Further Processing for Better Utilization of Co-products in Monogastrics

Matt Oryschak and Eduardo Beltranena

Alberta Agriculture and Rural Development Edmonton, AB

Aberta Agriculture and Rural Development

Overview

- Co-products: challenges/opportunities
- Processing technologies
 - Enzymes
 - Extrusion
 - Fractionation

Why the interest in co-products?

Figure 1. Recent trends in prices of corn DDGS, canola meal and soybean meal

Sources: USDA - AMS, CME, Canola Council of Canada

Why the interest in co-products?

Figure 2. Historical canola seed crush and meal production in Canada

Why the interest in co-products?

Figure 3. US DDGS production and disposition, 2008-13

Canola meal and DDGS

- In both cases, processing results in concentration of:
 - Protein
 - Minerals
 - Fibre
- Inclusion in practical diets is generally limited by digestible nutrient content

Extrusion

Albertan Agriculture and Rural Development

Extrusion

- Seldom used for feeds other than petfood or aquaculture
 - High capital and operating expense
- Relative cost of co-products may present opportunity to increase value
 - Cost vs. benefit?

How extrusion positively impacts feedstuffs (potentially)

- . AWVt of hemicellulose
- **û** solubility of fibre
- û denaturation of protein
- Inactivation/destruction of tannins, TI, lectins and phytate

from Singh et al., 2007

Extrusion

- Next to no data on value of extrusion of canola meal for monogastrics
 - Keady and O'Dougherty (2000) no benefit for pigs
 - We have studied extruded-expelled meals
- Our group studied single and twin screw extrusion of different DDGS types fed to broilers
 - Oryschak et al., 2010a, 2010b

Table 1. Effect of DDGS type and twin-screw extrusion on digestibility coefficients of energy and amino acids in DDGS fed to growing broilers.

	DDGS	S Туре	Extrusion			E	Effect
	Corn	Wheat	(-)	(+)	SEM	Туре	Extrusion
Gross energy	52.2 ^a	48.4 ^b	46.2 ^b	54.5 ^a	1.1	*	***
Arginine	77.2	80.5	73.6 ^b	84.1ª	1.1	*	***
Lysine	65.5	63.6	55.1 ^b	74.0 ^a	2.0	NS	***
Methionine	82.6	84.3	79.4 ^b	87.5ª	1.1	NS	***
Threonine	63.3 ^b	68.3ª	61.2 ^b	70.4 ^a	1.3	*	**
Tryptophan	69.9 ^b	79.2 ^a	72.5 ^b	76.6 ^a	1.3	***	*

from Oryschak et al., 2010a

Table 2. Effect of single-screw extrusion on digestibility coefficients of energy and amino acids in triticale DDGS fed to growing broilers.

	Extru	usion		Effect
	(-)	(+)	SEM	Extrusion
Gross energy	41.1	44.9	2.10	NS
Arginine	78.2	77.6	3.56	NS
Lysine	62.0	58.2	3.26	NS
Methionine	73.0 ^b	81.2 ^a	1.47	***
Threonine	60.3	59.5	3.09	NS
Tryptophan	70.0 ^b	75.6 ^a	1.81	**

from Oryschak et al., 2010b

So why the inconsistent response to extrusion?

- Single screw vs. twin screw extrusion
- <u>Hypothesis</u>: extrusion has differential impact on solubles vs. distillers grain
 - AA in solubles recognized to be less digestible than distillers grains
 - Response ≈ solubles content of DDGS

Enzyme Supplementation

Enzyme supplementation

- Use of enzymes in monogastric feeds is widespread
 - Global sales of \$780 million in 2012
 - 60% NSPases
 - 40% of total volume used in poultry
- Considerable interest in supplementing diets containing co-products

The theory: enzymes + co-products

Co-products are relatively cheap Digestibility nutrient density in co-products limits inclusion

Higher inclusion levels of co-products is possible

Reduced feed costs

Nutrient digestibility in co-products is increased intrinsic enzyme activities to take full advantage

Monogastrics lack

Exogenous enzymes help degrade problematic substrates in co-products

What the literature says...

Table 3. Effect of enzyme supplementation within triticale DDGS inclusion level on apparent total tract and ileal nutrient digestibility of diets fed to growing broilers.

DDGS level	0	%	15	5%	30)%		Effect
Enzyme	(-)	(+)	(-)	(+)	(-)	(+)	SEM	LxE
Apparent total trac	t digestik	oility, %						
GE	76.7 ^a	77.2 ^a	70.4 ^c	74.4 ^b	66.0 ^d	70.5 ^c	0.7	**
DM	70.6ª	70.7ª	63.0 ^c	67.5 ^b	58.2 ^d	62.8 ^c	0.7	**
[NDF-ADF]	63.8	67.5	73.0	72.8	58.6	48.5	3.6	NS
Growth performan	се							
ADFI g/d	219.2	205.0	209.9	173.8	196.4	197.7	17.0	NS
ADG, g/d	96.0	95.7	90.0	78.5	79.8	82.6	7.9	NS
Gain:Feed	0.440	0.465	0.428	0.492	0.406	0.415	0.027	NS

Why 'theory' doesn't translate to observable differences?

NU

Enzymes for co-products

- Supplementation should be based on substrate content of diets, not ingredients
 - Can't recommend enzyme supplementation based solely on improvements in co-products

More targeted approach needed?

- Incorporate enzymes directly into co-product production streams???
- Are certain types of co-products likely to benefit more (e.g., expeller-pressed canola meal)?

Fractionation

Fractionation

 Our group has focused heavily on fractionation technologies for domestic coproducts

- Wheat DDGS & canola meal

- Our group's criteria for fractionation technologies
 - Low capital expense
 - Continuous throughput (rather than batch)
 - Fully scalable for various size operations

Fractionation

- Dry fractionation technologies are based primarily on separation by:
 - Particle size
 - Particle weight
- Ideally, particles differing in either property differ as well in nutrient or fibre content
 - Can therefore generate 2 differentiated products from a single parent material

Air classification

Alberta Agriculture and Rural Development

Table 4. Analyzed composition (%) and glucosinolate content of solvent-extracted *B. napus* and *B. juncea* meals and their air-classified fractions.

		B. napus	3	B. juncea		
	Parent meal	Light fraction	Heavy fraction	Parent meal	Light fraction	Heavy fraction
Crude protein	39.2	41.9	37.3	38.4	41.0	37.2
Acid detergent fibre	20.1	13.1	25.6	12.9	8.6	16.5
Neutral detergent fibre	27.2	20.6	31.5	20.4	13.6	23.5
Lysine	2.0	2.4	2.1	1.9	2.1	1.8
Methionine	0.7	0.8	0.7	0.7	0.8	0.7
Total glucosinolate, µmol/g	6.4	4.7	3.9	11.7	9.8	9.0

from Zhou et al., 2013

Table 5. Effect of fraction type on apparent total tract and ileal digestibility (%) of dietary energy and nutrients in growing pigs.

	Ca	anola fractior	n type		Effect
	Parent stock	AC 'Light' fraction	AC 'Heavy' fraction	SEM	Туре
Apparent total tract digestibility,	%				
Dry matter	74.2 ^a	76.7 ^a	70.2 ^b	0.8	***
Gross energy	74.1 ^b	78.0 ^a	71.3 ^c	0.9	***
Apparent ileal digestibility, %					
Gross energy	41.7 ^b	57.2 ^a	37.8 ^b	2.5	***
Crude protein	67.0 ^a	70.5 ^a	61.1 ^b	2.0	***
Lysine	72.9 ^a	75.5 ^a	68.0 ^b	2.1	**
Methionine	79.7 ^{ab}	81.8 ^a	76 .7 ^b	1.9	*
Threonine	65.1 ^{ab}	70.5 ^a	60.1 ^b	2.2	**

34th Conference

preliminary data from Zhou, unpublished

Table 6. Main effect of canola fraction type on overall (d 0 - 37) growth performance of weaned pigs fed diets containing 20% dietary inclusions of *Brassica napus* or *Brassica juncea* meals or their air classified light or heavy fractions.

	Ca	anola fraction		Effect	
	Parent stock	AC 'Light' fraction	AC 'Heavy' fraction	SEM	Туре
ADFI, g/d	736.3	740.8	740.7	6.8	NS
ADG, g/d	501.3	519.2	505.4	5.7	0.070
Gain:Feed, g/g	0.721 ^b	0.739 ^a	0.720 ^b	0.006	***

from Zhou et al., 2013

Table 7. Apparent ileal digestibility (%) of amino acids in *Brassica napus* canola meal compared to light and heavy air classified fractions fed to broilers

		B. napus pro		Effect	
	Parent stock	AC 'Light' fraction	AC 'Heavy' fraction	SEM	Product
Lysine	77.5 ^b	85.9 ^a	87.4 ^a	1.4	***
Methionine	88.7 ^b	92.5 ^a	95.5 ^a	1.6	**
Met + Cys	76.8 ^b	85.3 ^a	87.5 ^a	2.1	*
Threonine	72.7	74.4	79.1	2.6	NS
Arginine	88.6 ^b	94.5 ^a	96.4 ^a	0.7	***
Total AA	78.2 ^b	86.2 ^a	89.7 ^a	1.5	***

from Oryschak et al., 2011b

Table 8a. Effect of fraction type on overall (d 8 – 35) growth performance and selected carcass traits of broilers fed diets containing 20% dietary inclusions of *B. napus* or *Brassica juncea* meals or their air classified light or heavy fractions.

	C	anola fractio		Effect	
	Parent stock	AC 'Light' fraction	AC 'Heavy' fraction	SEM	Туре
Growth performance (d 8 – 3	35)				
ADFI, g/d	73.4 ^b	77.3 ^a	75.9 ^a	0.9	**
ADG, g/d	97.1	96.4	98.2	1.5	NS
Gain:Feed, g/g	0.757 ^b	0.807 ^a	0.774 ^{ab}	0.013	*
Carcass traits (d 36)					
Ante-mortem weight, kg	2047.2 ^b	2148.1ª	2114.7 ^a	22.2	**
Carcass weight, kg	1446.5	1441.2	1455.1	4.6	0.10
Dressing percentage, %	68.72	68.51	69.16	0.20	NS

from Oryschak and Beltranena, 2013

Table 8b. Effect of fraction type on calculated ingredient AME and energetic efficiency of broilers fed diets containing 20% dietary inclusions of *B. napus* or *Brassica juncea* meals or their air classified light or heavy fractions.

	C	anola fractio	n type	_	Effect
	Parent stock	AC 'Light' fraction	AC 'Heavy' fraction	SEM	Туре
Starter phase (d 8 – 14) Ingredient AME, kcal/kg AME intake:gain, kcal/g	2588 ^b 4.15	2805ª 4.33	2498 ^c 4.07	24 0.08	*** 0.06
Grower phase (d 15 – 35) Ingredient AME, kcal/kg AME intake:gain, kcal/g	2202 ^b 5.22	2495 ^a 5.05	2100 ^b 5.01	39 0.10	*** NS

from Oryschak and Beltranena, 2013

Two-step dry fractionation

Table 10. Analysed nutrient composition of wheat DDGScompared to 3 DDGS fractions produced using a 2-step dryfractionation procedure.

	Parent stock	Fraction 'A'	Fraction 'C'	Fraction 'D'
Crude protein	38.4	44.8	39.3	33.8
Acid detergent fibre	10.7	9.4	11.6	12.9
Neutral detergent fibre	36.1	29.1	35.1	37.5
Lysine	0.84	0.90	0.85	0.74
Methionine	0.53	0.61	0.53	0.45
Threonine	1.09	1.22	1.09	0.94
Tryptophan	0.39	0.43	0.37	0.31

Table 11. Apparent total tract digestibility of gross energy and apparent ileal digestibility of selected amino acids in wheat DDGS and 3 wheat DDGS fractions fed to growing broilers.

	Parent	D	DGS Frac		Effect	
	stock	А	С	D	SEM	Fraction
GE	62.7	75.1	56.8	69.0	5.2	NS
Lysine	73.5	67.3	69.8	77.3	5.4	NS
Met + Cys	83.7	79.9	78.4	86.4	5.1	NS
Threonine	76.3	74.2	71.8	82.6	5.3	NS
Arginine	85.7	82.5	81.9	88.7	3.0	NS
Total AA	85.2	81.2	80.7	86.6	4.2	NS

from Oryschak et al., 2011a

Table 12. Standardized ileal digestibility of crude protein and selected amino acids in wheat DDGS, soybean meal and 3 wheat DDGS fractions fed to growing pigs

	Wheat	Soybean	D	DGS fract	_	Effect	
	DDGS	meal	А	С	D	SEM	Ingred
Crude protein	77.3	75.5	79.6	75.7	86.4	2.8	0.060
Arginine	87.9 ^b	86.4 ^b	87.6 ^b	84.4 ^b	96.6ª	2.6	*
Lysine	71.2 ^{bc}	79.2 ^b	68.8 ^{bc}	67.6 ^c	90.1 ^a	3.7	***
Methionine	79.8	82.2	81.0	79.0	83.8	1.5	NS
Threonine	78.4 ^{ab}	72.9 ^b	77.2 ^b	74.7 ^b	86.6 ^a	3.2	*
Tryptophan	84.0 ^b	81.8 ^b	83.9 ^b	80.8 ^b	94.9 ^a	2.4	**

from Yàňez, submitted

The 'yield vs. density' conundrum

Putting it all together

• Enzymes

- No clear improvements in diets with co-products
- Alternative approaches to supplementation??

Extrusion

- Seems to increase AA digestibility in DDGS
- Gap: potential benefits of extrusion for canola products
- Incorporate extrusion into production streams for co-products??

Putting it all together

- Fractionation
 - Capable of generating higher density fractions more suited to monogastrics
 - Improves nutrient digestibility: canola meal yes;
 DDGS no
 - Technology meets key criteria
 - BIG QUESTION Where is the 'best' balance between yield and density??

Acknowledgements

