Feeding Western Canadian Co-Products to Monogastrics

Eduardo Beltranena

Western Canadian Feedstuffs 2012 August Estimates

	Production	Supply	Exports	<u>Issues</u>
Wheat 3 tonnes/ha \$305 - 335	22Mt, ↑ 4% -seeding 22%↑wnt8%↑spg	26.8Mt, ↓3%	14.5Mt, ↑ 5% - US drought - ↓ world supply	-industrial use is record high -lower feed use
Barley 3.25 tonnes/ha \$205 - 235	8.6Mt, † 10% -abandonment -lower yields	9.3Mt, 1.0%	1.8Mt, ↓1% Larger world malt supply	-flat livestock production -US drought
Canola 1.86 tonnes/ha \$630 - 670	15.7Mt, ↑13% -record seeding -lower yields	13.5Mt, ↑ 3%	9Mt, ↑1% Record exports Strong world demand	-more crushing -carry-out stocks tight
Peas 2.23 tonnes/ha \$265 - 295	3.0Mt, ↑ 45% -abandonment -lower yields	3.2Mt, ↑20%	2.4Mt, ↑ 14% -China, Indian subcontinent	-yellow and feed pea prices ↓

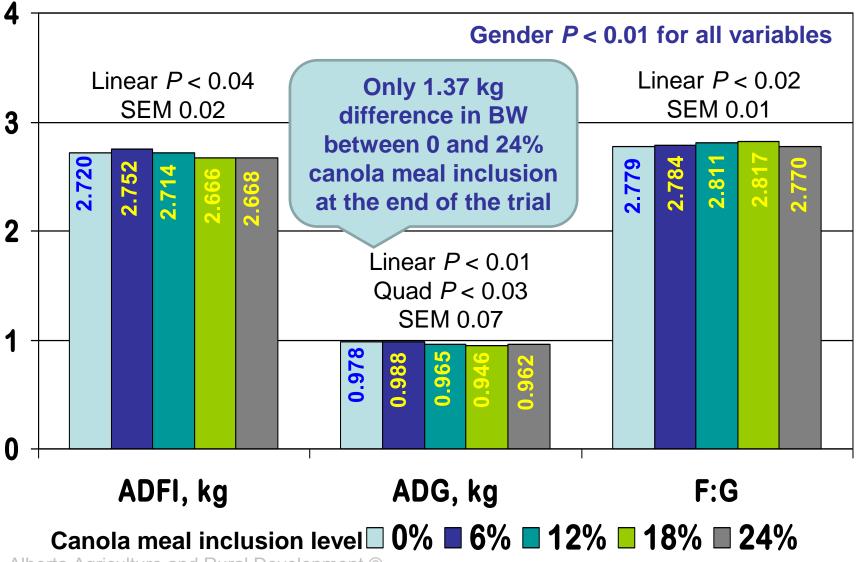
www.agr.gc.ca/gaod-dco/

Oilseeds

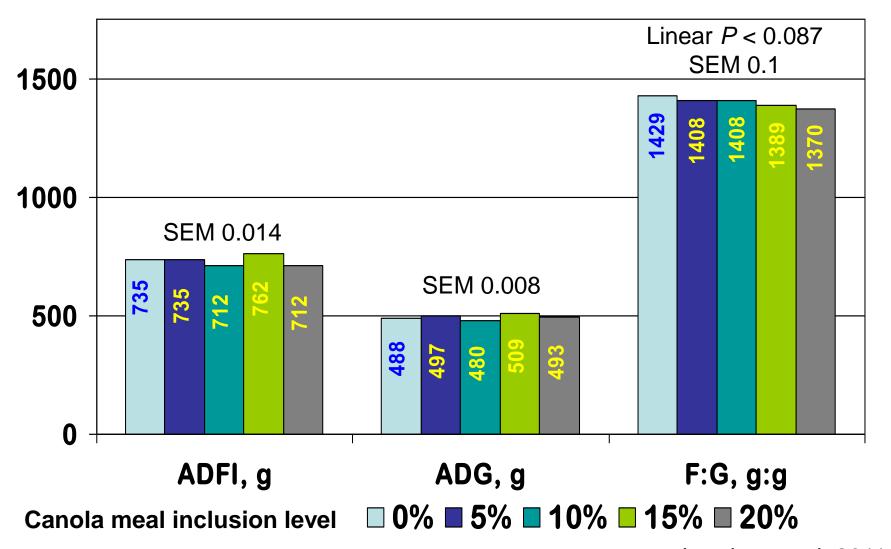
- Canola
 - Canola contributes >\$15B
 - \$6B in farm cash receipts
- Flax
- Camelina

Feeding Canola Co-products

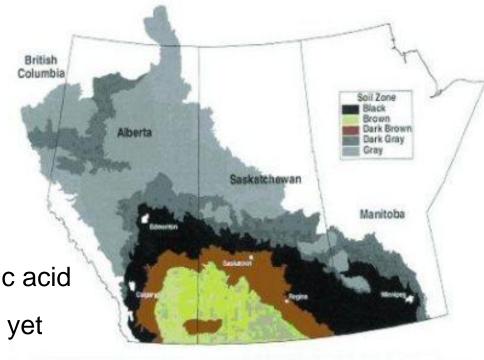
- Solvent-extracted canola meal
- Expeller-pressed
- Extruded + pressed
- Crude glycerol



Pushing the Limits Feeding SE CM


- Fed for ~35y, so what's new?
- Fed at conservative levels:
 - Palatability issues => glucosinolates
 - Fibre limits dietary energy
- Recent pork crisis forced us to push inclusions
- Increased local meal availability

Increasing Canola Meal Levels in Hog Diets


Increasing SE Canola Meal Levels in Nursery Diets for Weaned Pigs

Landero et al. 2011

B. napus (dark), B. juncea (yellow)

- B. Juncea is better adapted to grow in the southern Prairies
 - Brown soils "One crop could add 2M acres of production" CCC
 - Drought tolerant
 - Thermotolerant
 - Grows more upright
 - Lesser tendency to lodge
 - Pods do not shatter
 - Better for straight combining
 - Slightly more oleic, less linoleic acid
 - No herbicide tolerant varieties yet

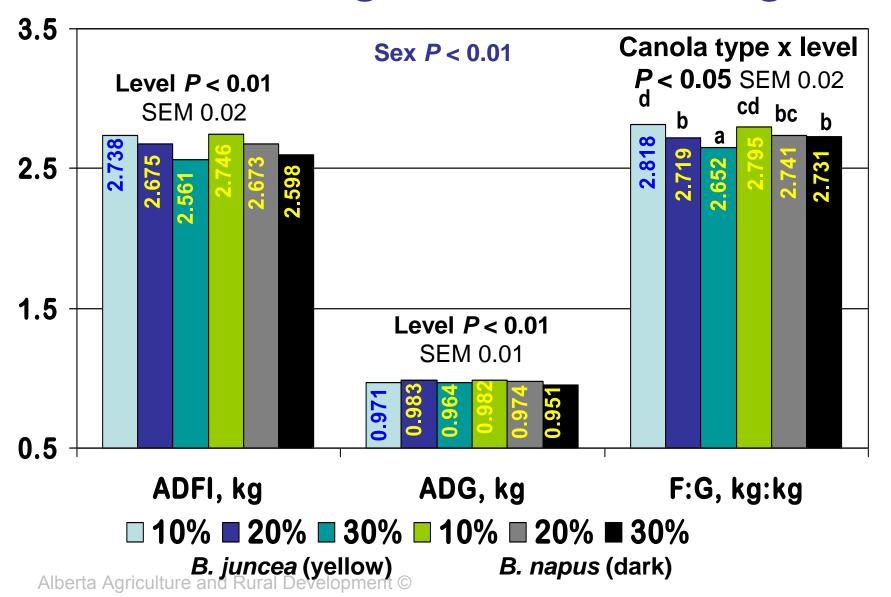
B. napus (dark), B. juncea (yellow)

- B. Juncea canola meal potentially has a higher energy value
 - Yellow, more attractive meal
 - Lower meal fibre content due to thinner seed coat
 - Higher glucosinolates in meal (~10 vs. 3.5 µmol/g)
 - Lower antinutritional factors (phytate, sinapine)

	B. Napus 'dark CM'	B. Juncea 'yellow CM'
Crude protein, %	38.9	39.1
ADF, %	18.2	13.4
NDF, %	27.2	19.8
Avail. lysine	1.82	1.85

Weaned Pig Preference

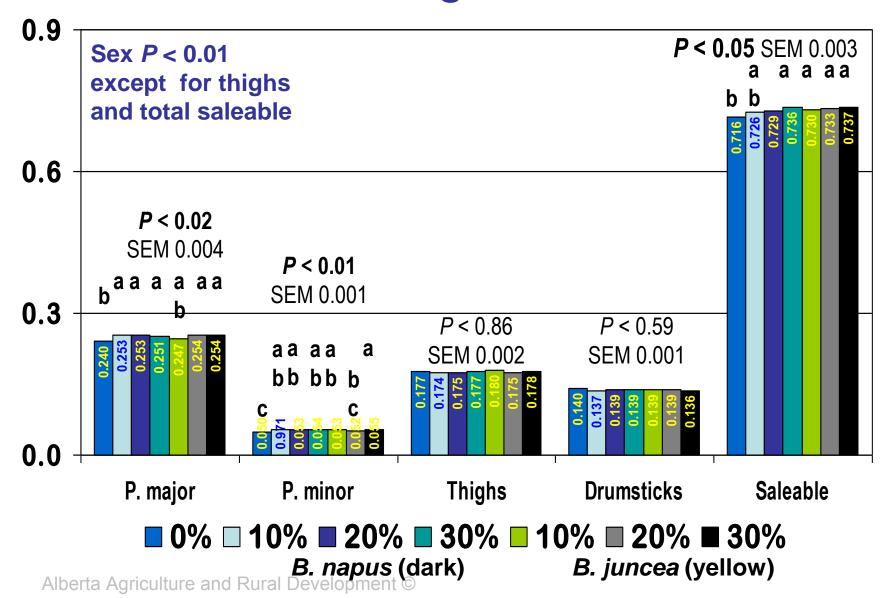
Day 0 to 4	Dark-seed <i>B.</i> napus or SBM	Yellow-seed <i>B.</i> juncea or SBM	Yellow-seed <i>B.</i> juncea or Dark- seed <i>B. napus</i>	
Exp. 1	.16 .84	.10 .90	.36 .64	
Exp. 2	.14 .86	.12 .88	.23 .77	


Preference expressed as disappearance of a diet over total amount fed

- •216 pigs, 9.4kg at 34d of age
- •8 (Exp. 1) or 4 (Exp. 2) pigs per pen
- •3 consecutive 7d feeding periods
- •Each period 3d adaptation, 4d choice
- •Test ingredients included at 20%
- Mash wheat-based diets
- •2.4 Mcal NE/kg, 4.5g SID lys/Mcal NE

Landero et al. 2011

Feeding Yellow vs. Dark SE Canola Meal at Increasing Levels to 1100 Hogs



Feeding Yellow vs. Dark Seeded SE Canola Meal at Increasing Levels to Broilers

	Canola	a meal		Dietary inclusion				Pv	alue	
	B. juncea	B. napus	SEM	0%	10%	20%	30%	SEM	CM	Level
d35, kg	2.29	2.27	0.01	2.28	2.27	2.30	2.27	0.01	0.24	0.54
0-35d										
ADFI, g	107.7	106.9	0.6	106.8	107.3	107.3	107.8	0.7	0.248	0.857
ADG, g	62.2	61.6	0.5	61.9	61.6	62.4	61.6	0.6	0.408	0.806
G:F, g:g	0.614	0.615	0.005	0.613	0.614	0.619	0.612	0.006	0.841	0.871

Feeding Yellow vs. Dark Seeded SE Canola Meal at Increasing Levels to Broilers

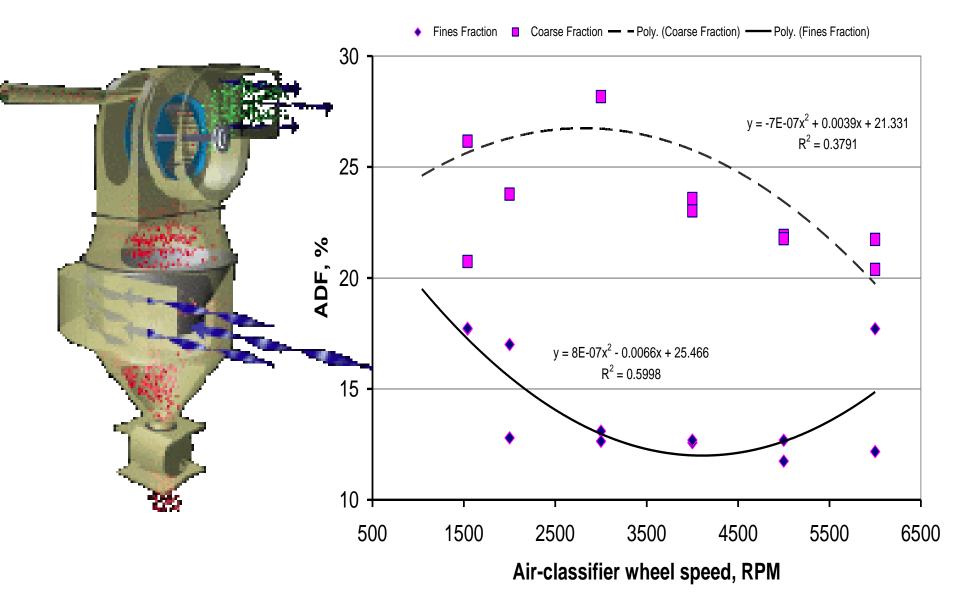
Fractionation of SE Canola Meal

- Fibre has a functional role in the gut, but ...
 - Dilutes nutrient content
 - Reduces nutrient digestibility
- CCC's goal of 10% or 2000 kcal (poultry) increase in meal energy value by 2015

ATP 200 classifying wheel

Vibro-Sieving of SE *B. juncea*

	Yield, %	Protein, %	ADF, %	NDF, %
$> 850 \mu m$	33.4	41.5	15.0	22.8
$< 850 \mu m$	20.1	40.6	14.9	23.6
< 600 µm	19.0	42.9	12.0	18.6
$<$ 425 μm	23.9	47.0	7.6	11.8


DM basis

	Yield, %	Protein, %	ADF, %	NDF, %
> 600 µm	66.80	41.48	14.60	22.26
< 600 µm	10.80	43.67	12.77	19.06
< 425 µm	12.20	46.65	8.11	13.02
< 250 µm	8.20	47.68	7.23	11.43

Beltranena 2010, unpublished

Air-Classification of SE B. napus

Digestibility of SE CM Fractions

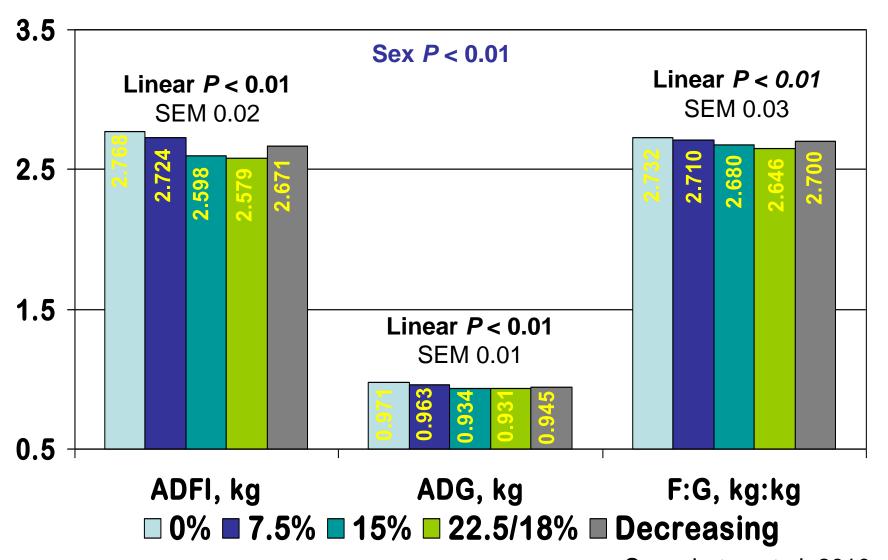
Trout Diet ATTD, %	Solvent- extracted	Fine- particle fraction	Coarse- particle fraction	SEM
DM	82.80c	83.59b	80.58d	0.61
CP	93.46a	93.11a	91.61b	0.45
Lys	95.68a	95.33ab	94.73b	0.40
Thr	93.23b	93.10bc	92.32c	0.38
Met	95.69ab	95.56ab	95.13b	0.40

ARD set up at Lethbridge College

PRC, UofA

		Fine-	Coarse-
Broilers	Solvent-	particle	particle
Ingr. AID%	extracted	fraction	fraction
DM	72.7	53.0	50.5
CP	101.4	91.6	96.3
Lys	88.7	85.9	87.4
Thr	82.7	74.4	79.1
Met	98.3	92.5	95.5

Expeller-Pressed Canola Meal


93.5% DM	Expeller-
	pressed ¹
Crude protein	35.27
Ether extract	12.63
Ash	6.55
ADF	15.93
NDF	19.98
Calcium	0.59
Phosphorus	1.03
Amino acids:	
Lysine	2.09
Avail. lysine	1.95
Methionine	0.68
Cysteine	0.85
Threonine	1.51
Tryptophan	0.52

- Pre-heated
- •2x pressed

Alberta Agriculture and Rural Development ©

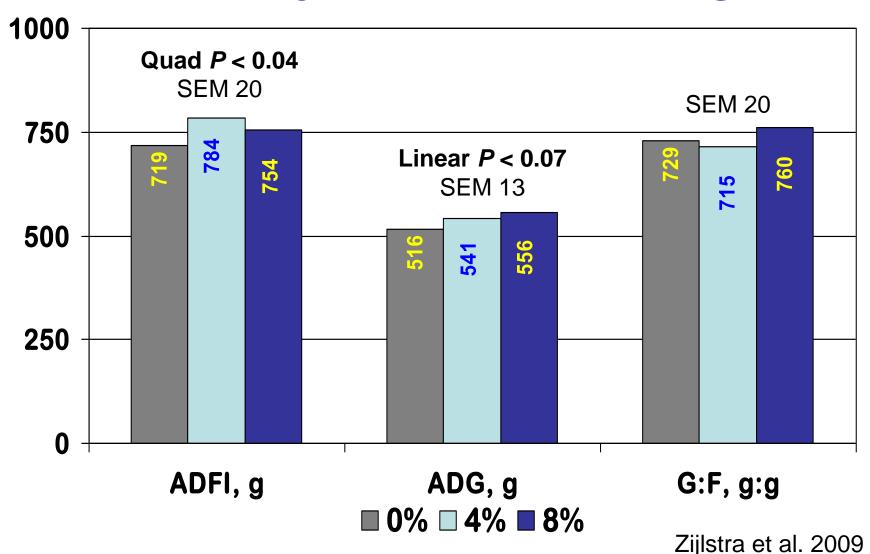
Feeding Expeller-Pressed Canola Meal at Increasing/Decreasing Levels to 1100 Hogs

Extruded + Pressed Canola Meal

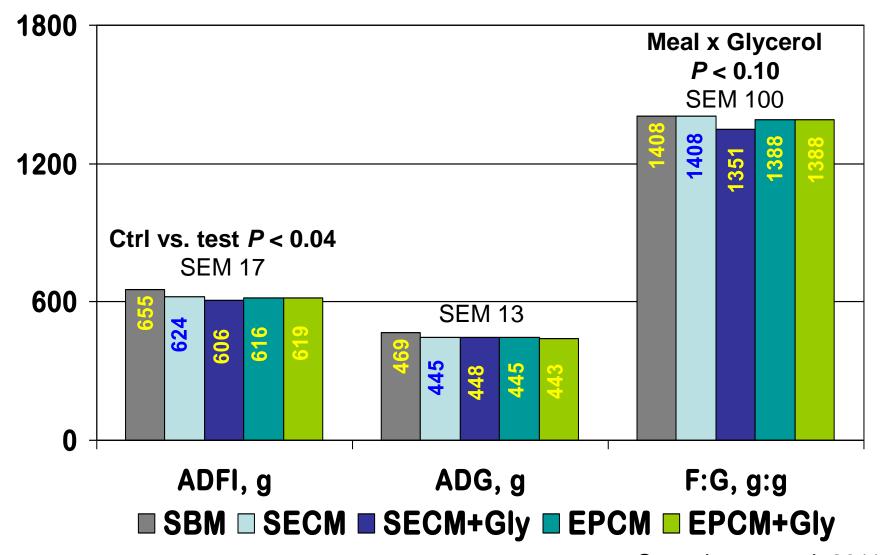
93.5% DM	Expeller- pressed ¹	Extruded +pressed ²
Crude protein	35.27	29.86
Ether extract	12.63	17.31
Ash	6.55	7.22
ADF	15.93	22.58
NDF	19.98	28.09
Calcium	0.59	0.60
Phosphorus	1.03	0.82
Amino acids:		
Lysine	2.09	1.21
Avail. lysine	1.95	1.04
Methionine	0.68	0.55
Cysteine	0.85	0.71
Threonine	1.51	1.17
Tryptophan	0.52	0.39

²Cansource Bioproducts, Mayerthorpe, AB

¹Viterra, Ste. Agathe, MB


Feeding Crude Glycerol

- Coproduct of biodiesel
- Dietary energy source
- Pelleting power requirements
- Residual chemicals
- CFIA registration


Crude glycerol				
Moist, %	15.2			
EE, %	49.6			
Ash, %	10.8			
Methanol, %	0.02			

Feeding Increasing Levels of Crude Glycerol to Weaned Pigs

Feeding SE or Expeller-Pressed Canola Meal +/- Crude Glycerol to Weaned Pigs

Seneviratne et al. 2011

Camelina

- Omega-3 fatty acids
- Vitamin E
- Sch. IV, Feed Act
 - Safety, efficacy
 - Digestibility
 - Performance

	Meal	Oil	Seed
Crude protein	32.46		21.11
Crude fat	19.06	90.12	43.68
M	eal amin	o acids, %	
Lysine	1.59	Methionine	0.55
Avail. lysine	1.46	Cysteine	0.70
Threonine	1.31	Tryptophan	0.47
	Oil fatty	acid, %	
Palmitic (16:0)	5.25	Arachidic (20:0)	1.44
Stearic (18:0)		(20:1n9)	16.19
Oleic (18:1n9)	15.5	(20:3 ω3)	1.44
Linoleic (18:2)	17.57	Docosanoic (22:0)	0.3
Linolenic (ω18:3)	33.06	Erucic (22:1n9)	2.6

Feeding Increasing Levels of Screw-Pressed Camelina Meal to Broiler Chickens

Day 0 to 42		0% Meal	<u>8% Meal</u> <u>16% Meal</u>		24% Meal		
Total Gain/bird, g		2180.8	2515.6	2690.3	2287.0		
ADG, g		51.9	59.9 64.1		54.5		
ADFI, g		86.8	89.1	89.1		88.4	
G:F		0.599	0.674	0.719	0.616		
Organ weight as % of BW Breast	0% Meal	8% Meal	16% Meal	24% Meal	SEM	Linear	
Day 14	3.87	4.28	4.14	4.23	0.147	0.104	
Day 28	5.09 ^b	4.96 ^b	6.15 ^a	6.10 ^a	0.192	0.001	
Day 42	5.54 ^b	5.53 ^b	6.88 ^a	6.82 ^a	0.358	0.001	
Pancreas							
Day 14	0.39^{b}	0.46 ^a	0.43 ^{ab}	0.45 ^a	0.019	0.091	
Day 28	0.22^{c}	0.27 ^c	0.33^{b}	0.40 ^a	0.019	0.001	
Day 42 Alberta Agriculture ar	0.17c	0.19c	0.24 ^b	0.28a	0.010	0.001	

Alberta Agriculture and Rural Development ©

Differential Cost per Mcal NE

	Solvent-	Expeller-	<u>Extruded</u>	Screw-	Green	<u>Canola</u>
	<u>extracted</u>	<u>pressed</u>	<u>+pressed</u>	pressed	<u>seed</u>	<u>Oil</u>
Expeller-pressed meal	0.82					
Extruded + pressed meal	0.72	0.88				
Screw-pressed cake	1.05	1.28	1.46			
Green canola seed	0.87	1.07	1.22	0.83		
Canola oil	1.45	1.77	2.03	1.38	1.66	
Tallow	1.26	1.55	1.77	1.21	1.45	0.87

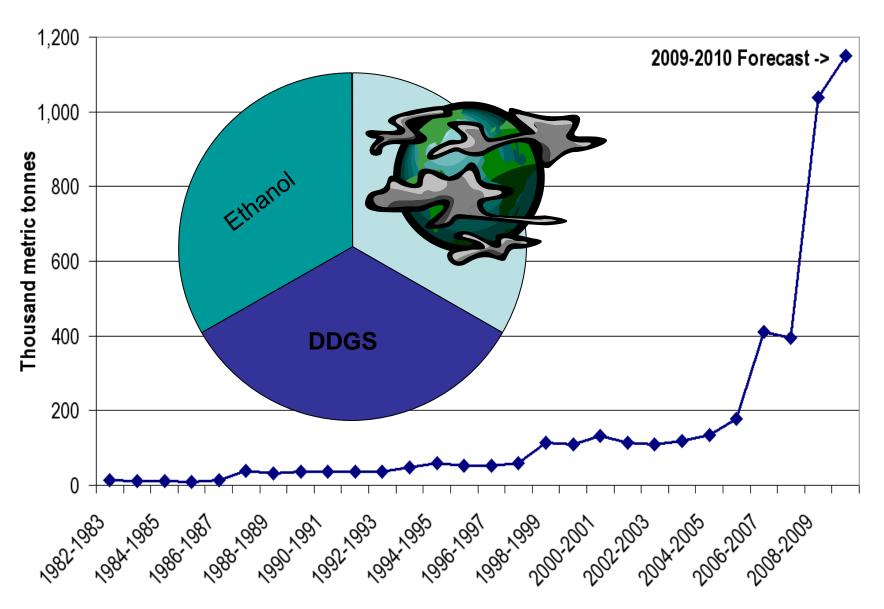
- Co-product variability issues

 - Seed qualityQuality control

 - Local processing Antinutritional factors
 - Consistent product ?

Alberta Agriculture and Rural Development ©

Conclusions


- Who can afford to feed fats?
- Cost per Mcal of residual oil
- Oilseed meals => protein or energy source
- Dietary inclusion to reduce feed cost
- Lower fibre solvent-extracted canola meal
- Co-product variability issues
- Soft fat issues vs. fatty acid enrichment

Distillers Dried Grains & Solubles (DDGS)

- What market signals?
- Ample supply of DDGS
- ... Feed more?
- DDGS not perfect

Industrial Use of Wheat

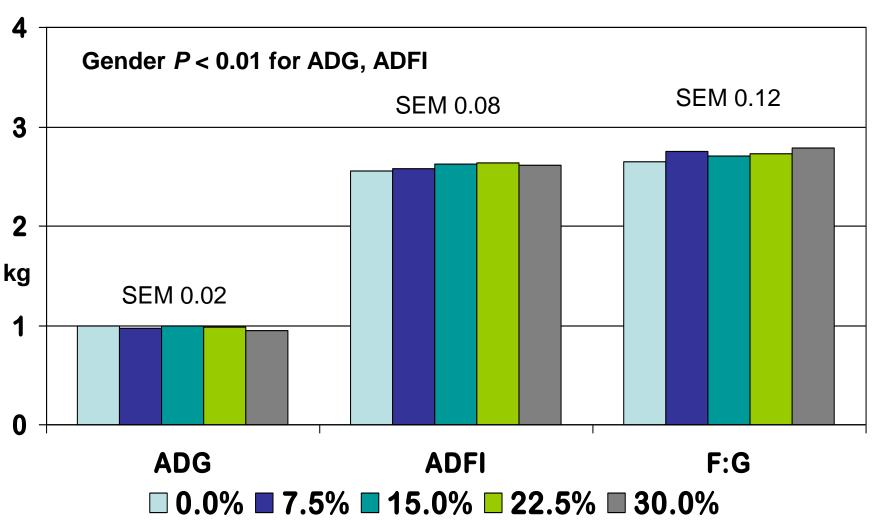
www.agr.gc.ca/gaod-dco/

DDGS Research

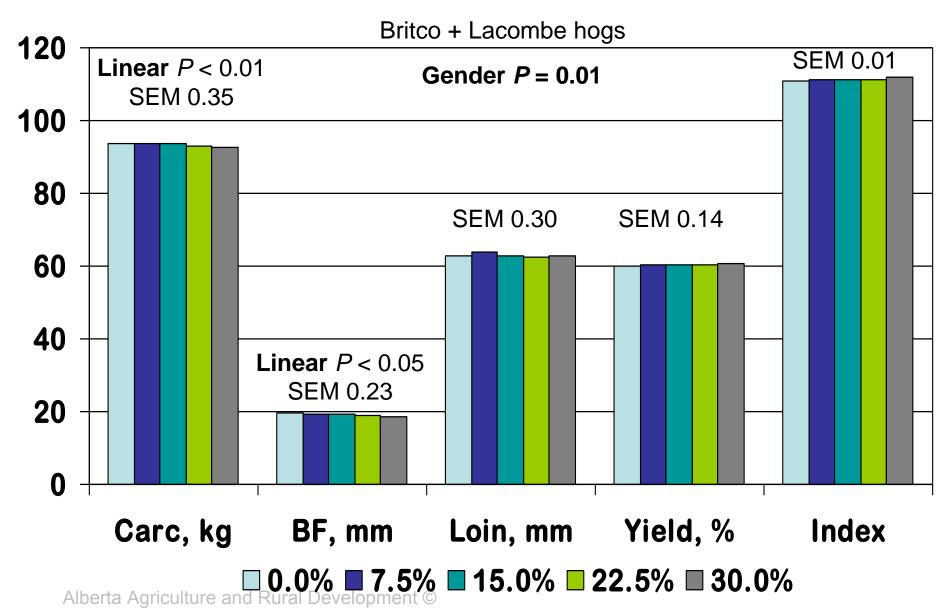
- Wheat DDGS
- Corn DDGS
- Triticale DDGS
- Processing to enhance DDGS

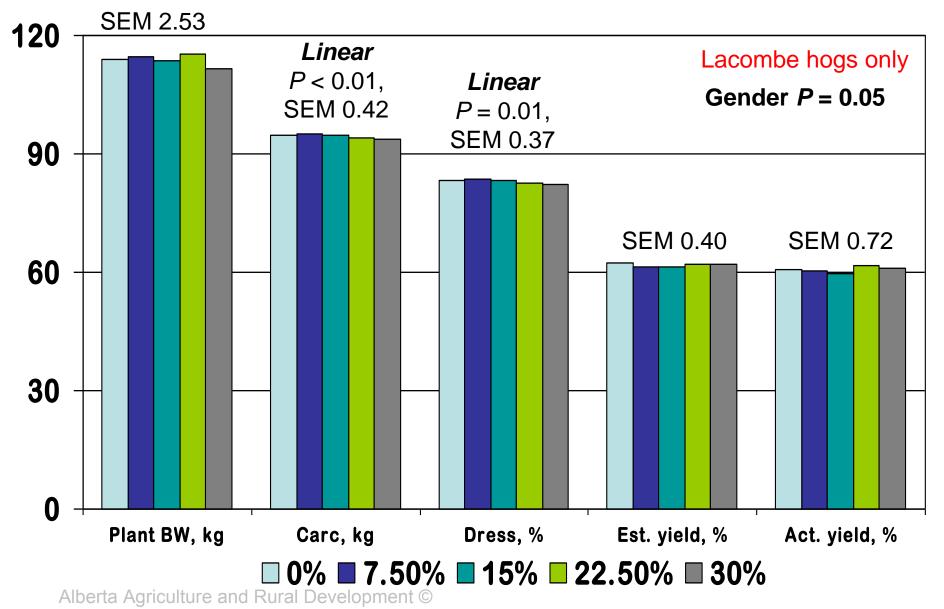
Terra Grain Fuels

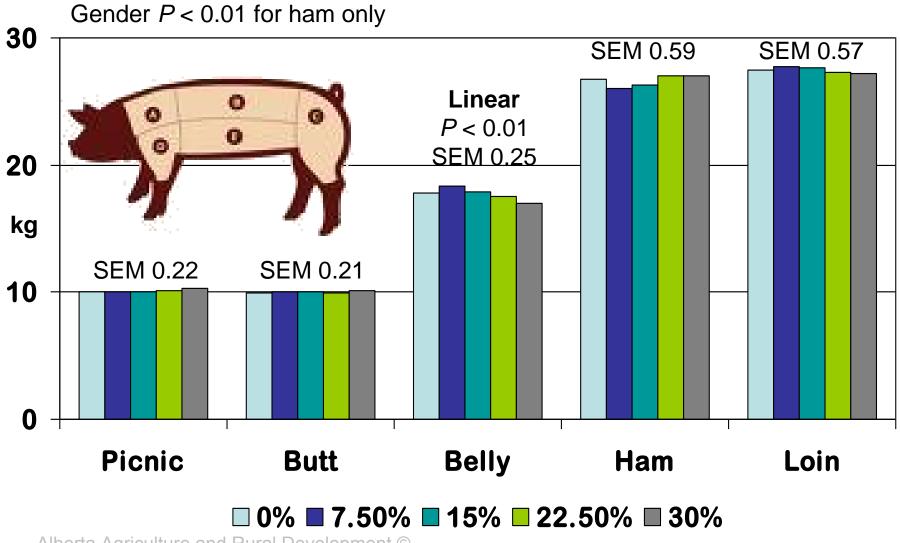
Drumloche Barn at Lougheed, AB

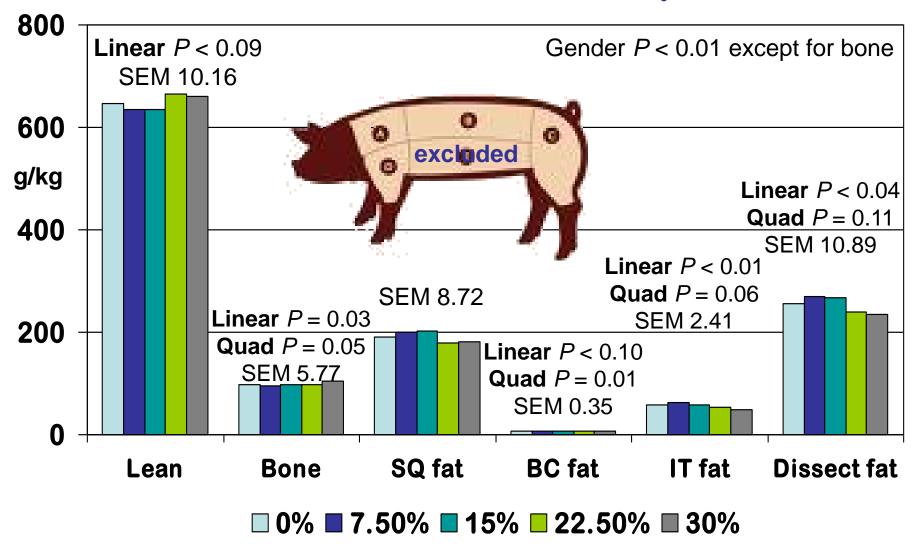

50 pens, -25 per side

Pens housed 22 gilts or barrows

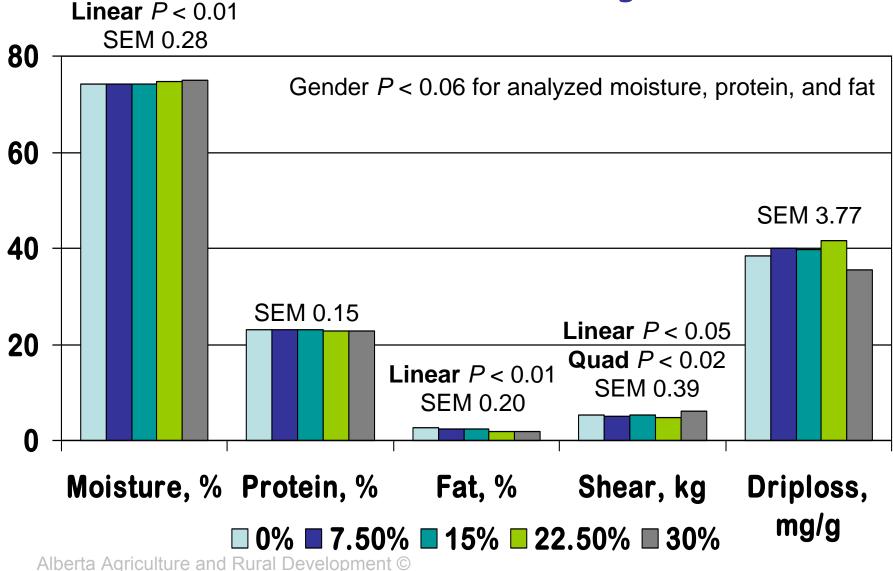


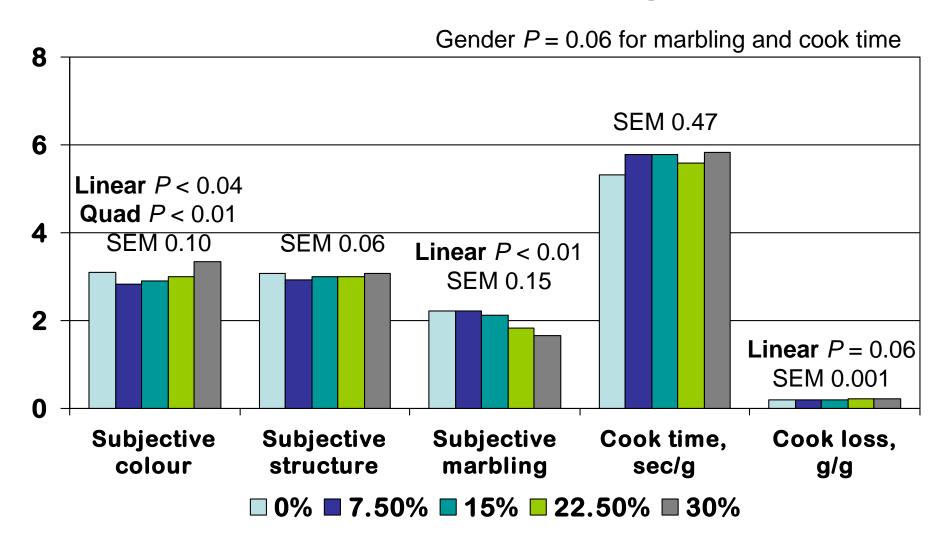

Wheat DDGS Level on Hog Growth Performance 0 – 75d


Wheat DDGS Level on Carcass Traits


Wheat DDGS Level on Carcass Traits

Wheat DDGS Level on Primal Cuts Weights


Wheat DDGS Level on Lean Cuts Tissue Composition


Loin Quality

Wheat DDGS Level on Loin Quality

Wheat DDGS Level on Loin Quality

Sensory Panel

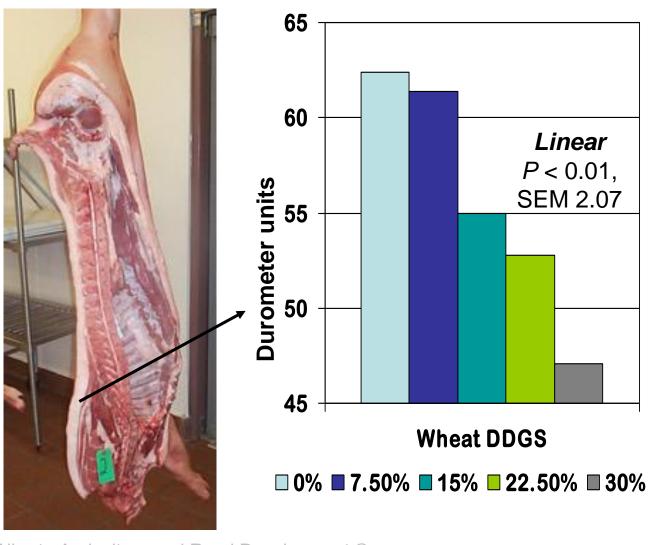
Wheat DDGS Level on Taste of Loin Chops

	<u>0%</u>	<u>7.5%</u>	<u>15%</u>	<u>22.5%</u>	<u>30%</u>	SEM
Initial Tenderness	5.77	6.06	6.01	6.25	5.82	0.19
Initial Juiciness	5.35	5.58	5.59	5.64	5.83	0.16
Flavour Desirability	5.31	5.35	5.37	5.43	5.44	0.10
Pork Flavour Intensity	4.88	4.93	4.97	4.97	4.94	0.10
Off Flavour Intensity	7.97	8.00	7.94	8.04	7.94	0.12
Sustainable Juiciness	5.12	5.14	5.27	5.25	5.43	0.15
Overall Tenderness	6.06	6.13	6.20	6.31	5.99	0.17
Overall Palatability	4.88	4.91	4.99	5.11	5.00	0.13

Wheat DDGS Level on Flavour of Loin Chops

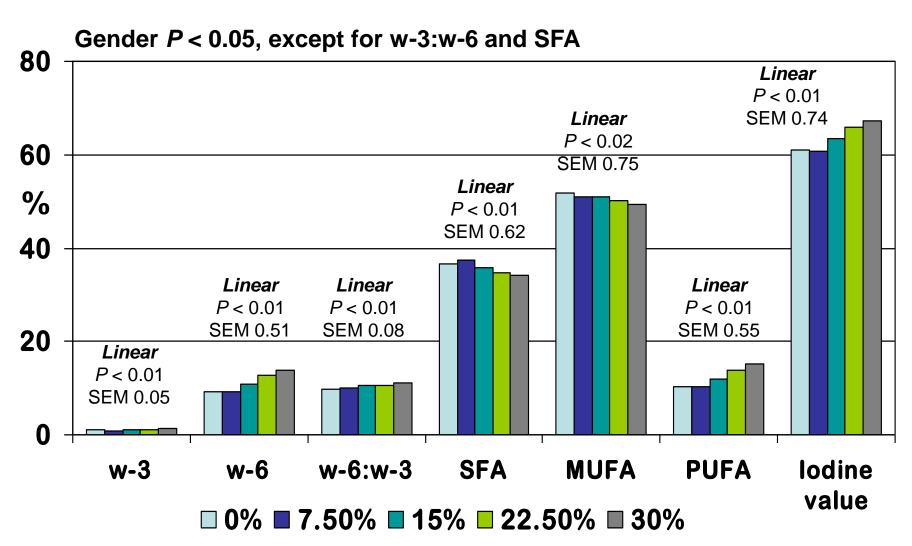
	<u>0%</u>	<u>7.5%</u>	<u>15%</u>	<u>22.5%</u>	<u>30%</u>	SEM
Metallic	1.04	0.00	0.00	0.00	0.00	0.47
Off sour	14.61	19.69	15.63	16.62	16.79	4.20
Barny	5.21	7.29	3.13	2.08	4.17	2.40
Stale	1.08	0.03	1.05	0.98	0.04	0.84
Rancid	1.08	0.03	1.05	0.98	0.04	0.84
Other	2.08	1.04	2.08	0.00	0.00	1.04
Unidentified	33.33	23.96	33.33	32.29	31.25	4.57

Alberta Agriculture and Rural Development ©

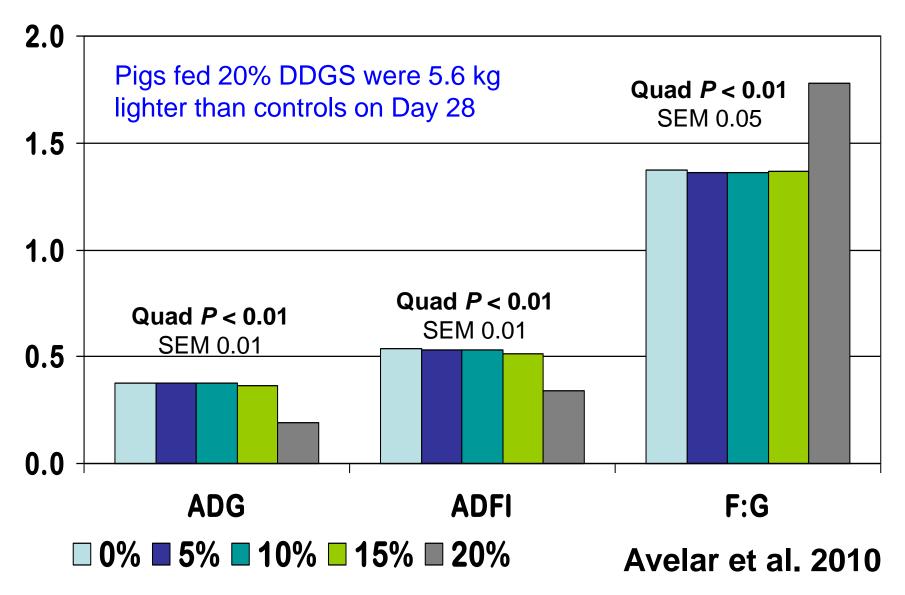

Wheat DDGS Level on Texture of Loin Chops

	<u>0%</u>	<u>7.5%</u>	<u>15%</u>	22.5%	<u>30%</u>	SEM
Typical pork	72.85	73.06	79.05	69.61	81.47	5.60
Mushy	1.04	8.33	4.17	2.08	4.17	3.71
Mealy	15.63	11.45	12.51	23.96	8.33	3.31
Rubbery	4.17	6.25	4.17	2.08	5.21	2.17
Spongy	6.11	1.14	0.09	2.18	0.89	1.86

Backfat and Belly Quality


Wheat DDGS Level on Backfat Hardness

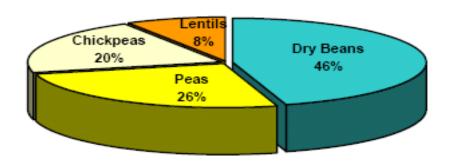
Alberta Agriculture and Rural Development ©


Wheat DDGS Level on Belly Fatty Acid Composition

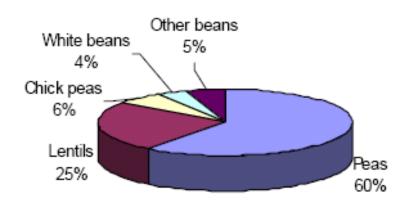
Wheat DDGS Conclusions

- NE value of wheat DDGS
- 2. Amino acid and phosphorus availability
- 3. Performance less predictable at high wheat DDGS inclusion rates
- 4. Underformulate vs. proper specs
- 5. Ethanol focus, not DDGS quality

Wheat DDGS Level for Weaners


al Development ©

Legumes -Global & Canadian Perspective


- Canada is the world's largest exporter of field pea and lentil
- In western Canada
 - Dry pea, lentil, dry bean, chickpea
 - Faba bean and lupin are emerging

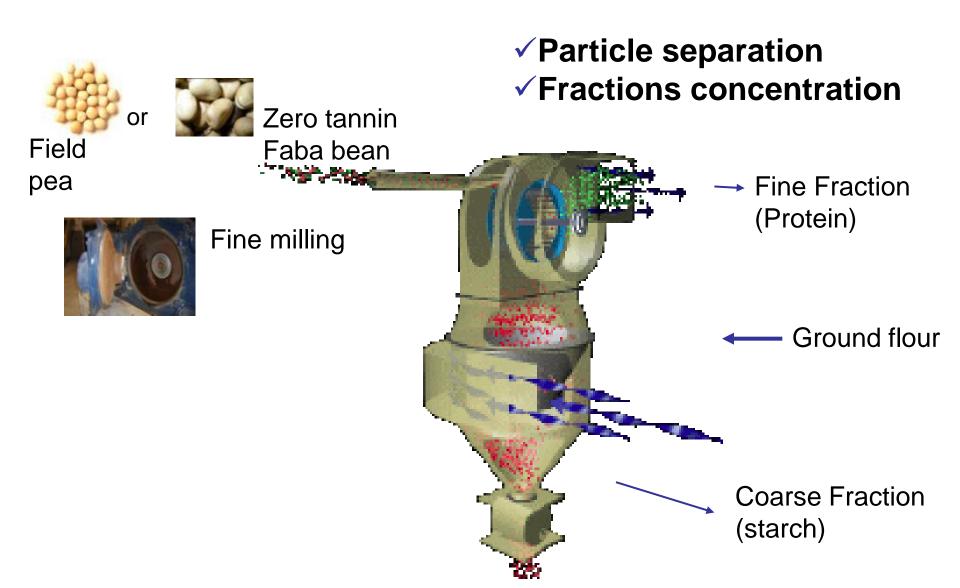
Global Pulse Production (Selected Crops)

2006-07: 40.5 million tonnes

Canada's Pulse Crop Acreage, 2006

Source: FAO; Pulse Canada, August 2007
Alberta Agriculture and Rural Development ©

Why Faba Bean?


- Crop yield
- Nitrogen fixation
- Vegetable protein

Rural Development ©

 Value-added processing

Air Classification

Pulse Fractions Nutrient Composition

	Faba bean			Field pea		
	Parent	Protein	Starch	Parent	Protein	Starch
CP, %	29.0	63.0	18.4	22.7	46.5	7.56
Starch, %	35.0	1.30	46.0	48.6	10.7	68.9

Gap in Knowledge

- Lack of digestibility values
- Lack of animal performance data

\$ Feasibility ??

Materials and Methods

- 8 barrows (25 kg) fitted with T-cannulae
- 5d adaptation, 3d fecal and 3d digesta collection
- 6 x 8 Youden square design
 - Soy protein concentrate-corn starch diet
 - Faba bean protein-corn starch diet
 - Pea protein-corn starch
 - Faba starch diet
 - Pea starch diet
 - Corn starch diet

Conclusions

Faba bean and field pea protein concentrates
had higher ATTD of DM, OM, and higher NE than
soy protein concentrate

 Faba bean and field pea protein concentrates also had higher AID of CP and higher SID of Lys, Met, Thr

 The ATTD of faba bean starch was lower than corn starch; pea starch was as high as cornstarch

Materials and Methods

- 192 crossbred piglets (7.5 kg, 27d old)
- RCB design, 4 diets fed over 7 to 35 days post-weaning
- 2 barrows, 2 gilts/pen, 12 replicate pens/diet
- Individual pigs and feed added/leftover weighed weekly
- Faecal grabs collected Day 18 to 21
- Response variables:
 - Feed intake
 - Weight gain
 - Feed conversion
 - ATTD of diets

Feed Intake, Daily Gain and Feed Efficiency (0 to 28d period) SEM = 0.010.80 P = 0.590SEM = 0.02P = 0.4080.70 0.60 SEM = 0.01P = 0.5730.50 0.40 ADFI, kg/d ADG, kg/d G:F ■ Hulled faba bean ■ Dehulled faba bean ■ Field pea ■ Protein Blend

Implications

 Air-classified ZT faba bean and field pea protein concentrates are suitable replacements for specialty protein sources used in weaned pig diets.

 Pulse protein concentrates have good potential for inclusion in aquafeeds and young animal diets

PROTEIN fractions

- Feed:
 - AQUAQULTURE
 - Milk replacers
 - Young animal diets
- Food industry:
 - Snacks
 - Breakfast bars
 - Meat replacers
- Industrial:

STARCH fractions

- Food industry:
 - Baking
 - Snacks
 - Noodles
- Pet food
- Industrial:
 - Bio-degradable
 - Paper
 - Cosmetics
 - Paint

Alberta Agriculture and Rural Development ©