1.02 -0.72 -1.19 

MAPE 12.69 20.42 11.81 13.69  7.93 7.12 6.04 8.07 

e10 45.90 69.45 45.72 51.89  26.04 23.51 16.49 26.10 

δ 3.6730 6.1028 3.8893 7.4373  1.6698 0.6189 1.1395 2.4782 

Note: only provincial models are fitted for Douglas-fir (FD), larch (LT), jack pine (PJ), and all coniferous species combined, N is the total 

number of observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uu

σ  are variances and covariance for the random parameters, and 

2σ  is residual variance. The goodness-of-fit measures (AIC, BIC, e , %e , SD, MAD, MSE, R
2
, CC, MPE, MAPE, e10 and δ) are defined in 

Table 5.  
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Figure A1. Fitted curves and residual plots from the base model [1] for aspen. The number in parentheses 

refers to the natural subregion defined in Table 2. The top two graphs are provincial. 
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Figure A2. Spaghetti and residual plots from the mixed model [3] for aspen. The number in parentheses refers to the natural subregion 

defined in Table 2. Up to 200 randomly selected plots are shown in each spaghetti plot. The top two graphs are provincial. 



 63 

 

 
Figure A3. Fitted curves and residual plots from the base model [1] for balsam poplar and white birch. The number in 

parentheses refers to the natural subregion defined in Table 2. Otherwise, the graphs are provincial. 
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Figure A4. Spaghetti and residual plots from the mixed models [3] for PB and BW. The number in parentheses refers to the natural 

subregion defined in Table 2. Otherwise, the graphs are provincial. Up to 200 randomly selected plots are shown in each spaghetti plot. 
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Figure A5. Fitted curves and residual plots from the base model [2] for lodgepole pine. The number in 

parentheses refers to the natural subregion defined in Table 2. 
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Figure A6. Spaghetti and residual plots from the mixed model [4] for lodgepole pine. The number in parentheses refers to 

the natural subregion defined in Table 2. Up to 200 randomly selected plots are shown in each spaghetti plot. 
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Figure A7. Fitted curves and residual plots from the base model [2] for white spruce. The number in 

parentheses refers to the natural subregion defined in Table 2. 
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Figure A8. Spaghetti and residual plots from the mixed model [4] for white spruce. The number in parentheses refers to 

the natural subregion defined in Table 2. Up to 200 randomly selected plots are shown in each spaghetti plot. 
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Figure A9. Fitted curves and residual plots from the base model [2] for black spruce. The number in 

parentheses refers to the natural subregion defined in Table 2. The top two graphs are provincial. 
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Figure A10. Spaghetti and residual plots from the mixed model [4] for black spruce. The number in parentheses refers to the natural 

subregion defined in Table 2. The top two graphs are provincial. Up to 200 randomly selected plots are shown in each spaghetti plot. 
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Figure A11. Fitted curves and residual plots from the base model [2] for balsam fir. The number in parentheses 

refers to the natural subregion defined in Table 2. 
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Figure A12. Spaghetti and residual plots from the mixed model [4] for balsam fir. The number in parentheses refers to the 

natural subregion defined in Table 2. Up to 200 randomly selected plots are shown in each spaghetti plot. 



 73 

 

 
Figure A13. Fitted curves and residual plots from the base model [2] for balsam fir, Douglas-fir, larch, and jack pine. All are 

provincial. 
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Figure A14. Spaghetti and residual plots from the mixed model [4] for balsam fir, Douglas-fir, larch, and jack pine. All are 

provincial. Up to 200 randomly selected plots are shown in each spaghetti plot. 
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Figure A15. Fitted curves and residual plots for lodgepole pine (model [2]), white spruce (model [2]), coniferous combined 

(model [2]), and deciduous combined (model [1]). All are provincial. 
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Figure A16. Spaghetti and residual plots for lodgepole pine (model [4]), white spruce (model [4]), coniferous combined (model [4]), and 

deciduous combined (model [3]). All are provincial. Up to 200 randomly selected plots are shown in each spaghetti plot.  
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Appendix 2. Summary Statistics from Different Types of Predictions (part 1 of 3). 

 
Type 

Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

AW B-U -0.0049 -0.0238 2.4093 1.8525 5.8055 0.8400 0.9128 -1.97 10.15 38.04 5.8048 

 B-A 0 0 1.5623 1.1538 2.4409 0.9327 0.9657 -0.82 6.49 19.55 2.4406 

 M-U 0.0017 0.0081 1.4604 1.0980 2.1325 0.9412 0.9694 -0.82 6.30 17.32 2.1327 

 M-A 0 0 1.4297 1.0438 2.0440 0.9437 0.9710 -0.70 5.90 16.32 2.0442 

AW1 B-U 0.0058 0.0306 2.9245 2.3299 8.5880 0.6994 0.8238 -2.76 13.9 54.49 8.5529 

 B-A 0 0 1.4029 0.9765 1.9761 0.9308 0.9665 -0.04 5.96 18.57 1.9680 

 M-U 0.0012 0.0063 0.9614 0.7136 0.9224 0.9675 0.9831 -0.68 4.67 9.39 0.9243 

 M-A 0 0 0.9373 0.6515 0.8767 0.9691 0.9844 -0.42 4.22 9.18 0.8785 

AW2 B-U -0.0036 -0.0166 2.4038 1.8694 5.7798 0.8324 0.9083 -1.69 9.59 36.54 5.7784 

 B-A 0 0 1.5989 1.1875 2.5570 0.9259 0.9621 -0.71 6.27 18.25 2.5563 

 M-U 0.0016 0.0076 1.5140 1.1393 2.2918 0.9335 0.9652 -0.77 6.11 16.54 2.2921 

 M-A 0 0 1.4849 1.0887 2.2046 0.9360 0.9670 -0.65 5.77 15.79 2.2049 

AW3 B-U -0.0034 -0.0174 2.2880 1.7482 5.2364 0.8562 0.9224 -1.87 10.04 37.63 5.2351 

 B-A 0 0 1.5287 1.1263 2.3376 0.9358 0.9673 -0.86 6.72 20.76 2.3370 

 M-U 0.0040 0.0208 1.4279 1.0766 2.0386 0.9440 0.9709 -0.76 6.58 18.47 2.0389 

 M-A 0 0 1.3933 1.0192 1.9411 0.9467 0.9726 -0.68 6.12 17.26 1.9413 

PB B-U -0.0023 -0.0137 2.3911 1.8250 5.7201 0.8992 0.9469 -2.98 13.22 47.94 5.7172 

 B-A 0 0 1.4919 1.0477 2.2268 0.9608 0.9804 -0.96 8.29 25.81 2.2257 

 M-U 0.0057 0.0335 1.3852 1.0230 1.9184 0.9662 0.9827 -1.53 8.41 24.58 1.9189 

 M-A 0 0 1.3382 0.9322 1.7904 0.9684 0.9840 -1.18 7.63 22.41 1.7908 

PB1 B-U 0.0313 0.1905 2.3211 1.7593 5.3930 0.9123 0.9545 -1.48 13.21 49.25 5.3885 

 B-A 0 0 1.4533 1.0183 2.1137 0.9656 0.9830 -0.08 8.45 27.11 2.1120 

 M-U 0.0118 0.072 1.3134 0.9609 1.7246 0.9719 0.9857 -1.09 8.24 24.75 1.7253 

 M-A 0 0 1.2814 0.8915 1.6414 0.9733 0.9865 -0.84 7.58 23.22 1.6421 

PB2 B-U -0.0224 -0.1244 2.4120 1.8738 5.8258 0.8779 0.9344 -4.05 13.22 44.37 5.8180 

 B-A 0 0 1.5731 1.1185 2.4778 0.9481 0.9736 -2.06 8.49 25.12 2.4745 

 M-U -0.0065 -0.0362 1.5141 1.1379 2.2911 0.9519 0.9749 -2.33 8.76 24.18 2.2926 

 M-A 0 0 1.4316 1.0027 2.0480 0.9570 0.9780 -1.79 7.71 21.59 2.0493 

BW B-U 0.0253 0.3288 1.6307 1.1691 2.6623 0.9034 0.9496 -3.49 18.00 62.40 2.6598 

 B-A 0 0 0.9739 0.6452 0.9494 0.9656 0.9828 -0.70 10.28 39.03 0.9485 

 M-U 0.0066 0.0858 0.8654 0.6188 0.7487 0.9728 0.9861 -2.11 10.71 38.60 0.7490 

 M-A 0 0 0.8329 0.5557 0.6934 0.9748 0.9873 -1.24 9.23 33.62 0.6938 

Dec B-U -0.0007 -0.0035 2.4448 1.8636 5.9774 0.8872 0.9402 -2.43 11.97 43.74 5.9768 

 B-A 0 0 1.6418 1.2044 2.6958 0.9491 0.9742 -0.95 8.05 26.54 2.6955 

 M-U 0.0084 0.0447 1.5209 1.1343 2.3130 0.9563 0.9776 -0.98 7.81 24.05 2.3131 

 M-A 0 0 1.4962 1.0868 2.2385 0.9578 0.9785 -0.91 7.38 22.75 2.2386 

Con B-U -0.0061 -0.0350 2.7271 2.1090 7.4374 0.8533 0.9207 -3.18 13.69 51.89 7.4373 

 B-A 0 0 1.8237 1.3905 3.3260 0.9344 0.9667 -1.07 9.34 33.99 3.3259 

 M-U 0.0015 0.0084 1.5742 1.1679 2.4782 0.9511 0.9748 -1.19 8.07 26.10 2.4782 

 M-A 0 0 1.5732 1.1656 2.4749 0.9512 0.9749 -1.18 8.02 25.86 2.4749 

Note: Type refers to the prediction types: B-U (base model, unadjusted), B-A (base model, adjusted), M-U (mixed model, 

unadjusted), and M-A (mixed model, adjusted). The goodness-of-fit measures are defined in Table 5. The base and mixed 

models are given in [1] to [4] for different species. “Dec” denotes all deciduous species combined. “Con” denotes all 

coniferous species combined. The number after the species code indicates the group of natural subregions. Otherwise, it is 

provincial (e.g., AW=aspen provincial). AW1=subregions 7-10, AW2=subregion 11, AW3=other subregions, PB1=subregions 

7-11, and PB2=other subregions. Subregions are defined in Table 2. 
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Appendix 2. Summary Statistics from Different Types of Predictions (part 2 of 3). 

 
Type 

Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

PL B-U -0.0013 -0.0066 2.6058 2.0542 6.7906 0.7175 0.8353 -2.23 11.64 44.96 6.7903 

 B-A 0 0 1.4534 1.1382 2.1125 0.9121 0.9575 -0.09 6.30 19.49 2.1124 

 M-U -0.0008 -0.0039 1.1487 0.8724 1.3195 0.9451 0.9716 -0.55 4.91 10.16 1.3196 

 M-A 0 0 1.1470 0.8692 1.3156 0.9453 0.9718 -0.49 4.88 10.06 1.3157 

PL1 B-U 0.0028 0.0133 2.4822 1.9717 6.1653 0.6955 0.8210 -1.44 9.78 38.93 6.1612 

 B-A 0 0 1.5388 1.1945 2.3694 0.8830 0.9429 -0.16 5.91 17.51 2.3678 

 M-U 0.0002 0.0008 1.2656 0.9784 1.6013 0.9208 0.9581 -0.48 4.88 10.56 1.6018 

 M-A 0 0 1.2572 0.9628 1.5799 0.9219 0.9595 -0.39 4.80 10.26 1.5805 

PL2 B-U 0.0074 0.0533 1.8436 1.4332 3.4008 0.7421 0.8532 -1.66 10.96 44.72 3.3990 

 B-A 0 0 1.1079 0.8529 1.2281 0.9069 0.9546 -0.08 6.73 21.90 1.2274 

 M-U -0.0006 -0.0041 0.9438 0.7091 0.8906 0.9324 0.9648 -0.66 5.58 13.73 0.8908 

 M-A 0 0 0.9427 0.7075 0.8885 0.9326 0.9650 -0.62 5.55 13.79 0.8887 

PL3 B-U -0.0020 -0.0108 2.5894 2.0678 6.7058 0.6496 0.7871 -2.41 12.26 48.80 6.7051 

 B-A 0 0 1.3043 1.0176 1.7013 0.9111 0.9561 -0.26 6.05 17.39 1.7011 

 M-U -0.0007 -0.0038 1.0999 0.8361 1.2098 0.9368 0.9671 -0.57 5.01 10.78 1.2099 

 M-A 0 0 1.0985 0.8336 1.2067 0.9369 0.9674 -0.52 4.98 10.71 1.2067 

PL4 B-U -0.0005 -0.0025 2.3057 1.7962 5.3165 0.7538 0.8596 -1.55 9.40 34.77 5.3161 

 B-A 0 0 1.4605 1.1431 2.1333 0.9012 0.9521 -0.12 5.82 16.46 2.1331 

 M-U -0.0007 -0.0036 1.2014 0.9156 1.4433 0.9332 0.9651 -0.51 4.73 9.12 1.4433 

 M-A 0 0 1.1984 0.9107 1.4362 0.9335 0.9656 -0.45 4.69 8.93 1.4362 

SW B-U 0.0074 0.0377 2.9481 2.2681 8.6915 0.8606 0.9253 -2.38 13.02 49.54 8.6911 

 B-A 0 0 1.8390 1.3826 3.3822 0.9458 0.9728 -0.16 8.25 29.03 3.3821 

 M-U -0.0003 -0.0014 1.6423 1.2319 2.6971 0.9567 0.9778 -1.12 7.48 24.06 2.6972 

 M-A 0 0 1.6341 1.2162 2.6701 0.9572 0.9781 -0.92 7.27 23.37 2.6702 

SW1 B-U -0.0013 -0.0060 2.6301 2.0055 6.9182 0.8537 0.9210 -1.90 10.33 37.58 6.9175 

 B-A 0 0 1.9111 1.4517 3.6528 0.9227 0.9601 -0.88 7.51 24.07 3.6524 

 M-U -0.0007 -0.0032 1.7554 1.3321 3.0814 0.9348 0.9660 -1.00 6.95 21.09 3.0815 

 M-A 0 0 1.7427 1.3178 3.0367 0.9358 0.9667 -0.88 6.83 20.59 3.0369 

SW2 B-U -0.0241 -0.1887 1.7383 1.2528 3.0256 0.9012 0.9475 -3.26 11.49 42.64 3.0222 

 B-A 0 0 1.2149 0.9444 1.4777 0.9517 0.9752 -2.17 9.12 33.98 1.4761 

 M-U -0.0103 -0.0808 1.1361 0.8683 1.2900 0.9578 0.9783 -1.64 8.05 29.11 1.2907 

 M-A 0 0 1.1297 0.8604 1.2754 0.9583 0.9786 -1.46 7.93 28.77 1.2761 

SW3 B-U -0.0182 -0.1101 2.4395 1.8550 5.9529 0.8770 0.9341 -3.32 12.85 49.27 5.9516 

 B-A 0 0 1.5199 1.1343 2.3105 0.9523 0.9759 -0.92 8.08 27.88 2.3100 

 M-U -0.0032 -0.0194 1.3748 1.0315 1.8899 0.9609 0.9800 -1.28 7.51 24.47 1.8901 

 M-A 0 0 1.3667 1.0157 1.8676 0.9614 0.9803 -1.06 7.27 23.44 1.8678 

SW4 B-U 0.0446 0.2326 2.9029 2.2101 8.4300 0.8897 0.9422 -1.05 13.44 50.98 8.4288 

 B-A 0 0 1.9071 1.4236 3.6377 0.9524 0.9763 0.43 9.18 33.64 3.6372 

 M-U 0.0033 0.0170 1.6937 1.2644 2.8686 0.9624 0.9808 -1.14 8.10 27.60 2.8688 

 M-A 0 0 1.6812 1.2381 2.8263 0.9630 0.9812 -0.86 7.75 26.39 2.8265 

PJ B-U -0.0021 -0.0143 1.9721 1.5340 3.8914 0.8148 0.8978 -2.35 11.81 45.72 3.8893 

 B-A 0 0 1.3262 1.0210 1.7599 0.9163 0.9591 -0.09 7.63 27.28 1.7589 

 M-U 0.0001 0.0005 1.0675 0.8028 1.1392 0.9457 0.9720 -0.72 6.04 16.49 1.1395 

 M-A 0 0 1.0662 0.8003 1.1365 0.9459 0.9722 -0.62 5.99 16.35 1.1368 

Note: B-U (base model, unadjusted), B-A (base model, adjusted), M-U (mixed model, unadjusted), and M-A (mixed model, 

adjusted). The goodness-of-fit measures are defined in Table 5. The base and mixed models are given in [1] to [4] for different 

species. The number after the species code indicates the group of natural subregions. Otherwise, it is provincial (e.g., PL=PL 

provincial). PL1=other subregions, PL2=subregions 7-9, PL3=subregion 10, PL4=subregion 11, SW1=other subregions, 

SW2=subregions 7-9, SW3=subregion 10, and SW4=subregion 11. Subregions are defined in Table 2. 
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Appendix 2. Summary Statistics from Different Types of Predictions (part 3 of 3). 

 
Type 

Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

SB B-U -0.0083 -0.0675 1.9844 1.5396 3.9383 0.8121 0.8958 -3.42 14.04 53.84 3.9378 

 B-A 0 0 1.2262 0.9176 1.5037 0.9283 0.9638 -0.73 8.26 30.63 1.5035 

 M-U -0.0037 -0.0305 1.1226 0.8466 1.2603 0.9399 0.9686 -1.45 7.89 27.02 1.2603 

 M-A 0 0 1.1115 0.8228 1.2353 0.9411 0.9696 -1.13 7.53 25.59 1.2354 

SB1 B-U -0.0140 -0.0998 2.0435 1.5702 4.1826 0.8571 0.9225 -3.22 12.83 49.36 4.1762 

 B-A 0 0 1.2614 0.9327 1.5936 0.9455 0.9729 -0.50 7.43 26.95 1.5912 

 M-U -0.0064 -0.0455 1.1516 0.8790 1.3252 0.9546 0.9765 -1.51 7.49 23.62 1.3262 

 M-A 0 0 1.1289 0.8311 1.2733 0.9564 0.9778 -0.95 6.88 21.35 1.2743 

SB2 B-U -0.0004 -0.0033 1.9530 1.5021 3.8156 0.7869 0.8807 -3.30 14.68 55.82 3.8141 

 B-A 0 0 1.2348 0.9182 1.5253 0.9148 0.9565 -0.83 9.14 34.77 1.5247 

 M-U -0.0031 -0.0278 1.1642 0.8793 1.3551 0.9243 0.9601 -1.71 8.98 33.42 1.3554 

 M-A 0 0 1.1494 0.8515 1.3209 0.9262 0.9616 -1.39 8.58 31.89 1.3211 

SB3 B-U -0.0064 -0.0506 1.8462 1.4491 3.4092 0.8303 0.9069 -2.85 12.75 50.27 3.4084 

 B-A 0 0 1.2146 0.9143 1.4757 0.9265 0.9629 -0.64 7.89 28.60 1.4753 

 M-U -0.0035 -0.0277 1.0985 0.8260 1.2065 0.9399 0.9687 -1.28 7.32 24.01 1.2066 

 M-A 0 0 1.0883 0.8057 1.1842 0.9410 0.9696 -0.97 7.00 22.43 1.1844 

FB B-U 0.0274 0.2460 1.9337 1.3637 3.7403 0.9220 0.9597 -1.22 13.24 51.87 3.7398 

 B-A 0 0 1.3650 0.9630 1.8634 0.9612 0.9802 -1.07 10.16 38.40 1.8631 

 M-U 0.0225 0.2013 1.2684 0.9112 1.6092 0.9665 0.9830 -0.52 9.97 37.28 1.6094 

 M-A 0 0 1.2601 0.8895 1.5877 0.9669 0.9832 -0.89 9.51 35.36 1.5878 

FB1 B-U 0.0218 0.1896 2.0718 1.5081 4.2966 0.8944 0.9446 -1.72 14.03 55.94 4.2930 

 B-A 0 0 1.4888 1.0809 2.2183 0.9455 0.9725 -0.60 10.66 43.02 2.2165 

 M-U 0.01 0.0874 1.4132 1.0461 1.9965 0.9509 0.9747 -1.21 10.55 41.52 1.9973 

 M-A 0 0 1.4033 1.0205 1.9685 0.9515 0.9752 -1.31 10.08 39.18 1.9693 

FB2 B-U 0.0024 0.0249 1.4293 1.0597 2.0459 0.8892 0.9414 -2.08 11.98 45.43 2.0429 

 B-A 0 0 1.2229 0.9273 1.4978 0.9189 0.9579 -1.52 10.72 40.91 1.4956 

 M-U 0.0062 0.0638 1.1877 0.9106 1.4095 0.9235 0.9602 -1.51 10.66 40.03 1.4106 

 M-A 0 0 1.1716 0.8866 1.3716 0.9256 0.9615 -1.39 10.32 38.50 1.3726 

FB3 B-U 0.0072 0.0530 1.9832 1.4274 3.9349 0.9233 0.9602 -1.39 10.94 44.09 3.9331 

 B-A 0 0 1.4391 1.0307 2.0720 0.9596 0.9795 -0.73 8.68 32.21 2.0711 

 M-U 0.0256 0.1875 1.3284 0.9673 1.7648 0.9656 0.9825 0.21 8.45 30.30 1.7652 

 M-A 0 0 1.3183 0.9474 1.7374 0.9661 0.9828 -0.07 8.09 28.64 1.7378 

FB4 B-U 0.0789 0.8649 1.7408 1.1824 3.0380 0.9351 0.9669 0.78 14.58 56.02 3.0367 

 B-A 0 0 1.2685 0.8504 1.6098 0.9656 0.9827 -0.38 11.04 41.83 1.6091 

 M-U 0.0199 0.2184 1.1412 0.7783 1.3024 0.9722 0.9859 -0.99 10.62 40.04 1.3027 

 M-A 0 0 1.1351 0.7567 1.2881 0.9725 0.9861 -1.13 10.09 37.68 1.2884 

FD B-U -0.0082 -0.0598 1.9165 1.5078 3.6817 0.7850 0.8787 -3.01 12.69 45.90 3.6730 

 B-A 0 0 1.4927 1.1672 2.2335 0.8696 0.9313 -1.57 9.56 35.91 2.2282 

 M-U 0.0017 0.0123 1.2922 0.9805 1.6678 0.9023 0.9483 -1.17 7.93 26.04 1.6698 

 M-A 0 0 1.2876 0.9729 1.6560 0.9029 0.9489 -1.10 7.86 25.92 1.6580 

LT B-U 0.0425 0.4989 2.4700 1.7728 6.1117 0.7848 0.8809 -3.68 20.42 69.45 6.1028 

 B-A 0 0 1.2987 0.9495 1.6890 0.9405 0.9720 2.77 13.68 51.96 1.6866 

 M-U 0.0002 0.0023 0.7867 0.5349 0.6184 0.9782 0.9889 -1.02 7.12 23.51 0.6189 

 M-A 0 0 0.7859 0.5285 0.6171 0.9782 0.9890 -0.78 6.97 22.42 0.6176 

Note: B-U (base model, unadjusted), B-A (base model, adjusted), M-U (mixed model, unadjusted), and M-A (mixed model, 

adjusted). The goodness-of-fit measures are defined in Table 5. The base and mixed models are given in [1]-[4] for different 

species. The number after the species code indicates the group of natural subregions. Otherwise, it is provincial (e.g., SB=SB 

provincial). SB1=other SB subregions, SB2=subregions 7-10, SB3=subregion 11, FB1=other FB subregions, FB2=subregions 7-9, 

FB3=subregion 10, and FB4=subregion 11. Subregions are defined in Table 2. 
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Appendix 3. Metric Conversion Chart 

 

   1 cm =  0.39370 in. 

   1 m =  3.28083 ft. 

   1 m = 1.09361 yards 
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/acre 

 

   1 ha = 10000 m
2
 

 

   1 km = 1000 m 

   1 km = 0.62137 miles 

   1 km
2
 = 100 ha 

   1 km
2
 = 0.3861 miles

2
 

 

   1 in. = 2.5400 cm 

   1 ft. = 0.3048 m 

   1 acre = 0.4047 ha 

   1 ft
2
 = 0.09290 m

2
 

   1 ft
3
 = 0.02832  m

3
 

 

   1 ft
2
/acre = 0.2296 m

2
/ha 

   1 ft
3
/acre = 0.06997 m

3
/ha 

 

   1 mile = 1.6093 km 

   1 mile
2
 = 2.5898 km

2
 

   1 mile
2
 = 258.9846 ha 

 

   1 fbm = 1 ft. × 1 ft.  × 1 in. 

   1 fbm = 0.0023597 m
3
 

   1 Mfbm = 1000 foot board measure (fbm) 

   1 Mfbm = 2.3597 m
3
 

 

   1 township = 6 miles × 6 miles = 36 mile
2
 

   1 township = 9.6558 km × 9.6558 km = 93.2345 km
2
  

   1 township = 9323.45 ha 

 

   1 m
3
 log ≈ 233 board feet lumber (provincial average conversion factor) 

 1 Mfbm ≈ 4.3 m
3
 log (provincial average conversion factor) 
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