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Executive Summary and Acknowledgement 
 

This study describes the nonlinear mixed-effects modeling technique applied to a volume-age model 

frequently used in Alberta. It demonstrates the procedures for using a fitted mixed model to make 

subject-specific predictions on data not used in model fitting. Generalized and step-by-step computer 

programs associated with the predictions are provided to facilitate the computations. Criteria for 

obtaining the most reasonable predictions under different circumstances are discussed.  
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1. Introduction 
 

Regression models can generally be classified as population-based models and subject-specific models. 

Traditional regression models estimated from the least squares method are typically population-based models. 

They predict the population averages, and as such, they are also referred to as “population-average models”, 

“population models”, or “base models” (when contrasted to subject-specific models or mixed models). 

 

One common problem with the population-based models is that, due to the intrinsic variation and the 

polymorphic nature of biological growth, the trends exhibited by the data from individual subjects within a 

population may not always follow the trend exhibited by the population averages. This is illustrated in Figure 1, 

where the data from individual subjects show differing trends than that of the population averages. Because of 

the differing trends, it is quite possible that a population-based model may fit or predict the data well on 

average for the entire population, but it could perform poorly for the individual subjects within the population. 

Sometime population averages could be meaningless at a subject-specific level. 

 

 
Figure 1. An illustration of population-based (solid line) and subject-specific (dashed-lines) models, 

where 1, 2, 3 and 4 represent four subjects in the population. The population-based model is obtained 

from all data combined. 

 

Subject-specific models, on the other hand, describe the mean responses of individual subjects within a 

population. They can account for the idiosyncrasies of individual subjects within a population (e.g., Figure 1). 

Subject-specific models are often developed from the mixed-effects modeling technique. Thus, they are often 

referred to as mixed-effects models, or mixed models. Since the mixed model developed in this study is 

nonlinear, the term nonlinear mixed model (NMM) is used throughout this study. 

 

The main objective of this study is to demonstrate the NMM technique based on a volume-age model 

frequently used in Alberta. The emphasis of this study is to show how to use a fitted mixed model to make 

subject-specific predictions on data not used in model fitting. For the volume-age model, each subject is a 

sample plot (e.g., a permanent sample plot or a temporary sample plot). The population is an amalgamation of 

the sample plots. 

 

To facilitate the computation, generalized and step-by-step computer programs associated with the 

predictions from specific NMM methods are provided in Appendices. A summary of the NMM methods is also 

provided prior to using them to make predictions.  
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2. Data and Models 
 

2.1 Data 

 

Black spruce (picea mariana (Mill.) B.S.P.) volume-age data from 182 permanent sample plots (PSPs) with 

various black spruce compositions were used in this study. Among the 182 plots, 103 from the lower foothills 

natural subregion were used as model fitting data. The rest (79 plots) were used as model application data. 

Summary statistics for the model fitting and model application data are listed in Table 1. Throughout this 

study, volume refers to black spruce total volume (m
3
/ha). Age refers to black spruce breast height age (years). 

 

Table 1. Summary statistics for model fitting and model application data. 

Data  Variable N        m       Mean        Min       Max      SD 

Model fitting Volume (m
3
/ha) 389 103 116.377 7.513 415.991 76.470 

 Age (years) 389 103 90.010 24.000 168.417 33.185 

Model application Volume (m
3
/ha) 322 79 85.578 1.439 287.890 68.534 

 Age (years) 322 79 101.328 27.000 167.000 31.356 

Note: volume and age are total volume and breast height age, N is the total number of observations (measurements from 

PSPs), m is the number of plots (subjects), min is minimum, max is maximum, and SD is standard deviation.  

 

Figure 2 shows the model fitting and model application data. It can be seen that there are cross-overs among 

some of the volume-age trajectories from different plots/subjects in the data.  

 

 
Figure 2. Volume-age trajectories for model fitting and model application data. Summary statistics for 

the data are listed in Table 1. Each trajectory represents repeated measures from one plot. 

 

2.2 Models 

 

Comparison of alternative model forms suggests that the following base model is appropriate for describing 

the volume-age relationship for black spruce in Alberta: 

 

[1] Age)exp(-bAgebVol 1
b

1
2=  

 

where Vol is total volume (m
3
/ha), age is breast height age (years), b1 and b2 are model parameters (also called 

fixed parameters) applicable to the entire population, and exp denotes the exponential function.  
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The mixed model derived from the base model takes the following form: 

 

[2] )Age)uexp(-(b)Ageub(Vol 11
)u(b

11
22 ++= +  

 

where b1 and b2 are fixed parameters applicable to every plot in the population, and u1 and u2 are random 

parameters used to account for unique characteristics of each plot in the population.  

 

Parameter estimates for the base and mixed models are listed in Table 2. Summary goodness-of-fit statistics 

associated with the estimates are also listed in Table 2. The parameter estimates for the base model [1] were 

obtained from the ordinary nonlinear least squares (NLS) method. The parameter estimates for the mixed 

model [2] were obtained from the first-order (FO) method and first-order conditional expectation (FOCE) 

method of the NMM technique. Both methods of the NMM technique are detailed in Section 3. 

 

Table 2. Parameter estimates and goodness-of-fit (GOF) statistics obtained on the model fitting data. 

Parameter 
Model and method  GOF 

measure 

Model and method 

[1]−NLS [2]−FO [2]−FOCE    [1]−NLS [2]−FO [2]−FOCE 

b1 0.0206 0.01785 0.01879  e  -0.035386 0.066026 -0.25955 

b2 2.3622 2.3396 2.3412  %e  -0.030406 0.056734 -0.22302 
2
u1

σ   0.0000641 0.0000878  SD 70.2203 4.87835 4.91032 

21uuσ   0.0006674 0.0005871  MAD 56.4252 3.54557 3.57784 

2
u2

σ   0.02049 0.02121  MSE 4943.64 23.8642 24.2413 

2σ   45.0368 44.6634  R
2
 0.15678 0.99593 0.99587 

AIC  3393.0 3405.7  CC 0.27100 0.99796 0.99792 

BIC  3408.8 3421.5  MPE -65.4912 -0.70345 -2.22422 

N 389 389 389  MAPE 94.4057 4.88089 5.70855 

m 103 103 103  e10 89.2031 10.7969   12.3393   

     δ 4930.90 23.8027 24.1786 

Note: N is the total number of observations, m is the number of plots, 
2
u1

σ , 
2
u2

σ  and 
21uuσ  are variances and covariance for the 

random parameters, and 
2σ  is the residual variance. The goodness-of-fit (GOF) measures are defined in Table 3.  

 

The goodness-of-fit statistics listed in Table 2 were calculated from the N observations (N=389) in the entire 

model fitting population, based on the formulas given in Table 3. They were not calculated by averaging the 

goodness-of-fit statistics from the individual plots in the population.  

 

Historically, different goodness-of-fit measures have been used in different studies to determine the goodness-

of-fit of a fitted model. Each measure has its pros and cons, and each usually reflects one aspect of a fitted 

model. This explains why a variety of goodness-of-fit measures listed in Table 3 were calculated in this study. In 

general, for most practical purposes, the overall accuracy (δ) value, which combines the mean bias ( 2e ) and 

the variance of the residuals or prediction errors (SD
2
), can be considered a good overall indication of model 

accuracy, for the δ value is a summation of the bias ( 2e ) and precision (SD
2
). 

 

Figure 3 shows the “spaghetti plots” from the FO and FOCE methods of the NMM technique. The “spaghetti 

plots” display the plot-specific volume-age predictions for all 103 plots of the model fitting data across the age 

ranges where the fitted model is likely to be applied. Table 4 illustrates how the predictions are obtained to 

draw spaghetti plots for three example plots of the model fitting data. All variables and computations listed in 

Table 4 are described in more details in “Model Predictions” (Section 4) and “Appendices” (Section 7). 
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Table 3. Goodness-of-fit measures used in this study. 

Goodness-of-fit measure Computation formula 

1. Mean bias (or mean error) ∑ ∑=∑ ∑ −=
= == =

m

i

n

j
ijij

m

i

n

j
ij

ii

N
yy

N 1 11 1

e
1

)ˆ(
1

e  

2. Percent mean bias 100
e

%e ×=
y

 

3. Standard deviation 
2

1 1

)e(e
1

1
SD ∑ ∑ −

−
=

= =

m

i

n

j
ij

i

N
 

4. Mean absolute deviation ∑ ∑ −=
= =

m

i

n

j
ijij

i

yy
N 1 1

ˆ
1

MAD  

5. Mean square error (on model fitting data) 
2

1 1

)ˆ(
1

MSE ij

m

i

n

j
ij yy

N-p

i

∑ ∑ −=
= =

 

6. Mean square error (on model application data) 
2

1 1

)ˆ(
1

MSE ij

m

i

n

j
ij yy

N

i

∑ ∑ −=
= =

 

7. Coefficient of determination 
2

1 1

2

1 1

2
)()ˆ(1R yyyy

m

i

n

j
ijij

m

i

n

j
ij

ii

∑ ∑ −∑ ∑ −−=
= == =

 

8. Concordance correlation coefficient 
22

1 1

2

1 1

2

1 1

)ˆ()ˆˆ()(

)ˆ(

1CC

yyNyyyy

yy

m

i

n

j
ij

m

i

n

j
ij

ij

m

i

n

j
ij

ii

i

−+∑ ∑ −+∑ ∑ −

∑ ∑ −

−=

= == =

= =
 

9. Mean percent error ∑ ∑ ×
−

=
= =

m

i

n

j ij

ijiji

y

yy

N 1 1

100)
ˆ

(
1

MPE  

10. Mean absolute percent error ∑ ×∑
−

=
= =

m

i

n

j ij

ijiji

y

yy

N 1 1

100
ˆ1

MAPE  

11. Number of absolute percent errors >10% 
N

ofnumber ij 10PE
e10

>
= , 100)

ˆ
(PE ×

−
=

ij

ijij

ij
y

yy
 

12. Overall accuracy 22 SDeδ +=  

13. Akaike information criterion P  L - 2)(ln2AIC +=  

14. Schwarz’s Bayesian information )(ln)(ln2 BIC m P L - +=  

Grand means and total number ∑ ∑=
= =

m

i

n

j
ij

i

y
N

y
1 1

1
      ∑ ∑=

= =

m

i

n

j
ij

i

y
N

y
1 1

ˆ
1

ˆ       ∑=
=

m

i
inN

1

 

Note: yij and 
ijŷ  are the jth observed and predicted volumes for the ith plot, i = 1, 2, …, m, j = 1, 2, …, ni, m is the number 

of plots in the data, ni is the number of observations in the ith plot, y  and ŷ  are the grand means of the observed and 

predicted volumes, N is the total number of observations, L is the maximized value of the likelihood function for the 

estimated model, p is the number of fixed parameters, P is the total number of effective parameters in mixed model 

estimation (includes fixed parameters, variance-covariance components of the random parameters, plus the residual 

variance component), and AIC and BIC are information criteria used for mixed model on model fitting data only. 



 5

 
Figure 3. Plot-specific predictions from the FO and FOCE methods across the likely age ranges: (a) for 

all 103 plots of the model fitting data; and (b) for three example plots listed in Tables 4.  

 

Table 4. Original data and calculations for three example plots of the model fitting data. 

Plot Time Age Volume Volfix d_u1 d_u2 u1 u2 y_pred y_res 

  FO method 

m1 1 94.332 285.380 138.126 -5291.53 628.03 -0.01533 0.11080 288.821 -3.440 

m1 2 101.332 317.151 144.126 -6530.28 665.63 -0.01533 0.11080 317.975 -0.824 

m1 3 113.332 368.217 151.159 -8662.86 715.03 -0.01533 0.11080 363.170 5.047 

m2 1 71.746 33.106 108.962 -1713.28 465.61 0.00711 -0.13121 35.688 -2.582 

m2 2 81.746 40.085 123.691 -3181.77 544.69 0.00711 -0.13121 29.600 10.485 

m2 3 91.746 12.273 135.543 -4842.09 612.52 0.00711 -0.13121 20.748 -8.475 

m3 1 112.667 415.991 150.872 -8546.10 712.79 0.00803 0.44998 402.985 13.006 

m3 2 117.667 393.785 152.746 -9415.94 728.27 0.00803 0.44998 404.841 -11.056 

  FOCE method 

m1 1 94.332 285.380 134.033 -316.59 1302.54 -0.00806 0.12306 286.473 -1.093 

m1 2 101.332 317.151 138.954 -2569.47 1464.11 -0.00806 0.12306 317.017 0.134 

m1 3 113.332 368.217 144.126 -7383.55 1737.20 -0.00806 0.12306 367.247 0.970 

m2 1 71.746 33.106 107.955 -1368.35 138.83 0.01496 -0.16687 32.488 0.618 

m2 2 81.746 40.085 121.427 -1604.53 135.57 0.01496 -0.16687 30.786 9.299 

m2 3 91.746 12.273 131.842 -1753.76 127.58 0.01496 -0.16687 28.233 -15.960 

m3 1 112.667 415.991 143.942 -31229.07 1932.13 0.00875 0.34883 408.965 7.026 

m3 2 117.667 393.785 145.056 -32585.28 1909.53 0.00875 0.34883 400.501 -6.716 

Note: m1, m2 and m3 are three example plots. Time is measurement time. All other variables are detailed in Section 4. 
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3. Nonlinear Mixed Model Methods 
 

Before demonstrating how to use the fitted models to make predictions, some relevant background material 

on NMM methods is presented here. Readers who are familiar with the NMM methods can skip the 

background material and go directly to “Model Predictions” (Section 4).  

 

3.1 Basic Formulation of Nonlinear Mixed Models  

 

Using the standard terminology for nonlinear models, a population-based model that describes the population 

averages can be written as: 

 

[3] εβxy += ),(f  

 

where y is the dependent variable (also referred to as response variable), f denotes some nonlinear function, x 

is a known matrix of covariates (also referred to as independent variables, regressors, predictors, or x-

variables), ββββ is a vector of model parameters applicable to the entire population, and εεεε is the error term.  

 

For a subject-specific NMM, it can be written as: 

 

[4] ijiijij fy ε),,( += ubx  

 

where yij is the jth observation in the ith subjects, i=1, 2,…, m, j=1, 2,…, ni, m is the number of subjects in the 

population, ni is the number of observations in the ith subjects, f is a general expression of a nonlinear 

function, xij is a known vector of covariates for the jth observation in the ith subjects, b is a vector of fixed 

parameters common to all subjects in the population, ui is a vector of random parameters unique for the ith 

subject in the population, and εij is a normally distributed within-subject error term.  

 

In this study, each plot is a subject. The measurements at different times within each plot are observations.   

 

The subject-specific NMM [4] describes the mean responses of individual subjects within a population. This is 

achieved through the inclusion of subject-specific random parameters ui in the model. For instance, the 

subject-specific volume-age model [2] can be written more explicitly as: 

 

[5] ))Ageuexp(-(b)Ageub(Vol 11

)u(b

11
22

ijiijiij
i ++= +  

 

where Volij and Ageij are observed volume and age for the jth measurement in the ith plot, b1 and b2 are fixed 

parameters common to every plot in the population, and u1i and u2i are random parameters unique for the ith 

plot in the population.  

 

In essence, a subject-specific model has a unique set of coefficients for each subject in the population. For the 

subject-specific volume-age model [5] developed from m plots, there are m unique sets of coefficients for m 

plots in the population: 

  

Plot 1: )Ageexp(-bAgebVol 111

b

1111
21

jjj =  2122111111 ubb,ubb +=+=  

Plot 2: )Ageexp(-bAgebVol 212

b

2122
22

jjj =   2222212112 ubb,ubb +=+=  

 ⁞  ⁞  ⁞   ⁞  ⁞ 

Plot m: )Ageexp(-bAgebVol 1
b

1
2

mjmmjmmj
m=  mmmm 222111 ubb,ubb +=+=  
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Because a unique set of coefficients is developed for each subject in the population, rather than assigning the 

same set of coefficients obtained for the entire population to each subject in the population, a subject-specific 

model is much more flexible and powerful than a population-based model. It can mimic the data trends 

exhibited by individual subjects in the population more closely. A subject-specific model typically provides 

more accurate fits and predictions on a subject-specific level than a population-based model.  

 

In a more compact form, the mixed model [4] can be written for subject i as: 

 

[6] iiii f εubxy += ),,(  

 

where i=1, 2,…, m, ]',...,,[ 21 iiniii yyy=y  is a vector of observations for the y-variable from subject i, xi is a 

known matrix of the x-variables, and ]',...,,[ 21 iiniii εεε=ε  is a vector of within-subject errors. The random 

parameters vector ui and the error vector iε  are typically assumed to be uncorrelated and (multivariate) 

normally distributed with mean zero and variance-covariance matrices D and Ri, respectively. That is:  

 

[ ] 0εu =iiCov ,   







=









0

0

ε

u

i

i
E   








=









ii

i
Var

R0

0D

ε

u
 

 

which can be simplified to ui∼N(0, D) and εεεεi ∼N(0, Ri). The variance-covariance matrix D of the random 

parameters is generally assumed to be the same for each and every subject in the population (i.e., Di=D for i=1, 

2,…, m). The variance-covariance matrix Ri of the within-subject errors can take many forms to represent 

independent and identically distributed (iid) errors, correlated errors, heterogeneous errors, and generalized 

(correlated and heterogeneous) errors. Due to its confusing but often inconsequential nature in predictions 

(Huang et al. 2009a, 2009b; Meng and Huang 2010; Huang et al. 2011; Yang and Huang 2011a), and to avoid a 

digression from the main purpose of this study, Ri was assumed to be iid. That is, Ri=σ2
I, where σ2

 is the error 

variance and I is an ni×ni identity matrix (a square matrix with ones on the main diagonal and zeros elsewhere).  

 

The key difference between subject-specific mixed models and population-based models is the inclusion of 

random parameters in mixed models. Random parameters primarily serve four purposes: 

 

1). Account for the idiosyncrasies of individual subjects within a population; 

 

2). Account for the remnant impacts of the x-variables already included in the model – this can be 

 important when the true model specification is unknown; 

 

3). Account for the impacts of other known and unknown x-variables left-out by the model without 

 actually requiring these variables to be identified or measured – this can be a good or a bad trait; 

 

4). Alleviate or eliminate entirely the correlation and heteroskedasticity issues commonly occurred in

 forest modeling from repeatedly measured cross-sectional data. 

 

These and other related topics are discussed elsewhere (e.g., Huang et al. 2009c; Meng and Huang 2010).  

 

Different methods can be used to estimate the parameters of NMMs. They include first-order linearization, 

Laplace’s approximation, adaptive Gaussian quadrature, importance sampling, and Bayesian estimation 

(Davidian and Giltinan 1995, Vonesh and Chinchilli 1997, Pinheiro and Bates 2004). The two most commonly 

used methods, which were implemented in this study due mainly to their computational simplicity in making 

subject-specific predictions on new data not used in model fitting, are the first-order (FO) method of Beal and 
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Sheiner (1982) and the first-order conditional expectation (FOCE) method of Lindstrom and Bates (1990). Both 

methods use a first-order Taylor series expansion of the mixed model [6] around a b
*
 close to b and an 

*
iu  

close to ui, to linearize [6], with the negligible terms (e.g., quadratics, cubics and cross-products) dropped:  

 

[7] iiiiiiii f εuuZbbXubxy +−+−+≈ )()(),,(
****

 

 

where Xi and Zi, often referred to as design matrices in mixed model idiom, are partial derivatives of yi with 

respect to b and ui, respectively. The methods differ on how the 
*
iu  is defined in [7].  

 

3.2 The First-Order Method 

 

For the FO method, 
*
iu  in [7] is set to its expectation of zero, i.e., 

*
iu = E(ui) = 0. Therefore, [7] is reduced to: 

 

[8] iiiiii f εuZbbX0bxy ++−+≈ )(),,(
**

 

 

where the design matrices iX  and iZ  are defined by:  

 

[9] 
0bb

ubx
X

,*'

),,(

∂

∂
= ii

i

f
 

0b
u

ubx
Z

,*'

),,(

i

ii
i

f

∂

∂
=  

 

Rearranging [8] yields: 

 

[10] iiiiiii f εuZbXbX0bxy ++=+− **
),,(  

 

To create a linearized form of [10], the left-hand side of [10] is defined as the “pseudo-response” function 
*
iy : 

 

[11] 
***

),,( bX0bxyy iiii f +−=  

 

Hence, [10] can be written as a standard linear mixed model: 

 

[12] iiiii εuZbXy ++=*
 

 

Following the standard linear mixed model theory (e.g., see Fitzmaurice et al. 2004), the generalized least 

squares estimator b̂  of the fixed parameters b and the random parameters predictor iû  of the ui in [12], can 

be obtained as follows: 

 

[13] 
*1

1

'
1

1

1

' ˆˆˆ
ii

m

i
iii

m

i
i yVXXVXb

−

=

−
−

=
∑








∑=  

 

[14] )ˆ(ˆˆˆ *1'
bXyVZDu iiiii −= −

 

 

where D̂  is an estimate of the variance-covariance matrix D for the random parameters, and iV̂  is the 

estimated (marginal) variance-covariance matrix for the pseudo-response function 
*
iy , averaged over the 

distribution of the random parameters ui (Davidian and Giltinan 1995, Vonesh and Chinchilli 1997): 
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[15] iiiiiiii VarVarVar RZDZεuZyV ˆˆ)()ˆ()(ˆ '* +=+==  

 

where iR̂  is an estimate of the variance-covariance matrix Ri for the within-subject error term.  

 

Substituting the iV̂  in [15] and the pseudo-response function 
*
iy  in [11] into [14], and recognizing 0u =*

i  and 

bb ˆ* =  once b̂  is estimated, the predictor of random parameters iû  in [14] can be written as:  

 

[16] )],ˆ,([)ˆˆ(ˆˆ 1''
0bxyRZDZZDu iiiiiii f−+= −

 

 

where the iZ  matrix is defined in [9] (with bb ˆ* = ). Equation [16] is the random parameters prediction 

equation for the FO method. 

 

Once the values of b̂  and iû  are available, the pseudo-response function 
*
iy  can be predicted from [12]: 

 

[17] iiii uZbXy ˆˆˆ * +=  

 

Substituting the 
*
iy  in the pseudo-response function [11] by the 

*ˆ
iy  in [17] and recognizing bb ˆ* =  produce: 

 

bX0bxyuZbX ˆ),ˆ,(ˆˆ
iiiiii f +−=+  

 

Rearranging for yi gives the predicted yi ( iŷ ) for subject i for the FO method: 

 

[18] iiii f uZ0bxy ˆ),ˆ,(ˆ +=  

 

where iZ  is defined in [9] (with bb ˆ* = ). Equation [18] is the response variable prediction equation for the FO 

method. The corresponding residuals or prediction errors (ei) are calculated by:  

 

[19] iiiiiii f uZ0bxyyye ˆ),ˆ,(ˆ −−=−=  

 

Notice the term iiuZ ˆ  must be included in predicting the iŷ  and calculating the ei values for the FO method. 

 

3.3 The First-Order Conditional Expectation Method 

 

For the FOCE method, [7] is first written as: 

 

[20] iiiiiiiiii f εuZbXuZbXubxy ++=++− ****
),,(  

 

where the design matrices iX  and iZ  are given by:  

 

[21] 
** ,'

),,(

i

ii
i

f

ubb

ubx
X

∂

∂
=           

** ,

'

),,(

i
i

ii
i

f

ub
u

ubx
Z

∂

∂
=  

 

Define the left-hand side of [20] as the “pseudo-response” function *
iy  for the FOCE method: 
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[22] ***** ),,( iiiiiii f uZbXubxyy ++−=  

 

Then [20] can be written as a standard linear mixed model: 

 

[23] iiiii εuZbXy ++=*  

 

Following the standard linear mixed model theory (e.g., see Fitzmaurice et al. 2004), the generalized least 

squares estimator b̂  of the fixed parameters b and the random parameters predictor iû  of the ui in [23] can 

be obtained as described in equations [13] and [14]. 

 

For the FOCE method, substituting the iV̂  in [15] and the pseudo-response function *
iy  in [22] into [14], and 

recognizing *
iu = iû  and bb ˆ* = , the iû  prediction equation [14] can be written as: 

 

[24] ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1''
iiiiiiiiii f uZubxyRZDZZDu +−+= −  

 

where the iZ  matrix is defined in [21] (with *
iu = iû  and bb ˆ* = ).  

 

For the FOCE method, the random parameters to be predicted ( iû ) appear on both sides of [24]. This is very 

different from that for the FO method, where iû  appears only on the left-hand side of equation [16].  

 

There is no easy algebraic solution for iû  in [24]. Instead, a three-step numerical procedure needs to be 

implemented to iteratively solve for iû  in [24]: 

 

Step 1. Obtain a first estimate, termed 1,
ˆ

iu , of the random parameters. This is achieved by assuming the initial 

iû  appearing on the right-hand side of [24] equal to zero (i.e., 0u =i
ˆ ): 

 

[25] )],ˆ,([)ˆˆ(ˆˆ 1'
0,0,

'
0,1, 0bxyRZDZZDu iiiiiii f−+= −

 

 

where the initial design matrix 0,iZ  is evaluated at the assumed initial 0u =i
ˆ : 

 

[26] 

0b
u

ubx
Z

,ˆ

0,
'

),,(

i

ii
i

f

∂

∂
=  

 

Step 2. Once the 1,
ˆ

iu  is calculated from step 1, the next iZ , termed 1,iZ , is evaluated at 1,
ˆ

iu : 

 

[27] 

1,
ˆ,ˆ

1,
'

),,(

i
i

ii
i

f

ub
u

ubx
Z

∂

∂
=  

 

The next estimation of iû , termed 2,
ˆ

iu , is obtained based on [24] again, with the iû  and iZ  on the right-hand 

side of [24] replaced by 1,
ˆ

iu  from [25] and 1,iZ  from [27], respectively: 

 

[28] ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ
1,1,1,

1'
1,1,

'
1,2, iiiiiiiiii f uZubxyRZDZZDu +−+= −  
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Step 3. Having the calculated 2,
ˆ

iu  from step 2, the next iZ , termed 2,iZ , is evaluated at 2,
ˆ

iu : 

 

[29] 

2,
ˆ,ˆ

2,
'

),,(

i
i

ii
i

f

ub
u

ubx
Z

∂

∂
=  

 

The next estimation of iû , termed 3,
ˆ

iu , is computed based on [24] again, with the iû  and iZ  on the right-hand 

side of [24] replaced by the updated 2,
ˆ

iu  from [28] and 2,iZ  from [29], respectively: 

 

[30] ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ
2,2,2,

1'
2,2,

'
2,3, iiiiiiiiii f uZubxyRZDZZDu +−+= −  

 

This process is iterated k times until a user-specified convergence criterion is achieved, such as:  

 

[31] 0000001.0ˆˆ
)1(,, <− −kiki uu  

 

Once the convergence criterion is achieved, the final predictor of the random parameters is: 

 

[32] kii ,
ˆˆ uu = . 

 

Intrinsically, some readers may already recognize that the three-step procedure is in fact an iteration of 

equations [27] and [28], with the initial and end conditions given by [25] and [31], respectively. More details 

were provided in the above descriptions for the sake of other interested readers. 

 

With the known b̂  and iû  values, the pseudo-response function *
iy  in [23] can be predicted: 

 

[33] iiii uZbXy ˆˆˆ * +=  

 

Substituting the *
iy  in the pseudo-response function [22] by the *ˆ

iy  in [33], and recognizing bb ˆ* =  and *
iu = iû

, [22] can be written as: 

 

iiiiiiiii f uZbXubxyuZbX ˆˆ)ˆ,ˆ,(ˆˆ ++−=+  

 

Rearranging for yi produces the predicted yi ( iŷ ) for subject i for the FOCE method: 

 

[34] )ˆ,ˆ,(ˆ
iii f ubxy =  

 

Evidently, for the FOCE method, the response variable for any subject i can be predicted directly by simply 

substituting the known b̂  and iû  values into the mixed model without involving the term iiuZ ˆ . This is 

fundamentally different from the FO method, which involves iiuZ ˆ  and uses [18] to predict the response 

variable. The corresponding residuals or prediction errors (ei) for the FOCE method are calculated by: 

 

[35] )ˆ,ˆ,(ˆ
iiiiii f ubxyyye −=−=  

 

which is again different from [19] for the FO method. Table 5 summarizes the formulas explicit to the FO and 

FOCE methods of the NMM technique.  
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Table 5. A summary of the first-order (FO) and first-order conditional expectation (FOCE) methods. 

Method = FO Method = FOCE 

Taylor series expansion 

 

 iiiiii f εuZbbX0bxy ++−+≈ )(),,( **  iiiiiiii f εuuZbbXubxy +−+−+≈ )()(),,( ****  

 

Pseudo-response function 

 

 *** ),,( bX0bxyy iiii f +−=  ***** ),,( iiiiiii f uZbXubxyy ++−=  

 

Linearized model 

 

 iiiii εuZbXy ++=*        iiiii εuZbXy ++=*        

 

Design matrices 

 

 
0bb

ubx
X

,ˆ'

),,(

∂

∂
= ii

i

f
   

0b
u

ubx
Z

,ˆ'

),,(

i

ii
i

f

∂

∂
=  

*,ˆ'

),,(

i

ii
i

f

ubb

ubx
X

∂

∂
=    

*,ˆ'

),,(

i
i

ii
i

f

ub
u

ubx
Z

∂

∂
=  

 

Predictor of random parameters  

 

 )],ˆ,([)ˆˆ(ˆˆ 1''
0bxyRZDZZDu iiiiiii f−+= −

 ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1''
iiiiiiiiii f uZubxyRZDZZDu +−+= −

 

   

Marginal prediction from fixed parameters 

 

 ),ˆ,(ˆ
_ 0bxy ifixi f=  ),ˆ,(ˆ

_ 0bxy ifixi f=  

 

Subject-specific prediction with independent and identically distributed error structure ( IR
2ˆ σ=i ) 

 

 iiii f uZ0bxy ˆ),ˆ,(ˆ +=  )ˆ,ˆ,(ˆ
iii f ubxy =  

 

Residuals or prediction errors 

 

 iiiii f uZ0bxye ˆ),ˆ,(ˆ −−=  )ˆ,ˆ,(ˆ
iiii f ubxye −=  

 

Subject-specific forecast with generalized error structure ( ΨR
2ˆ σ=i ) 

 

 iiiii f eΨV'uZ0bxy
1 ˆˆ),ˆ,(ˆ

000
−++=  iiii f eΨV'ubxy

1 ˆ)ˆ,ˆ,(ˆ
00

−+=  

 

Note: iy  and iŷ  are observed and predicted values for subject i, xi is a matrix of covariate(s), iX  and iZ  are partial 

derivatives with respect to fixed parameters b  and random parameters iu , respectively, b̂  and iû  are predictors of b  

and iu , D̂  and iR̂ are estimated variance-covariance matrices for iu  and iε , respectively, i0ŷ , i0x  and i0Z  denote the 

variables associated with future observations, V contains the correlations between the elements of past and future errors, 

and Ψ  is the correlation matrix of past errors.  
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It is worthwhile to reiterate that the formulas summarized in Table 5 for the FO and FOCE methods are quite 

different, particularly with regard to: a) design matrices; b) predictors of random parameters; c) predictions of 

the response variable; and d) residual or prediction error calculations. Mixing the formulas from the FO and 

FOCE methods would be mathematically incorrect.  

 

Indeed, due to the methodological and computational differences between the FO and FOCE methods, when 

estimating a model and using the estimated model to make predictions, it is very important to ensure that the 

model estimation procedure is consistent with the model prediction procedure. Otherwise, the results could 

be inconsistent or simply wrong, and the reported model fitting statistics could lose their intended meaning or 

could even give a false indication about the model’s performance when predictions are made. Extensive 

evaluation on model fitting and model application data showed that substantial differences occurred when the 

formulas from the FO and FOCE methods were mixed (Huang 2008, Meng and Huang 2009). 

 

It is questionable that a number of NMM applications in forestry used )],ˆ,([)ˆˆ(ˆˆ 1''
0bxyRZDZZDu iiiiiii f−+= −

 

(equation [16]) from the FO method to predict iû , then used )ˆ,ˆ,(ˆ
iii f ubxy =  (equation [34]) from the FOCE 

method to predict iŷ  and came up with an unbelievably convincing outcome. Had the correct formulas or a 

different data set been used in those applications, the outcome could have been different. 

 

In practice, before a fitted mixed model can be used to make predictions on data not used in model fitting, 

modellers must check two items prior to recommending a prediction procedure:  

 

1). On the model fitting data, the random parameters predicted from the prediction procedure are 

equivalent to the random parameters obtained from the model estimation procedure; and 

 

2). On the model fitting data, the prediction errors obtained from the prediction procedure are 

equivalent to the residuals obtained from the model estimation procedure.  

 

Failing to verify any one of the two items could mean that the prediction procedure is incompatible with the 

model estimation procedure. In cases where the predictions cannot be checked on model fitting data (e.g., 

model users typically can only access the parameter estimates listed in Table 2, but not the full model fitting 

data), either the model estimation method should be known, or a mathematically consistent set of formulas 

corresponding to a specific method should be chosen for predictions after comparing alternative methods. 

 

It is very important to ensure that model estimation procedure is equivalent to model prediction procedure. As 

a general rule this principle of equivalence between model estimation and model prediction procedures shall 

be followed whenever possible in any type of model estimation and prediction. Due to the computational 

difficulties in developing and implementing an equivalent procedure in model estimation and prediction on 

both model fitting and model application data, other NMM methods (Laplace’s approximation, adaptive 

Gaussian quadrature, importance sampling and Bayesian estimation) are not discussed in this study. Interested 

readers may wish to read Yang and Huang (2011b) on comparing some of these methods. 

 

Table 5 also lists the formulas for subject-specific forecasts with a generalized error structure ( ΨR
2ˆ σ=i ). Since 

the NMM technique often alleviates or eliminates entirely the correlation and heteroskedasticity issues that 

commonly occur in forest modeling, further details on how to address these issues in NMMs are not presented 

here. Generalized error structure is used in forecasting future observations directly from the past measurements 

of the same sequence/trajectory. It has no use in predicting current or future observations that does not directly 

rely on the past measurements of the same sequence. Interested readers may wish to read Huang et al. (2009a, 

2009b, 2011), Meng and Huang (2010), and Meng et al. (2012) on how to use estimated generalized error 

structures to forecast future observations from the past measurement(s) of the same sequence. 
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4. Model Predictions 
 

Three plots each from the model fitting data (Table 4) and model application data (Table 6) are used to 

demonstrate model predictions. Since the prediction procedures on the model fitting and model application 

data are the same, detailed computations are illustrated here only for the model application data. 

 

Table 6. Example model application data and computations based on the FO method. 

Plot 

(1) 

Time 

(2) 

Age 

(3) 

Volume 

(4) 

Volfix 

(5) 

d_u1 

(6) 

d_u2 

(7) 

u1 

(8) 

u2 

(9) 

y_pred 

(10) 

y_res 

(11) 

v1 1 136.000 166.812 154.516 -12357.79 759.08 0.01639 0.29303 174.400 -7.588 

v1 2 150.000 154.413 151.355 -14224.01 758.39 0.01639 0.29303 140.448 13.965 

v1 3 156.000 135.661 149.051 -14901.80 752.69 0.01639 0.29303 125.365 10.296 

v1 4 161.000 114.873 146.768 -15407.33 745.79 0.01639 0.29303 112.773 2.100 

v1 5 167.000 79.100 143.647 -15941.56 735.18 0.01639 0.29303 97.789 -18.689 

v2 1 49.667 19.999 68.349 434.39 266.93 -0.01516 -0.09195 37.222 -17.223 

v2 2 60.667 75.227 89.688 -416.56 368.21 -0.01516 -0.09195 62.146 13.081 

v3 1 51.000 32.880 71.008 356.63 279.19 0.00190 -0.16995 24.237 8.643 

v3 2 56.000 26.408 80.831 1.81 325.37 0.00190 -0.16995 25.537 0.871 

v3 3 62.000 17.720 92.148 -550.82 380.31 0.00190 -0.16995 26.469 -8.749 

Note: v1, v2 and v3 are three example plots. Time refers to measurement time (1, 2, 3, etc.). Age and volume refer to 

black spruce breast height age (years) and total volume (m
3
/ha). All other variables are described in the main text. 

 

4.1 Prediction from the First-Order Method 

 

To make plot-specific predictions from the FO method, random parameters unique for each plot must be 

predicted first based on equation [16]. Using plot v1 of the model application data in Table 6 as an example, 

volume predictions (Volfix) based on the fixed parameters only are listed in column 5 of Table 6. They are 

obtained directly from the mixed model [2], with the random parameters set to zero and the fixed parameters 

given in Table 2 for the FO method (b1=0.01785 and b2=2.3396): 

 

))0exp(-(b)0b( 1

)0(b

1fix
2

iii_ AgeAgeVol ++= +
= [154.516, 151.355, 149.051, 146.768, 143.647]’ 

 

Given 
2
u1

σ =0.0000641, 
21uuσ =0.0006674, 

2
u2

σ =0.02049 and 
2σ =45.0368 for the FO method (from Table 2), for 

plot v1 with five observations and two random parameters, the variance-covariance matrices iR̂  and D̂  for the 

errors and random parameters are: 

 























=























σ

σ

σ

σ

σ

=

0368.450000

00368.45000

000368.4500

0000368.450

00000368.45

0000

0000

0000

0000

0000

ˆ

2

2

2

2

2

iR  

 









=













σσ

σσ
=

02049.00006674.0

0006674.00000641.0
ˆ

2
uuu

uu

2
u

221

211D  
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The partial derivatives of [2] with respect to the two random parameters are: 

 

[36] )bexp()b1(
b

),,(
d_bd_u 11

b

1

11
2

iii
if

AgeAgeAge
0bx

−⋅−=
∂

∂
==  

 

[37] )ln()bexp(b
b

),,(
d_bd_u 2b

11

2

22 iii
if

AgeAgeAge
0bx

⋅−⋅=
∂

∂
==  

 

The derivatives (columns 6 and 7 of Table 6) constitute the design matrix iZ  for plot v1: 

 























=























=

735.1815941.56-

745.7915407.33-

752.6914901.80-

758.3914224.01-

759.0812357.79-

d_ud_u

d_ud_u

d_ud_u

d_ud_u

d_ud_u

2515

2414

2313

2212

2111

iZ  

 

Therefore, the two random parameters for plot v1 can be predicted following equation [16]: 

 

)()ˆˆ(ˆˆ 1''
i_fixiiiiii VolVolRZDZZDu −+= −

 

 

which produces the following random parameter predictions for plot v1: 

   

' 0.29303] [0.01639,' ]u ,[uˆ
21 ==iu  

 

Random parameter predictions for other plots of the model application data are obtained in a similar manner. 

They are listed in columns 8 and 9 of Table 6. Once the iû  values are known, plot-specific volume predictions 

are calculated following equation [18], which becomes iii_i uZVolloV ˆˆ
fix += . For plot v1, this gives: 

 























=







×























+























=

97.789

112.773

125.365

140.448

174.400

0.29303

0.01639

735.1815941.56-

745.7915407.33-

752.6914901.80-

758.3914224.01-

759.0812357.79-

143.647

146.768

149.051

151.355

154.516

ˆ
iloV  

 

They are listed in column 10 (y_pred= iloVˆ ) of Table 6. The corresponding prediction errors (y_res=ei) are listed 

in column 11 of Table 6. They are computed following equation [19]:  

 

iii_fixii uZVolVole ˆ−−=  

 

The computations for the model fitting data follow the same procedures. Example results are listed in Table 4. 

 

Appendices 1 and 2 provide two programs associated with the FO method. One is generalized (Appendix 1). 

The other is step-by-step (Appendix 2). Both programs apply to model fitting as well as model application data. 

Interested readers could use either one of them to carry out the computations involved in the FO method.  
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Figure 4 (left-hand side graphs) shows the plot-specific predictions from the FO method for all 79 plots of the 

model application data. The predictions are made within the observed data range (graph FO-(a)), as well as 

across the potential age range where the fitted model is likely to be applied in practice (graph FO-(b)). The 

original data and the predictions for the three example plots listed in Table 6 are displayed in graph FO-(c). 

Note that the predictions from the FO method could be negative in some cases (e.g., for plot v3 with three 

observations, when the age is older than about 140 years – see graph FO-(c)).   

 

 

 

 
Figure 4. Plot-specific predictions from the FO and FOCE methods for the model application data: (a) 

within the observed data range, (b) across the potential age range, and (c) for the three example plots 

listed in Tables 6 (FO method) and 7 (FOCE method). Dashed lines in (c) indicate the line of zero. 

 

4.2 Prediction from the First-Order Conditional Expectation Method 

 

For the FOCE method, the prediction for the random parameters follows the three-step procedure described in 

[25] to [32]. Plot v1 of the model application data listed in Table 7 is used to demonstrate the computations.  
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Table 7. Example model application data and computations based on the FOCE method. 

Plot 

(1) 

Time 

(2) 

Age 

(3) 

Volume 

(4) 

Volfix 

(5) 

d_u1 

(6) 

d_u2 

(7) 

y_pred 

 (8) 

y_res 

 (9) 

u1 

 (10) 

u2 

 (11) 

  
Step 1 computation 

v1 1 136.000 166.812 144.263 -11942.11 708.71 0.01665 0.32237 

v1 2 150.000 154.413 139.487 -13499.55 698.92 0.01665 0.32237 

v1 3 156.000 135.661 136.599 -14039.71 689.81 0.01665 0.32237 

v1 4 161.000 114.873 133.883 -14429.90 680.31 0.01665 0.32237 

v1 5 167.000 79.100 130.306 -14826.26 666.91 0.01665 0.32237 

  
Step 2 computation 

v1 1 136.000 166.812 144.263 -14850.90 676.90 137.787 29.025 0.01437 0.32107 

v1 2 150.000 154.413 139.487 -13263.79 545.73 108.915 45.498 0.01437 0.32107 

v1 3 156.000 135.661 136.599 -12490.57 493.62 97.750 37.911 0.01437 0.32107 

v1 4 161.000 114.873 133.883 -11824.83 452.52 89.055 25.818 0.01437 0.32107 

v1 5 167.000 79.100 130.306 -11014.71 406.20 79.367 -0.267 0.01437 0.32107 

  
Step 3 computation 

v1 1 136.000 166.812 144.263 -18491.83 858.32 174.717 -7.905 0.01561 0.34510 

v1 2 150.000 154.413 139.487 -17085.61 714.37 142.572 11.841 0.01561 0.34510 

v1 3 156.000 135.661 136.599 -16323.01 655.03 129.714 5.947 0.01561 0.34510 

v1 4 161.000 114.873 133.883 -15638.78 607.37 119.527 -4.654 0.01561 0.34510 

v1 5 167.000 79.100 130.306 -14776.99 552.68 107.988 -28.888 0.01561 0.34510 

  
Final iteration results 

v1 1 136.000 166.812 144.263 -18376.22 845.05 172.016 -5.204 0.01549 0.34226 

v1 2 150.000 154.413 139.487 -16730.03 693.78 138.461 15.952 0.01549 0.34226 

v1 3 156.000 135.661 136.599 -15882.74 632.39 125.230 10.431 0.01549 0.34226 

v1 4 161.000 114.873 133.883 -15137.21 583.47 114.825 0.048 0.01549 0.34226 

v1 5 167.000 79.100 130.306 -14213.15 527.78 103.122 -24.022 0.01549 0.34226 

           

v2 1 49.667 19.999 69.097 4917.70 159.44 40.827 -20.828 -0.01291 -0.00138 

v2 2 60.667 75.227 89.765 6689.36 250.91 61.117 14.110 -0.01291 -0.00138 

v3 1 51.000 32.880 71.698 1405.50 85.59 21.769 11.111 -0.01014 -0.23744 

v3 2 56.000 26.408 81.246 1511.77 102.17 25.381 1.028 -0.01014 -0.23744 

v3 3 62.000 17.720 92.115 1598.90 123.20 29.850 -12.130 -0.01014 -0.23744 

Note: v1, v2 and v3 are three example plots. Time refers to measurement time (1, 2, 3, etc.). Age and volume refer to 

black spruce breast height age (years) and total volume (m
3
/ha). All other variables are described in the main text. 

 

Step 1. Volume predictions based on the fixed parameters only are listed in column 5 of Table 7. They are 

obtained directly from the mixed model [2] with the random parameters set to zero and the fixed parameters 

given in Table 2 for the FOCE method (b1=0.01879 and b2=2.3412): 

 

))0exp(-(b)0b( 1

)0(b

1fix
2

iii_ AgeAgeVol ++= +
= [144.263, 139.487, 136.599, 133.883, 130.306]’ 

 

The partial derivatives of [2] with respect to the random parameters evaluated at 0u =i
ˆ  are calculated by: 
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They are listed in columns 6 and 7 of Table 7. The derivatives constitute the initial design matrix 0,iZ  evaluated 

at 0u =i
ˆ : 
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Given 
2
u1

σ =0.0000878, 
21uuσ =0.0005871, 

2
u2

σ =0.02121 and 
2σ =44.6634 for the FOCE method (from Table 2), 

for plot v1 with five observations and two random parameters, the variance-covariance matrices iR̂  and D̂  for 

the errors and random parameters are: 
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Hence, the first estimate 1,
ˆ

iu  of the random parameters iû for the FOCE method can be obtained following 

equation [25]: 
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0,0,

'
0,1, i_fixiiiiii VolVolRZDZZDu −+= −

=[ 1,1û , 1,2û ]’=[0.01665, 0.32237]’ 

 

Step 2. Once the 1,
ˆ

iu  is calculated from step 1, a new set of the partial derivatives are evaluated at 1,
ˆˆ

ii uu = :  
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The partial derivatives (columns 6 and 7 of Table 7) constitute a new design matrix 1,iZ  evaluated at 1,
ˆ

iu : 
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where the elements d_u1j and d_u2j in 1,iZ  are obtained from equations [38] and [39], respectively. 

 

Volume predictions for the FOCE method from the known 1,
ˆ

iu and b values, )ˆ,ˆ,(ˆ
1,1, iii f ubxloV = , are obtained 

following equation [34]. For plot v1, this gives: 

 

[41] ))ûexp(-(b)ûb(ˆ
1,11

)û(b

1,111,
1,22

iii AgeAgeloV ++=
+

=[137.787, 108.915, 97.750, 89.055, 79.367]’ 

 

Results are listed in column 8 of Table 7. Column 9 of Table 7 lists the corresponding prediction errors 

calculated by 1,1,1,
ˆ)ˆ,ˆ,( iiiiii f loVVolubxye −=−=  (note that in Table 7, y_pred= iloVˆ  and y_res=ei). 

 

Having the 1,
ˆ

iu  and 1,iZ  values, the next estimation of iû , termed 2,
ˆ

iu , is obtained following equation [28], 

which gives: 
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=[0.01437, 0.32107]’ 

 

They are listed in columns 10 and 11 of Table 7.  

 

Step 3. Having the calculated 2,
ˆ

iu  from step 2, the next set of the partial derivatives are evaluated at 2,
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ii uu = :  
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They (columns 6 and 7 of Table 7) constitute the next design matrix 2,iZ  evaluated at 2,
ˆ

iu : 
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A new set of volume predictions from the known 2,
ˆ

iu  and b values, are calculated following equation [34] 

again, which produces (column 8 of Table 7): 

 

[46] ))ûexp(-(b)ûb(ˆ
2,11

)û(b

2,112,
2,22

iii AgeAgeloV ++=
+

=[174.717, 142.572, 129.714, 119.527, 107.988]’ 
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The corresponding prediction errors ( 2,2,2,
ˆ)ˆ,ˆ,( iiiiii f loVVolubxye −=−= ) are listed in column 9 of Table 7. 

 

With the known 2,
ˆ

iu  and 2,iZ , the next estimation of iû , termed 3,
ˆ

iu , is obtained following [30], which gives:  

 

[47] ]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ
2,2,2,

1'
2,2,

'
2,3, iiiiiiiiii f uZubxyRZDZZDu +−+= −

=[0.01561, 0.34510]’ 

 

They are listed in columns 10 and 11 of Table 7.  

 

The process described in equations [43] to [47] is iterated k times, with the prior )1(,
ˆ

−kiu  in the equations 

replaced by the newer ki ,û  calculated from [47]. The process is stopped once the convergence criterion 

specified in [31] is achieved. For plot v1 of the model application data, the convergence criterion is achieved 

after six iterations. The final iû  is predicted to be (columns 10 and 11 of Table 7): 

 

iû =[ 1û , 2û ]’=[0.01549, 0.34226]’ 

 

The final volume predictions for plot v1 are (column 8 of Table 7): 

 

 ))ûexp(-(b)ûb(ˆ
11

)û(b

11
22

iii AgeAgeloV ++= +
=[172.016, 138.461, 125.230, 114.825, 103.122]’ 

 

The associated final prediction errors (column 9 of Table 7) are calculated by iiiiii f loVVolubxye ˆ)ˆ,ˆ,( −=−= .  

 

The final results from the FOCE method for plots v2 and v3 of the model application data are also listed in 

Table 7. The final results from the FOCE method for plots m1, m2 and m3 of the model fitting data are listed in 

Table 4. Interested readers may wish to verify and duplicate the computations.  

 

Appendices 3 and 4 provide two programs associated with the FOCE method. One is generalized (Appendix 3). 

The other is step-by-step (Appendix 4). Both programs apply to model fitting as well as model application data. 

Interested readers could use either one of them to carry out the iterations required by the FOCE method.  

 

Figure 4 (right-hand side graphs) shows the plot-specific predictions from the FOCE method for all 79 plots of 

the model application data. The predictions are made within the observed data range (graph FOCE-(a)), as well 

as across the potential age range where the fitted model is likely to be applied in practice (graph FOCE-(b)). 

The original data and the predictions for the three example plots listed in Table 7 are displayed in graph FOCE-

(c). Note that the predictions from the FOCE method are always positive across the age range, whereas the 

predictions from the FO method are not.  

 

Overall, Figure 4 suggests that the predictions from the FO and FOCE methods are similar within the observed 

data range, but beyond the observed data range, some of the predictions can be quite different. This explains 

why sometimes two methods or two models with similar statistics can produce very different predictions.  

 

4.3 Goodness-of-Fit Statistics 

 

The goodness-of-fit statistics obtained from the FO and FOCE methods on the model application data are listed 

in Table 8. For a comparison, the goodness-of-fit statistics obtained from the direct application of model [1] on 

the model application data are also listed in Table 8. All goodness-of-fit statistics were calculated according to 

the formulas defined in Table 3, based on the N=322 observations in the model application data. They were 

not averaged from the goodness-of-fit statistics calculated by individual plots in the population.  
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Table 8. Goodness-of-fit statistics obtained on the model application data. 

Model 
Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

[1]-NLS -39.7499 -46.4486 62.5401 64.7558 5479.18 -0.1702 0.1975 -255.44 266.86 90.99 5491.32 

[2]-FO -0.1678 -0.1960 3.9715 2.7604 15.75 0.9966 0.9983 -2.54 6.64 13.66 15.8011 

[2]-FOCE -0.4756 -0.5557 4.4600 3.0639 20.06 0.9957 0.9978 -4.79 9.10 19.57 20.1175 

Note: The goodness-of-fit measures are defined in Table 3. 

 

On the model fitting data, the predictions of the random parameters and response variables from the FO and 

FOCE methods, as well as the computations of the goodness-of-fit statistics for the predictions, follow the 

same procedures as demonstrated on the model application data. Example predictions on the model fitting 

data are embedded in the programs provided in the Appendices. They are also listed in Table 4. Interested 

readers may wish to verify and duplicate the results in the programs. The predictions for all 103 plots of the 

model fitting data across the potential age range where the fitted model is likely to be applied to make 

predictions (i.e., the spaghetti plots), are shown in Figure 3. Goodness-of-fit statistics corresponding to the 

model fitting data are listed in Table 2.  

 

4.4 Choosing the “Best” Prediction 

 

The “best” prediction is chosen based on a combination of statistical, graphical, biological and other 

considerations, on both model fitting and model application data.  

 

Judging from the goodness-of-fit statistics on the model fitting data (Table 2), and using the overall accuracy 

measure δ as the example, model [2] estimated from the FO method is the most accurate, with δ=23.8027.  

 

On the model application data (Table 8), model [2] estimated from the FO method is again the most accurate, 

with δ=15.8011. Therefore, based on the goodness-of-fit statistics alone, model [2] estimated from the FO 

method provided the “best” prediction. 

 

From the prediction graphs (also referred to as spaghetti plots) shown in Figure 3 for the model fitting data 

and Figure 4 for the model application data, it can be seen that the predictions from model [2] estimated from 

the FO method can be negative in some cases when the age is beyond certain ranges. This is caused inherently 

by the term iiuZ ˆ  in equation [18] for the FO method. This term could also cause the innate shape of a base 

model to be altered (Huang et al. 2009a, Yang and Huang 2011b). For the FOCE method, equation [34], which 

maintains the innate shape of a base model, is used to predict the response variable iy . 

 

In spite of the negative volume predictions, the prediction graphs from the FO method (in Figures 3 and 4) 

show no obvious anomaly. In real-world situations, negative volume predictions could be constrained to zero 

to be biologically meaningful. There are plots where the volume could become zero because of mortality. 

 

For the FOCE method, all volume predictions are non-negative (Figures 3 and 4). But some do not taper-off at 

older ages, especially on the model application data (Figure 4). This may not coincide well with the expected 

biological growth. It is also more difficult to establish a meaningful biological up-limit in this case.  

 

Hence, based on the statistical, graphical and biological considerations, and given the available data with their 

inherent quality, quantity, relevance (e.g., data range and distribution) and limitation, it can be inferred that 

model [2] estimated from the FO method appears to be the “best” for the volume-age relationship considered 

in this study. Computation-wise, the FO method is also much simpler than the FOCE method. It does not 

require iteration. All prediction equations involved in the FO method can be solved algebraically.  
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5. Additional Notes 
 

5.1 Adjusting the Predictions 

 

For most practical purposes, the nonlinear mixed model methods can generally be considered unbiased. But 

the unbiasedness property, and indeed, many other properties associated with the NMM methods, hold only 

in an “asymptotically approximated” sense. When the sample size is not “large enough”, or when model 

specification is problematic, mixed model may produce biased predictions. 

 

The potential bias of a nonlinear mixed model can be removed by different methods. The proportional 

adjustment method is the simplest and most effective method in many cases. This method is implemented 

through the calculation of a ratio, called the proportional adjustment ratio PARi, from the data in plot i:  
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where PARi is the proportional adjustment ratio for plot i in the population, 
ijy  is the jth observed y-value for 

the ith plot in the population and 
ijŷ  is its prediction from the mixed model, iy  is the mean of the observed 

values, iŷ  is the mean of the predicted values, and ni is the number of observations in the ith plot. Re-arrange 

[48] produces: 
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which implies that the summation of the observed values for plot i equals to the PARi times the summation of 

the predicted values. Define the adjusted predictions as: 

  

[50] 
ijiij_adj yy ˆPARˆ ⋅=   

 

Then, from [50] and [48]: 
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Hence: 

 

[52] 0ˆPAR =⋅− iii yy  (or 0ˆ
_ =− adjiji yy ) 

 

which means that the mean of the observed values for plot i equals to the mean of the proportionally adjusted 

predictions from the mixed model. What is really important about the expressions given in [48]-[52] is that, 

they all suggest that the mean bias of the adjusted predictions for plot i is zero. That is: 
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where 
adjij _e  is the mean bias of the adjusted prediction errors for plot i in the population. The adjusted 

predictions obtained for each plot from the plot-specific proportional adjustment method are guaranteed to 

have a zero mean bias. Since the mean bias for each plot in the population is zero, the mean bias of the 

adjusted predictions is also guaranteed to be zero for the entire population. 

 

The essence of the proportional adjustment method is to utilize the power of the mixed model method to 

track the trends of plot-specific data in a population, while simultaneously shifting the predictions up or down 

proportionally to alleviate the sample size and/or nonlinear approximation and asymptotic issues. This allows 

for a nonlinear mixed model to fit any plot-specific data as close as possible. With the proportional adjustment 

method it is always possible to achieve a bias-free fit that closely mimics the data. But the bias-free fit still 

does not imply the “best” fit, because the “best” fit is not determined by the bias alone. 

 

More specific examples on how to use the proportional adjustment method to adjust plot level and population 

level predictions are demonstrated elsewhere (Huang 2008, Huang et al. 2013). For most practical purposes, it 

is recommended that adjusting mixed model predictions shall be done only when the percent mean bias of the 

unadjusted predictions exceeds ±5% (i.e., |%e| >5%). Otherwise, the gains from adjusting the predictions may 

not be substantial.  

 

As an example, among the 79 plots of the model application data, four plots have |%e|  values that exceed 5% 

from the FO method. Therefore, adjusted predictions for these plots are obtained following the proportional 

adjustment method. They are shown in Figure 5. Actual data and computations associated with Figure 5 are 

listed in Table 9. Relevant plot-specific goodness-of-fit statistics for unadjusted and adjusted predictions are 

listed in Table 10.  

 

 
Figure 5. Unadjusted (solid lines) and adjusted (dashed lines) predictions for four plots of the model 

application data. Actual data and computations are listed in Table 9. 
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Table 9. Example calculations for proportionally adjusting the predictions from the FO method. 

Plot Time Age Volume       ŷ  e  e%  y     ŷ    PAR  adjŷ  adje  

1 1 49.000 1.664 1.755 -0.091 -10.033 3.013 3.315 0.909 1.595 0.069 

1 2 56.000 2.336 2.096 0.240 -10.033 3.013 3.315 0.909 1.905 0.431 

1 3 69.000 3.516 3.651 -0.135 -10.033 3.013 3.315 0.909 3.318 0.198 

1 4 79.000 4.534 5.757 -1.223 -10.033 3.013 3.315 0.909 5.232 -0.698 

2 1 90.822 9.168 10.254 -1.086 -11.843 9.168 10.254 0.894 9.168 0.000 

3 1 28.667 1.439 3.116 -1.677 -69.423 2.275 3.854 0.590 1.839 -0.400 

3 2 33.667 3.110 4.592 -1.482 -69.423 2.275 3.854 0.590 2.710 0.400 

4 1 27.000 5.242 6.537 -1.295 -12.223 8.381 9.405 0.891 5.825 -0.583 

4 2 32.000 6.426 9.229 -2.803 -12.223 8.381 9.405 0.891 8.224 -1.798 

4 3 37.000 13.474 12.449 1.025 -12.223 8.381 9.405 0.891 11.093 2.381 

Note: ŷ  and e are predicted volume and prediction error, e% is percent mean bias, y  and ŷ  are means of observed and 

predicted volumes, PAR is proportional adjustment ratio, and adjŷ  and adje  are proportionally adjusted ŷ  and e.  

 

Table 10. Plot-specific goodness-of-fit statistics from the FO method. 

Plot e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

 Unadjusted predictions 

1 -0.302 -10.033 0.636 0.422 0.395 0.674 0.896 -6.502 11.634 50.000 0.496 

2 -1.086 -11.843 N/A 1.086 1.179 N/A 0.000 -11.843 11.843 100.000 1.179 

3 -1.579 -69.423 0.138 1.579 2.503 -2.585 0.330 -82.072 82.072 100.000 2.512 

4 -1.024 -12.223 1.928 1.708 3.528 0.733 0.824 -20.239 25.310 66.667 4.767 

 Adjusted predictions 

1 0.000 0.000 0.489 0.349 0.179 0.852 0.945 3.209 10.904 50.000 0.239 

2 0.000 0.000 N/A 0.000 0.000 N/A 0.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 0.566 0.400 0.160 0.771 0.820 -7.466 20.325 100.000 0.320 

4 0.000 0.000 2.149 1.587 3.080 0.767 0.827 -7.143 18.923 100.000 4.620 

Note: actual data for the four plots are listed in Table 9. The goodness-of-fit measures ( e , %e ,SD, …, δ ) are defined in 

Table 3 and calculated by plot. N/A denotes “not applicable” (due to a zero denominator). 

 

While visually some of the differences between the unadjusted and adjusted predictions may be hard to see in 

Figure 5, the plot-specific goodness-of-fit statistics listed in Table 10 clearly indicate that the overall accuracy 

(δ) of the adjusted predictions is improved for all four plots over their unadjusted counterparts. This suggests 

that proportionally adjusting the predictions from the FO method is beneficial for all four plots. As expected, 

the adjusted predictions are guaranteed to be unbiased (i.e., e =0), but in general there is no guarantee that 

they are always more accurate than the unadjusted predictions (Huang et al. 2013).  

 

5.2 Population Average Predictions 

 

The fixed parameters estimated for model [1] from the NLS method (b1=0.0206 and b2=2.3622, Table 2) are 

intended to make population average predictions.  

 

The fixed parameters estimated for model [2] from the FO method (b1=0.01785 and b2=2.3396, Table 2) and 

FOCE method (b1=0.01879 and b2=2.3412, Table 2) are intended to make the so-called “marginal prediction” 

during the estimation of a nonlinear mixed model. They are not intended to make population average 

predictions. In fact, they generally give biased population average predictions.  
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The technical aspect of why the fixed parameters estimated as a part of a nonlinear mixed model do not 

represent the population averages is detailed in Davidian and Giltinan (2003) and Fitzmaurice et al. (2004). 

Relevant forestry examples are provided in Huang (2008) for the volume-age relationship and Meng et al. 

(2009) for the height-age relationship. 

 

To briefly illustrate here, the three sets of fixed parameters estimated from the NLS, FO and FOCE methods 

(Table 2) were used to make population average predictions. The predictions were first made on the model 

fitting data, then on the model application data. Figure 6 shows the predictions overlaid on the data. 

 

 
Figure 6. Population average predictions from the fixed parameters of NLS (solid line), FO (short-dash) 

and FOCE (long-dash) methods. Relevant goodness-of-fit statistics are listed in Table 11. 

 

Alternative Population Average Predictions 

 

On the model application data, alternative population average predictions can be obtained from the FO and 

FOCE methods, by treating the entire model application data as “one combined plot” with N observations 

(N=322). The predictions follow Section 4.1 for the FO method and Section 4.2 for the FOCE method (except 

that this combined plot has 322 observations). Prediction results across the age range are shown in Figure 7. 

For interested readers, the predicted random parameters are u1=-0.00212 and u2=-0.09594 for the FO method, 

and u1=-0.00359 and u2=-0.11660 for the FOCE method. 

 

 
Figure 7. Population average predictions from the FO (left) and FOCE (right) methods. The predictions 

are obtained by treating the model application data as “one combined plot” with 322 observations.  

 

Table 11 lists the goodness-of-fit statistics associated with different types of population average predictions on 

model fitting and model application data. 
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Table 11. Goodness-of-fit statistics from different types of population average predictions. 

Model-

method 

Goodness-of-fit measure 

e  %e  SD MAD MSE R
2
 CC MPE MAPE e10 δ 

 Model fitting data – using fixed parameters only  

[1]-NLS -0.0354 -0.0304 70.2203 56.4252 4943.64 0.1568 0.2710 -65.49 94.41 89.20 4930.90 

[2]-FO -2.9402 -2.5265 70.8319 57.6746 5038.81 0.1406 0.3032 -68.88 98.53 93.32 5025.80 

[2]-FOCE 1.1069 0.9511 70.4146 56.9962 4972.27 0.1519 0.2878 -63.41 94.47 92.29 4959.45 

 Model application data – using fixed parameters only 

[1]-NLS -39.7499 -46.4486 62.5401 64.7558 5479.18 -0.1702 0.1975 -255.44 266.86 90.99 5491.32 

[2]-FO -45.5809 -53.2622 62.1975 66.5746 5934.14 -0.2674 0.2265 -258.94 268.35 90.06 5946.15 

[2]-FOCE -40.1692 -46.9385 62.1745 64.0781 5467.23 -0.1676 0.2212 -248.65 259.55 90.06 5479.24 

 Model application data – treating the data as from one combined plot, using fixed and random parameters 

[2]-FO -1.5724 -1.8374 62.7347 49.6188 3925.90 0.1615 0.2451 -134.08 160.66 93.17 3938.12 

[2]-FOCE -1.6140 -1.8860 62.7362 49.6555 3926.21 0.1615 0.2424 -134.84 161.34 92.86 3938.43 

Note: fixed parameters for the three methods are listed in Table 2. The goodness-of-fit measures are defined in Table 3.  

 

Results in Table 11 suggest that: 

 

1. On the model fitting data, the e  from the NLS method is very close to zero (i.e., | %e | is less than half-

a-percent). This is a consequence of the NLS method. A correctly specified and fitted nonlinear model 

should produce an e  that is “asymptotically approximately equivalent” to zero on the model fitting 

data. The e  values from the FO and FOCE methods using fixed parameters only are much larger. They 

can be considered biased (i.e., the absolute %e  values exceed half-a-percent for both FO and FOCE). 

Typically, the NLS method is the most accurate method (i.e., with the smallest δ value) in making 

population average predictions on model fitting data. It is also the preferred method to use on model 

application data if no measurement is available from the model application data.  

 

2. On the model application data using fixed parameters only, overall the FOCE method (δ=5479.24) is 

slightly more accurate than the NLS method (δ=5491.32). Both are more accurate than the FO method 

(δ=5946.15). In general, on model application data using fixed parameters only, the most accurate 

method varies depending on the specific data involved. There is no generic trend with regard to which 

method is the best.  

 

3. When treating the model application data as “one combined plot” and using the FO and FOCE methods 

with fixed and random parameters, the overall accuracies from the FO and FOCE methods are virtually 

identical (δ=3938.12 for FO and δ=3938.43 for FOCE). Both are substantially better (more accurate) 

than those on the model application data using fixed parameters only.   

 

Hence, on model application data, population average predictions can be obtained by treating the model 

application data as “one combined plot”, then implementing the FO or FOCE method. The population average 

predictions obtained in this manner are typically better than those obtained from other methods without 

adjustment. In practice, such population average predictions can be obtained for any user-defined model 

application population. They can also be obtained for any sub-population from any specific area. 

 

It may be worthwhile to repeat that, if no y measurement is available from the model application data, the full 

FO and FOCE methods cannot be implemented. In this case the fixed parameters from the NLS method should 

be used to make population average predictions. If necessary, these predictions can be adjusted to increase 

the accuracy of the predictions. This can be achieved through the proportional adjustment method (Huang et 

al. 2013), or some other methods if the proportionality does not hold (Huang 2002). 
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7. Appendices 
 

Four appendices are provided here to demonstrate and facilitate the computations associated with the FO and 

FOCE methods of the nonlinear mixed-effects modeling technique. Appendices 1 and 2 apply to the FO 

method. Appendices 3 and 4 apply to the FOCE method. Three plots from the model fitting data (plots m1, m2 

and m3) and three plots from the model application data (plots v1, v2 and v3) are used as examples in all four 

Appendices. They are listed here, where year refers to measurement time/year, and vol and age refer to black 

spruce total volume (m
3
/ha) and breast height age (years), respectively: 

 

Plotid Year Vol  Age  

m1 1961 285.380 94.332 

m1 1968 317.151 101.332 

m1 1980 368.217 113.332 

m2 1983 33.106 71.746 

m2 1993 40.085 81.746 

m2 2003 12.273 91.746 

m3 1990 415.991 112.667 

m3 1995 393.785 117.667 

v1 1964 166.812 136.000 

v1 1978 154.413 150.000 

v1 1984 135.661 156.000 

v1 1989 114.873 161.000 

v1 1995 79.100 167.000 

v2 1990 19.999 49.667 

v2 2001 75.227 60.667 

v3 1984 32.880 51.000 

v3 1989 26.408 56.000 

v3 1995 17.720 62.000 
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Appendix 1. Generalized Program for the First-Order Method 

 

This generalized program for the FO method does not require a user to know or to specify the number of 

subjects (plots) in the data beforehand. It applies to any number of subjects. The program is designed for 

experienced SAS/IML users. A more intuitive program is given in Appendix 2. 

 
1 

2     OPTIONS LS=100 PS=45; 

3 

4     data comb1; 

5      input plotid $ YEAR vol age; 

6      cards; 

NOTE: DATALINES 7 to 24 (for plots m1, m2, m3, v1, v2 and v3); 

25   ; 

26   run; 

27 

28   proc sort data=comb1; 

29     by plotid; 

30   run; 

31 

32   data wed3; 

33   set comb1; 

34   by plotid; 

35   j+1; 

36   if first.plotid then do; i+1; j=1; end; 

37   run; 

38 

39   proc iml; 

40   use wed3; 

41   read all var {j} into tobs; 

42   read all var {i age} into age; 

43   read all var {vol} into vol; 

44   fixp={0.01785 2.3396}; 

45   covar={0.0000641, 0.0006674, 0.02049, 45.0368}; 

46   d=j(2,2,0); 

47   d[1,1]=covar[1]; 

48   d[1,2]=covar[2]; 

49   d[2,1]=covar[2]; 

50   d[2,2]=covar[3]; 

51   s=covar[4]; 

52   bb=fixp[1,]; 

53   b=bb`; 

54   tn=max(age[,1]); 

55   q=2; 

56   bx={1 1}; 

57   nn=nrow(vol); 

58   u=j(tn,q,0); 

59   mc=max(tobs); 

60   start sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv); 

61   z=j(nn,q,0); 

62   res=j(nn,1,0); 

63   uv=j(tn,q,0); 

64   do k=1 to tn; 

65   z[1:nn,]=.; 

66   res[1:nn,]=.; 

67    do j=1 to nn; 

68    if age[j,1]=k then; 

69    do; 
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70    agem=age[j,2]; 

71    volm=vol[j,1]; 

72    zb1 = agem**b[2]*(1-b[1]*agem)*exp(-b[1]*agem); 

73    z[j,1]=zb1; 

74    zb2 = b[1]*exp(-b[1]*agem)*log(agem)*agem**b[2]; 

75    z[j,2]=zb2; 

76    re=volm-b[1]*agem**b[2]*exp(-b[1]*agem); 

77    res[j]=re; 

78   end; 

79   end; 

80   r1=z; 

81   r2=r1[loc(r1[,1]^=.),]#bx; 

82   w1=res; 

83   w2=w1[loc(w1[,1]^=.),]; 

84   mm=nrow(w2); 

85   rr=s*I(mm); 

86   uu=d*r2`*INV(r2*d*r2`+rr)*w2; 

87   uk=uu`; 

88   uv[k,]=uk; 

89   end; 

90   finish sm; 

91   run sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv); 

92   ubu=uv; 

93   bf=j(tn,q,0); 

94   do i=1 to tn; 

95   bf[i,1]=b[1]; 

96   bf[i,2]=b[2]; 

97   end; 

98   ub=ubu||bf; 

99   cnm={u1i,u2i,b1,b2}; 

100  create rpm from ub[colname=cnm]; 

101  append from ub; 

102  quit; 

103 

104  data rpm1; 

105  set rpm; 

106  i=_n_; 

107  run; 

108 

109  proc sort data=wed3; by i;run; 

110  proc sort data=rpm1; by i;run; 

111 

112  data allP ; 

113   merge wed3 rpm1 ; 

114   by i ; 

115   zb1 = age**b2*(1-b1*age)*exp(-b1*age); 

116   zb2 = b1*exp(-b1*age)*log(age)*age**b2; 

117   vol_fix=b1*age**b2*exp(-b1*age); 

118   res_fix=vol-vol_fix; 

119   y_pred = vol_fix+u1i*zb1+u2i*zb2; 

120   Y_res=vol-y_pred; 

121  run; 

122 

123  proc print data=allP(obs=18); 

124   var plotid i j age vol vol_fix zb1 zb2 u1i u2i y_pred y_res; 

125  run; 

 

The print statement produces the following results. They are listed in Table 4 (FO method) for the model fitting 

data (plots m1, m2 and m3) and Table 6 for the model application data (plots v1, v2 and v3). 
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    Obs plotid i j   age     vol   vol_fix       zb1   zb2      U1I       U2I    y_pred    y_res 

 

      1   m1   1 1  94.332 285.380 138.126  -5291.53 628.032 -0.015328  0.11080 288.821  -3.4410 

      2   m1   1 2 101.332 317.151 144.126  -6530.28 665.631 -0.015328  0.11080 317.975  -0.8237 

      3   m1   1 3 113.332 368.217 151.159  -8662.86 715.031 -0.015328  0.11080 363.170   5.0469 

      4   m2   2 1  71.746  33.106 108.962  -1713.28 465.610  0.007109 -0.13121  35.688  -2.5817 

      5   m2   2 2  81.746  40.085 123.691  -3181.77 544.687  0.007109 -0.13121  29.600  10.4846 

      6   m2   2 3  91.746  12.273 135.543  -4842.09 612.523  0.007109 -0.13121  20.748  -8.4753 

      7   m3   3 1 112.667 415.991 150.872  -8546.10 712.787  0.008030  0.44998 402.985  13.0056 

      8   m3   3 2 117.667 393.785 152.746  -9415.94 728.270  0.008030  0.44998 404.841 -11.0559 

      9   v1   4 1 136.000 166.812 154.516 -12357.79 759.082  0.016390  0.29303 174.400  -7.5881 

     10   v1   4 2 150.000 154.413 151.355 -14224.01 758.387  0.016390  0.29303 140.448  13.9651 

     11   v1   4 3 156.000 135.661 149.051 -14901.80 752.688  0.016390  0.29303 125.365  10.2960 

     12   v1   4 4 161.000 114.873 146.768 -15407.33 745.787  0.016390  0.29303 112.773   2.0998 

     13   v1   4 5 167.000  79.100 143.647 -15941.56 735.183  0.016390  0.29303  97.789 -18.6886 

     14   v2   5 1  49.667  19.999  68.349    434.39 266.926 -0.015157 -0.09195  37.222 -17.2229 

     15   v2   5 2  60.667  75.227  89.688   -416.56 368.205 -0.015157 -0.09195  62.146  13.0805 

     16   v3   6 1  51.000  32.880  71.008    356.63 279.192  0.001898 -0.16995  24.237   8.6433 

     17   v3   6 2  56.000  26.408  80.831      1.81 325.373  0.001898 -0.16995  25.537   0.8706 

     18   v3   6 3  62.000  17.720  92.148   -550.82 380.306  0.001898 -0.16995  26.469  -8.7492 
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Appendix 2. Step-by-Step Program for the First-Order Method 

 

This step-by-step program for the FO method requires a user to know the exact number of subjects (plots) in 

the data beforehand. This number is specified in line 52. For the example data, the exact number of subjects is 

six: three (m1, m2 and m3) from the model fitting data and three (v1, v2 and v3) from the model application 

data. 

 

For any data set, if the exact number of subjects is known and specified in line 52, this step-by-step program 

also applies to any number of subjects. Some readers may find this step-by-step program is relatively easier to 

follow than the generalized program, although both programs produce the same results. 

 
1 

2     OPTIONS LS=100 PS=45; 

3 

4     data comb1; 

5      input plotid $    YEAR    vol age; 

6    cards; 

NOTE: DATALINES 7 to 24 (for plots m1, m2, m3, v1, v2 and v3); 

25   ; 

26   run; 

27 

28   proc sort data=comb1; 

29     by plotid; 

30   run; 

31 

32   data wed3; 

33   set comb1; 

34   by plotid; 

35   j+1; 

36   if first.plotid then do; i+1; j=1; end; 

37   run; 

38 

39   data wed4; 

40     set wed3; by plotid; 

41        b1=0.01785; b2=2.3396; 

42    zb1 = age**b2*(1-b1*age)*exp(-b1*age); 

43    zb2 = b1*exp(-b1*age)*log(age)*age**b2; 

44    vol_fix=b1*age**b2*exp(-b1*age); 

45    res_fix=vol-vol_fix; 

46   run; 

47 

48   filename random 'c:\_localdata\random.txt' ; 

49   proc iml; 

50   file random; 

51   use wed4; 

52   do k=1 to 6; 

53       read all var {zb1 zb2} into Z where (i=k); 

54       read all var {res_fix} into RES where (i=k); 

55       read all var {j} into MM where (i=k); 

56   ss=nrow(mm); 

57   R= 45.0368 * I(ss); 

58   D= {0.0000641 0.0006674, 0.0006674 0.02049}; 

59   b=D*Z`*INV(Z * D * Z` + R)*RES; 

60       bTrans = b`; 

61       u1i= bTrans[1,1] ; 

62       u2i= bTrans[1,2] ; 

63       put k 5. +2 u1i 15.10 +2 u2i 15.10; 
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64   end; 

65 

66   closefile random ; 

67   quit ; 

68 

69   data prandom ; 

70   infile random; 

71   input i u1i u2i ; 

72   run ; 

73 

74   data allP ; 

75    merge wed4 Prandom ; 

76    by i ; 

77    zb1 = age**b2*(1-b1*age)*exp(-b1*age); 

78    zb2 = b1*exp(-b1*age)*log(age)*age**b2; 

79    vol_fix=b1*age**b2*exp(-b1*age); 

80    res_fix=vol-vol_fix; 

81    y_pred = vol_fix+u1i*zb1+u2i*zb2; 

82    Y_res=vol-y_pred; 

83    run; 

84   proc print data=allP(obs=18); 

85    var plotid i j age vol vol_fix zb1 zb2 u1i u2i y_pred y_res ; 

86   run; 

 

The print statement produces the same results as those from Appendix 1. They are listed in Table 4 (FO 

method) for the model fitting data (plots m1, m2 and m3) and Table 6 for the model application data (plots v1, 

v2 and v3). 
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Appendix 3. Generalized Program for the First-Order Conditional Expectation Method 

 

This generalized program for the FOCE method does not require a user to know or to specify the number of 

subjects (plots) in the data beforehand. It applies to any number of subjects.  

 

A convergence criterion of 10
-7

 is specified in line 97 for the iteration, which is equivalent to a precision of 

0.0000001. Readers may wish to choose a different convergence criterion in some cases (such as 10
-6

 or 10
-5

), 

but are not recommended to go above 10
-5

. 

 
1 

2     OPTIONS LS=100 PS=45; 

3 

4     data comb1; 

5      input plotid $    YEAR    vol age; 

6    cards; 

NOTE: DATALINES 7 to 24 (for plots m1, m2, m3, v1, v2 and v3); 

25   ; 

26   run; 

27 

28   proc sort data=comb1; 

29     by plotid; 

30   run; 

31 

32   data wed3; 

33   set comb1; 

34   by plotid; 

35   j+1; 

36   if first.plotid then do; i+1; j=1; end; 

37   run; 

38 

39   proc iml; 

40   use wed3; 

41   read all var {j} into tobs; 

42   read all var {i age} into age; 

43   read all var {vol} into vol; 

44   covar={0.0000878, 0.0005871, 0.02121, 44.6634}; 

45   fixp={0.01879 2.3412}; 

46   d=j(2,2,0); 

47   d[1,1]=covar[1]; 

48   d[1,2]=covar[2]; 

49   d[2,1]=covar[2]; 

50   d[2,2]=covar[3]; 

51   s=covar[4]; 

52   bb=fixp[1,]; 

53   b=bb`; 

54   tn=max(age[,1]); 

55   q=2; 

56   bx={1 1}; 

57   nn=nrow(vol); 

58   u=j(tn,q,0); 

59   start sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv); 

60   z=j(nn,q,0); 

61   res=j(nn,1,0); 

62   uv=j(tn,q,0); 

63   do k=1 to tn; 

64   z[1:nn,]=.; 

65   res[1:nn,]=.; 
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66    do j=1 to nn; 

67    if age[j,1]=k then; 

68    do; 

69    u1=u[k,1]; 

70    u2=u[k,2]; 

71    agem=age[j,2]; 

72    volm=vol[j,1]; 

73    zb1 = agem**(b[2]+u2)*(1-(b[1]+u1)*agem)*exp(-(b[1]+u1)*agem); 

74    z[j,1]=zb1; 

75    zb2 = (b[1]+u1)*exp(-(b[1]+u1)*agem)*log(agem)*agem**(b[2]+u2); 

76    z[j,2]=zb2; 

77    re=volm-(b[1]+u1)*agem**(b[2]+u2)*exp(-(b[1]+u1)*agem)+u1*zb1+u2*zb2; 

78    res[j]=re; 

79   end; 

80   end; 

81   r1=z; 

82   r2=r1[loc(r1[,1]^=.),]#bx; 

83   w1=res; 

84   w2=w1[loc(w1[,1]^=.),]; 

85   mm=nrow(w2); 

86   rr=s*I(mm); 

87   uu=d*r2`*INV(r2*d*r2`+rr)*w2; 

88   uk=uu`; 

89   uv[k,]=uk; 

90   end; 

91   finish sm; 

92   run sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv); 

93   bu=uv; 

94   do k=1 to tn; 

95   diff1=1; 

96   diff2=1; 

97   eps1=10E-7; 

98    do iter=1 to 1000 until ((diff1<eps1) & (diff2<eps1)); 

99   run sm (tn,bx,q,u,z,b,s,d,age,vol,nn,res,uv); 

100  diff=abs(uv-u); 

101  diff1=max(diff[,1]); 

102  diff2=max(diff[,2]); 

103  u=uv; 

104  end; 

105  end; 

106  ubu=u; 

107  bf=j(tn,q,0); 

108  do i=1 to tn; 

109  bf[i,1]=b[1]; 

110  bf[i,2]=b[2]; 

111  end; 

112  ub=bu||ubu||bf; 

113  cnm={b1i,b2i,ub1i,ub2i,b1,b2}; 

114  create rpm from ub[colname=cnm]; 

115  append from ub; 

116  quit; 

117 

118  data rpm1; 

119  set rpm; 

120  i=_n_; 

121  run; 

122 

123  proc sort data=wed3;by i;run; 

124  proc sort data=rpm1;by i;run; 
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125 

126  data allx ; 

127   merge wed3 rpm1; 

128   by i ; 

129   vol_fix  = (b1     )*age**(b2     )*exp(-(b1     )*age); 

130   Y_pred = (b1+ub1i)*age**(b2+ub2i)*exp(-(b1+ub1i)*age); 

131   Y_res= vol - y_pred; 

132   zb1 = age**(b2+ub2i)*(1-(b1+ub1i)*age)*exp(-(b1+ub1i)*age); 

133   zb2 = (b1+ub1i)*exp(-(b1+ub1i)*age)*log(age)*age**(b2+ub2i); 

134  proc print data=allx(obs=18); 

135   var plotid i j age vol vol_fix zb1 zb2 ub1i ub2i y_pred y_res ; 

136  run; 

 

The print statement produces the following results. They are listed in Table 4 (FOCE method) for the model 

fitting data (plots m1, m2 and m3) and Table 7 (Final iteration results) for the model application data (plots v1, 

v2 and v3). 

 
    Obs plotid i j   age     vol   vol_fix       zb1   zb2      UB1I     UB2I    Y_pred    Y_res 

 

      1   m1   1 1  94.332 285.380 134.033   -316.59 1302.54 -0.008063  0.12306 286.473  -1.0932 

      2   m1   1 2 101.332 317.151 138.954  -2569.47 1464.11 -0.008063  0.12306 317.017   0.1341 

      3   m1   1 3 113.332 368.217 144.126  -7383.55 1737.20 -0.008063  0.12306 367.247   0.9699 

      4   m2   2 1  71.746  33.106 107.955  -1368.35  138.83  0.014962 -0.16687  32.488   0.6179 

      5   m2   2 2  81.746  40.085 121.427  -1604.53  135.57  0.014962 -0.16687  30.786   9.2988 

      6   m2   2 3  91.746  12.273 131.842  -1753.76  127.58  0.014962 -0.16687  28.233 -15.9595 

      7   m3   3 1 112.667 415.991 143.942 -31229.07 1932.13  0.008754  0.34883 408.965   7.0260 

      8   m3   3 2 117.667 393.785 145.056 -32585.28 1909.53  0.008754  0.34883 400.501  -6.7163 

      9   v1   4 1 136.000 166.812 144.263 -18376.22  845.05  0.015490  0.34226 172.016  -5.2036 

     10   v1   4 2 150.000 154.413 139.487 -16730.03  693.78  0.015490  0.34226 138.461  15.9524 

     11   v1   4 3 156.000 135.661 136.599 -15882.74  632.39  0.015490  0.34226 125.230  10.4312 

     12   v1   4 4 161.000 114.873 133.883 -15137.21  583.47  0.015490  0.34226 114.825   0.0483 

     13   v1   4 5 167.000  79.100 130.306 -14213.15  527.78  0.015490  0.34226 103.122 -24.0218 

     14   v2   5 1  49.667  19.999  69.097   4917.70  159.44 -0.012912 -0.00138  40.827 -20.8279 

     15   v2   5 2  60.667  75.227  89.765   6689.36  250.91 -0.012912 -0.00138  61.117  14.1104 

     16   v3   6 1  51.000  32.880  71.698   1405.50   85.59 -0.010137 -0.23744  21.769  11.1109 

     17   v3   6 2  56.000  26.408  81.246   1511.77  102.17 -0.010137 -0.23744  25.381   1.0275 

     18   v3   6 3  62.000  17.720  92.115   1598.90  123.20 -0.010137 -0.23744  29.850 -12.1301 
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Appendix 4. Step-by-Step Program for the First-Order Conditional Expectation Method 

 

This step-by-step program for the FOCE method corresponds to the three-step iteration procedure described 

in Section 3.3 and demonstrated in Section 4.2.  

 
1    OPTIONS LS=100 PS=45; 

2 

3     data comb1; 

4      input plotid $    YEAR    vol age; 

5    cards; 

NOTE: DATALINES 6 to 23 (for plots m1, m2, m3, v1, v2 and v3); 

24   ; 

25   run; 

26 

27   proc sort data=comb1; 

28     by plotid; 

29   run; 

30 

31   data wed3; 

32   set comb1; 

33   by plotid; 

34   j+1; 

35   if first.plotid then do; i+1; j=1; end; 

36   run; 

37 

38   data wed4; 

39   set wed3; 

40   by i; 

41        b1=0.01879; b2=2.3412; 

42    z1 = age**b2*(1-b1*age)*exp(-b1*age); 

43    z2 = b1*exp(-b1*age)*log(age)*age**b2; 

44    vol_fix = b1*age**b2*exp(-b1*age); 

45    res_fix = vol - b1*age**b2*exp(-b1*age); 

46   run; 

47 

48   filename random 'c:\_localdata\random.txt' ; 

49   proc iml; 

50   file random; 

51   use wed4; 

52   do k=1 to 6; 

53       read all var {z1 z2} into Z where (i=k); 

54       read all var {res_fix} into RES where (i=k); 

55       read all var {j} into MM where (i=k); 

56   ss=nrow(mm); 

57   R= 44.6634 * I(ss); 

58   D= { 0.0000878 0.0005871, 0.0005871 0.02121}; 

59   b=D*Z`*  INV(Z * D * Z` + R)*RES; 

60       bTrans = b`; 

61       u1i= bTrans[1,1] ; 

62       u2i= bTrans[1,2] ; 

63       put k 5. +2 u1i 15.10 +2 u2i 15.10; 

64   end; 

65   closefile random ; 

66   quit ; 

67 

68   data prandom ; 

69   infile random; 

70   input     i u1i u2i; 
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71   run ; 

72 

73   data all ; 

74    merge wed4 Prandom ; 

75    by i ; 

76   proc print data=all; 

77     var  plotid i j   age     vol   vol_fix  z1   z2 u1i u2i; 

78   run; 

 

This print statement produces the step one results. Table 7 (Step 1 computation) lists the results for plot v1 

(shaded area) of the model application data. 
 

  Obs   plotid   i   j     age       vol     vol_fix          z1      z2        u1i         u2i 

 

    1     m1     1   1    94.332   285.380   134.033    -5510.40   609.425   -0.019342    0.07745 

    2     m1     1   2   101.332   317.151   138.954    -6685.39   641.747   -0.019342    0.07745 

    3     m1     1   3   113.332   368.217   144.126    -8663.75   681.764   -0.019342    0.07745 

    4     m2     2   1    71.746    33.106   107.955    -2000.01   461.308    0.008509   -0.11649 

    5     m2     2   2    81.746    40.085   121.427    -3463.84   534.716    0.008509   -0.11649 

    6     m2     2   3    91.746    12.273   131.842    -5079.35   595.795    0.008509   -0.11649 

    7     m3     3   1   112.667   415.991   143.942    -8556.92   680.043    0.003230    0.42059 

    8     m3     3   2   117.667   393.785   145.056    -9348.43   691.605    0.003230    0.42059 

    9     v1     4   1   136.000   166.812   144.263   -11942.11   708.714    0.016647    0.32237 

   10     v1     4   2   150.000   154.413   139.487   -13499.55   698.917    0.016647    0.32237 

   11     v1     4   3   156.000   135.661   136.599   -14039.71   689.807    0.016647    0.32237 

   12     v1     4   4   161.000   114.873   133.883   -14429.90   680.312    0.016647    0.32237 

   13     v1     4   5   167.000    79.100   130.306   -14826.26   666.906    0.016647    0.32237 

   14     v2     5   1    49.667    19.999    69.097      245.49   269.847   -0.020829   -0.10756 

   15     v2     5   2    60.667    75.227    89.765     -668.50   368.523   -0.020829   -0.10756 

   16     v3     6   1    51.000    32.880    71.698      159.16   281.906    0.005873   -0.16514 

   17     v3     6   2    56.000    26.408    81.246     -225.88   327.044    0.005873   -0.16514 

   18     v3     6   3    62.000    17.720    92.115     -808.79   380.171    0.005873   -0.16514 

 

79 

80   data wed41; 

81   set all; 

82   by i; 

83        b1=0.01879; b2=2.3412; 

84    z11 = age**(b2+u2i)*(1-(b1+u1i)*age)*exp(-(b1+u1i)*age); 

85    z22 = (b1+u1i)*exp(-(b1+u1i)*age)*log(age)*age**(b2+u2i); 

86    vol_fix = b1*age**b2*exp(-b1*age); 

87    y_pred = (b1+u1i)*age**(b2+u2i)*exp(-(b1+u1i)*age) ; 

88    y_res =vol- y_pred ; 

89    res_c = vol -(b1+u1i)*age**(b2+u2i)*exp(-(b1+u1i)*age)+z11*u1i+z22*u2i ; 

90    drop u1i u2i; 

91   run; 

92 

93   filename random1 'c:\_localdata\random.txt' ; 

94   proc iml; 

95   file random1; 

96   use wed41; 

97   do k=1 to 6; 

98       read all var {z11 z22} into Z where (i=k); 

99       read all var {res_c} into RES where (i=k); 

100      read all var {j} into MM where (i=k); 

101  ss=nrow(mm); 

102  R= 44.6634 * I(ss); 

103  D= { 0.0000878 0.0005871, 0.0005871 0.02121}; 

104  b=D*Z`*  INV(Z * D * Z` + R)*RES; 
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105      bTrans = b`; 

106      u1i= bTrans[1,1] ; 

107      u2i= bTrans[1,2] ; 

108       put k 5. +2 u1i 15.10 +2 u2i 15.10; 

109  end; 

110  closefile random1 ; 

111  quit ; 

112 

113  data prandom1; 

114  infile random1; 

115  input     i u1i u2i; 

116  run ; 

117 

118  data all ; 

119   merge wed41 Prandom1; 

120   by i; 

121  proc print data=all(obs=18); 

122   var plotid i j age vol vol_fix z11 z22 y_pred y_res  u1i u2i ; 

123  run; 

 

This print statement produces the step two results. Table 7 (Step 2 computation) lists the results for plot v1 

(shaded area) of the model application data. 
 

  Obs plotid i j   age     vol   vol_fix        z11      z22  y_pred     y_res    u1i       u2i 

 

    1   m1   1 1  94.332 285.380 134.033   66166.35  -157.77  -34.700  320.080 -0.015225 -0.01019 

    2   m1   1 2 101.332 317.151 138.954   79267.59  -191.29  -41.419  358.570 -0.015225 -0.01019 

    3   m1   1 3 113.332 368.217 144.126  105255.82  -258.54  -54.655  422.872 -0.015225 -0.01019 

    4   m2   2 1  71.746  33.106 107.955   -1818.17   221.25   51.777  -18.671  0.015979 -0.13909 

    5   m2   2 2  81.746  40.085 121.427   -2376.70   231.99   52.681  -12.596  0.015979 -0.13909 

    6   m2   2 3  91.746  12.273 131.842   -2856.71   234.23   51.832  -39.559  0.015979 -0.13909 

    7   m3   3 1 112.667 415.991 143.942  -57504.73  4039.56  855.036 -439.045  0.007605  0.37345 

    8   m3   3 2 117.667 393.785 145.056  -62389.66  4116.93  863.475 -469.690  0.007605  0.37345 

    9   v1   4 1 136.000 166.812 144.263  -14850.90   676.90  137.787   29.025  0.014365  0.32107 

   10   v1   4 2 150.000 154.413 139.487  -13263.79   545.73  108.915   45.498  0.014365  0.32107 

   11   v1   4 3 156.000 135.661 136.599  -12490.57   493.62   97.750   37.911  0.014365  0.32107 

   12   v1   4 4 161.000 114.873 133.883  -11824.83   452.52   89.055   25.818  0.014365  0.32107 

   13   v1   4 5 167.000  79.100 130.306  -11014.71   406.20   79.367   -0.267  0.014365  0.32107 

   14   v2   5 1  49.667  19.999  69.097    7486.57   -54.14  -13.862   33.861 -0.013579 -0.08255 

   15   v2   5 2  60.667  75.227  89.765   12213.76   -90.99  -22.163   97.390 -0.013579 -0.08255 

   16   v3   6 1  51.000  32.880  71.698    -380.91   143.27   36.438   -3.558  0.003886 -0.25433 

   17   v3   6 2  56.000  26.408  81.246    -610.12   158.92   39.481  -13.073  0.003886 -0.25433 

   18   v3   6 3  62.000  17.720  92.115    -911.61   175.37   42.492  -24.772  0.003886 -0.25433 

 

124 

125  data wed41; 

126  set all; 

127  by i; 

128       b1=0.01879; b2=2.3412; 

129   z11 = age**(b2+u2i)*(1-(b1+u1i)*age)*exp(-(b1+u1i)*age); 

130   z22 = (b1+u1i)*exp(-(b1+u1i)*age)*log(age)*age**(b2+u2i); 

131   vol_fix = b1*age**b2*exp(-b1*age); 

132   y_pred = (b1+u1i)*age**(b2+u2i)*exp(-(b1+u1i)*age) ; 

133   y_res =vol- y_pred ; 

134   res_c = vol -(b1+u1i)*age**(b2+u2i)*exp(-(b1+u1i)*age)+z11*u1i+z22*u2i ; 

135   drop u1i u2i; 

136  run; 

137 

138  filename random1 'c:\_localdata\random.txt' ; 
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139  proc iml; 

140  file random1; 

141  use wed41; 

142  do k=1 to 6; 

143      read all var {z11 z22} into Z where (i=k); 

144      read all var {res_c} into RES where (i=k); 

145      read all var {j} into MM where (i=k); 

146  ss=nrow(mm); 

147  R= 44.6634 * I(ss); 

148  D= { 0.0000878 0.0005871, 0.0005871 0.02121}; 

149  b=D*Z`*  INV(Z * D * Z` + R)*RES; 

150      bTrans = b`; 

151      u1i= bTrans[1,1] ; 

152      u2i= bTrans[1,2] ; 

153      put k 5. +2 u1i 15.10 +2 u2i 15.10; 

154  end; 

155  closefile random1 ; 

156  quit ; 

157 

158  data prandom1; 

159  infile random1; 

160  input     i u1i u2i; 

161  run ; 

162 

163  data all ; 

164   merge wed41 Prandom1; 

165   by i; 

166  proc print data=all(obs=18); 

167   var plotid i j age vol vol_fix z11 z22 y_pred y_res  u1i u2i ; 

168  run; 

 

This print statement produces the step three results. Table 7 (Step 3 computation) lists the results for plot v1 

(shaded area) of the model application data. 
 

    Obs plotid i j   age     vol   vol_fix       z11   z22    y_pred    y_res    u1i       u2i 

 

      1   m1   1 1  94.332 285.380 134.033  19006.24  464.12 102.077  183.303 -0.003373 -0.10487 

      2   m1   1 2 101.332 317.151 138.954  21080.58  543.31 117.640  199.511 -0.003373 -0.10487 

      3   m1   1 3 113.332 368.217 144.126  24462.63  692.10 146.311  221.906 -0.003373 -0.10487 

      4   m2   2 1  71.746  33.106 107.955  -1505.97  149.71  35.035   -1.929  0.015514 -0.16054 

      5   m2   2 2  81.746  40.085 121.427  -1747.60  145.24  32.983    7.102  0.015514 -0.16054 

      6   m2   2 3  91.746  12.273 131.842  -1891.89  135.74  30.037  -17.764  0.015514 -0.16054 

      7   m3   3 1 112.667 415.991 143.942 -37471.02 2367.32 501.079  -85.088  0.009528  0.36545 

      8   m3   3 2 117.667 393.785 145.056 -39416.78 2355.63 494.065 -100.280  0.009528  0.36545 

      9   v1   4 1 136.000 166.812 144.263 -18491.83  858.32 174.717   -7.905  0.015611  0.34510 

     10   v1   4 2 150.000 154.413 139.487 -17085.61  714.37 142.572   11.841  0.015611  0.34510 

     11   v1   4 3 156.000 135.661 136.599 -16323.01  655.03 129.714    5.947  0.015611  0.34510 

     12   v1   4 4 161.000 114.873 133.883 -15638.78  607.37 119.527   -4.654  0.015611  0.34510 

     13   v1   4 5 167.000  79.100 130.306 -14776.99  552.68 107.988  -28.888  0.015611  0.34510 

     14   v2   5 1  49.667  19.999  69.097   3875.45  106.42  27.250   -7.251 -0.011322 -0.03182 

     15   v2   5 2  60.667  75.227  89.765   5305.27  165.98  40.430   34.797 -0.011322 -0.03182 

     16   v3   6 1  51.000  32.880  71.698   -180.15  102.66  26.109    6.771  0.000803 -0.27491 

     17   v3   6 2  56.000  26.408  81.246   -337.18  114.06  28.335   -1.927  0.000803 -0.27491 

     18   v3   6 3  62.000  17.720  92.115   -547.42  126.22  30.583  -12.863  0.000803 -0.27491 

 

Carry out the iteration manually by repeatedly running the program lines 125 to 168 for 60 times. This 

produces the following results:  
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    Obs plotid i j   age     vol   vol_fix       z11   z22    y_pred    y_res    u1i       u2i 

 

      1   m1   1 1  94.332 285.380 134.033   -316.59 1302.54 286.473  -1.0932 -0.008063  0.12306 

      2   m1   1 2 101.332 317.151 138.954  -2569.47 1464.11 317.017   0.1341 -0.008063  0.12306 

      3   m1   1 3 113.332 368.217 144.126  -7383.55 1737.20 367.247   0.9699 -0.008063  0.12306 

      4   m2   2 1  71.746  33.106 107.955  -1368.35  138.83  32.488   0.6179  0.014962 -0.16687 

      5   m2   2 2  81.746  40.085 121.427  -1604.53  135.57  30.786   9.2988  0.014962 -0.16687 

      6   m2   2 3  91.746  12.273 131.842  -1753.76  127.58  28.233 -15.9595  0.014962 -0.16687 

      7   m3   3 1 112.667 415.991 143.942 -31229.07 1932.13 408.965   7.0260  0.008754  0.34883 

      8   m3   3 2 117.667 393.785 145.056 -32585.28 1909.53 400.501  -6.7163  0.008754  0.34883 

      9   v1   4 1 136.000 166.812 144.263 -18376.22  845.05 172.016  -5.2036  0.015490  0.34226 

     10   v1   4 2 150.000 154.413 139.487 -16730.03  693.78 138.461  15.9524  0.015490  0.34226 

     11   v1   4 3 156.000 135.661 136.599 -15882.74  632.39 125.230  10.4312  0.015490  0.34226 

     12   v1   4 4 161.000 114.873 133.883 -15137.21  583.47 114.825   0.0483  0.015490  0.34226 

     13   v1   4 5 167.000  79.100 130.306 -14213.15  527.78 103.122 -24.0218  0.015490  0.34226 

     14   v2   5 1  49.667  19.999  69.097   4917.70  159.44  40.827 -20.8279 -0.012912 -0.00138 

     15   v2   5 2  60.667  75.227  89.765   6689.36  250.91  61.117  14.1104 -0.012912 -0.00138 

     16   v3   6 1  51.000  32.880  71.698   1405.50   85.59  21.769  11.1109 -0.010137 -0.23744 

     17   v3   6 2  56.000  26.408  81.246   1511.76  102.17  25.381   1.0275 -0.010137 -0.23744 

     18   v3   6 3  62.000  17.720  92.115   1598.89  123.20  29.850 -12.1301 -0.010137 -0.23744 

 

The results obtained after 60 iterations are equivalent to those obtained from Appendix 3 (except occasional 

decimal places for some intermediate computations). 

 

Notes: 

 

1. Depending on the data and model involved and the number of iterations carried out, some minuscule 

differences at certain decimal places may occur between the final results from Appendices 3 and 4. 

This is caused primarily by different ways of computations (e.g., the generalized program in Appendix 3 

uses a “do…until” statement with a maximum iteration of up to 1000).  

 

2. In most cases, stable predictions for the random parameters can be achieved in less than 10 iterations, 

so 60 iterations used in the above example are more than enough for most data. However, there are 

cases where the number of iterations may need to be increased (e.g., to 100, 200 or even higher) until 

the final predictions show no practical improvement. Of course, the manual iteration of repeatedly 

running lines 125 to 168 many times can be programmed using a macro (available to interested 

readers). 

 

3. The step-by-step program for the FOCE method also applies to any number of subjects, provided that 

the number of subjects is specified in lines 52, 97 and 142. Some practitioners may find the step-by-

step program is relatively easier to follow than the generalized program in Appendix 3. The step-by-

step program also allows for easier diagnostics when convergence is not achieved or does not exist for 

some specific data. The non-convergence problem of the FOCE method, which is often caused by the 

specific data involved and the model specification used, is an area that deserves further studies. 
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Appendix 5. Metric Conversion Chart 

 

   1 cm =  0.39370 in. 

   1 m =  3.28083 ft. 

   1 m = 1.09361 yards 

   1 ha =  2.47105 acres 

   1 m
2
 =  10.76385 ft

2
 

   1 m
3
 = 35.31435 ft

3
 

 

   1 m
2
/ha = 4.3560 ft

2
/acre 

   1 m
3
/ha = 14.2913 ft

3
/acre 

 

   1 ha = 10000 m
2
 

 

   1 km = 1000 m 

   1 km = 0.62137 miles 

   1 km
2
 = 100 ha 

   1 km
2
 = 0.3861 miles

2
 

 

   1 in. = 2.5400 cm 

   1 ft. = 0.3048 m 

   1 acre = 0.4047 ha 

   1 ft
2
 = 0.09290 m

2
 

   1 ft
3
 = 0.02832  m

3
 

 

   1 ft
2
/acre = 0.2296 m

2
/ha 

   1 ft
3
/acre = 0.06997 m

3
/ha 

 

   1 mile = 1.6093 km 

   1 mile
2
 = 2.5898 km

2
 

   1 mile
2
 = 258.9846 ha 

 

   1 fbm = 1 ft. × 1 ft.  × 1 in. 

   1 fbm = 0.0023597 m
3
 

   1 Mfbm = 1000 foot board measure (fbm) 

   1 Mfbm = 2.3597 m
3
 

 

   1 township = 6 miles × 6 miles = 36 mile
2
 

   1 township = 9.6558 km × 9.6558 km = 93.2345 km
2
  

   1 township = 9323.45 ha 

 

   1 m
3
 log ≈ 233 board feet lumber (provincial average conversion factor) 

 1 Mfbm ≈ 4.3 m
3
 log (provincial average conversion factor) 
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