Effect of Extrusion on Nutrient Digestibility in Corn and Wheat DDGS for Broilers

M. Oryschak¹, D. Korver², M. Zuidhof ², F. Hernandez¹ and E. Beltranena^{1,2}

¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

> Poultry Science Association Annual Meeting Raleigh, NC - July 20-23rd, 2009

Supporters

Government of Alberta

Agriculture and Rural Development

ALBERTA LIVESTOCK INDUSTRY DEVELOPMENT FUND

PSA 2009 - July 20-23, 2009 Raleigh, NC

Background

• Government-mandated 'green' content in fuels:

5% in gasoline by 2010 2% in diesel/heating oil by 2012

36 B Gallons by 2022 (~15% of gasoline consumption)

PSA 2009 - July 20-23, 2009 Raleigh, NC

Background

- Demand created by renewable fuel standards will likely stimulate ethanol production
 - ↑ demand/competition for feed grains
 - supply of ethanol co-products (i.e., DDGS)

Ethanol Production in Canada

Disposition of Canadian Wheat (in millions of metric tonnes)

	Wheat (except Durum)				
	2007-08	2008-09	2009-10		
Total Supply ¹	22.00	26.83	22.42		
Exports	12.68	14.50	12.50		
Food & Industrial Use	3.02	3.25	3.20		
Feed, Waste & Dockage	1.79	3.67	2.08		
Total Domestic Use	5.60	7.73	6.12		

¹ Annual domestic production + imports + carry-over stocks

Implication: Further expansion of Canadian starch-based ethanol will likely mean greater reliance on wheat as a feed stock

Source: Statistics Canada

Background

- Distiller's dried grains and solubles (DDGS) have value as a protein ingredient for livestock
 - Several challenges to expanded use but fibre level is perhaps most important for non-ruminants

PSA 2009 - July 20-23, 2009 Raleigh, NC

Extrusion

• Extrusion subjects ingredients to heat and shearing forces of a rotating screw auger

- Shear forces disrupt fibrous components

 Heating can improve (or reduce) nutrient digestibility depending on conditions

PSA 2009 - July 20-23, 2009 Raleigh, NC

Objectives

- 1. Evaluate twin-screw extrusion as a possible low-cost processing strategy to improve feed value of DDGS
- 2. Increase knowledge of feeding value of wheat DDGS compared to corn DDGS for broilers

PSA 2009 - July 20-23, 2009 Raleigh, NC

Methods and Materials

Test system

- Male Ross x Ross 308 broilers housed in cage batteries in a single room
 - Approximately 7-8 birds per cage
 - Continuous access to nipple drinkers and trough feeder fitted with solid partitions
 - Wire mesh floors with conveyor belt system for each tier of battery

Experimental management

- Test birds fed basal starter ration from d0-14 and basal grower ration from d14-21
 - Birds received one of 9 test diets from d21-28
 - Sampled for ileal digesta on d 28 (1 pooled specimen/pen)

Test ingredients

• Test ingredients:

- Wheat DDGS (Terra Grain Fuels; Belle Plaine, SK)
- Corn DDGS (Imported Commercial Stock)
- Twin screw extruded wheat DDGS
- Twin screw extruded corn DDGS
- All diets were supplemented with Superzyme[™] DDGS (0.05%)

Test diets

- 9 test diets:
 - Basal
 - 15% or 30%, twin-screw extruded or not extruded, wheat or corn DDGS (2 x 2 x 2 = 8)

Table 1. Estimated nutrient content of test diets

	Racal	Corn DDGS			DDGS
Nutrient	(no DDGS)	15%	30%	15%	30%
Dry Matter, %	89.44	89.95	90.47	89.95	90.45
ME, kcal/kg	3152	3017	2883	3017	2883
Cr. Protein, %	20.11	22.07	24.04	22.95	25.79
Cr. Fat, %	7.15	8.52	9.89	7.96	8.77
Cr. Fiber, %	2.58	2.98	3.38	3.11	3.64
Av. Phosphorus, %	0.45	0.46	0.48	0.47	0.48
Calcium, %	0.90	0.90	0.89	0.91	0.92
Total Lys, %	1.10	1.18	1.27	1.18	1.27
Total Met + Cys, %	0.79	0.86	0.92	0.87	0.96

Experimental design

- Randomized complete block:
 - Test cages divided into 5 blocks based on location within battery and room
 - Each treatment fed to 1 pen/block
 - Pen = experimental unit

Statistical analysis

- AID in test diets analyzed using mixed models (PROC MIXED) in SAS® v 9.1
 - Model: y = DDGS type | Level | Extrusion
 - Random term: block
 - Covariate: intake of ADF, crude fibre, nutrient

PSA 2009 - July 20-23, 2009 Raleigh, NC

Results and Interpretations

Significant terms in models

	Main Effects			Interactions			
	Level	Extrusion	Туре	L x E	L x T	ΤxΕ	3-way
Dry Matter	<.0001	<.0001	<.0001	-	-	0.0027	0.0421
Gross Energy	<.0001	<.0001	<.0001	-	-	0.0915	0.0591
Crude Protein	<.0001	<.0001	-	-	0.0091	-	-
Lysine	<.0001	<.0001	0.0828	0.0443	0.0703	-	-
Methionine	<.0001	<.0001	-	-	0.0445	0.0346	-
Threonine	<.0001	<.0001	-	-	0.0014	0.0625	-
Arginine	<.0001	<.0001	-	-	0.0015	-	-
Total AA's	<.0001	<.0001	-	-	0.0026	-	-

PSA 2009 - July 20-23, 2009 Raleigh, NC

Results: AID test diets

• Level of inclusion:

– Clear pattern - 15% > 30%

- Extrusion:
 - Consistently improved AID in test diets
- DDGS type:
 - More complex

Table 2.Apparent ileal nutrient digestibility in diets containing15% non-extruded and extruded corn or wheat DDGS

	Corn DDGS		Whea	Pooled	
Nutrient	Not	Extruded	Not	Extruded	SEM
Dry Matter	65.69 ^c	71.78 ^a	65.57°	68.26 ^b	0.48
Gross Energy	71.61°	76.39 ^a	71.01°	73.53 ^b	0.46
Crude Protein	82.35 ^b	85.81 ^a	82.26 ^b	84.60 ^a	0.47
Lysine	83.36 ^b	85.76 ^a	82.08 ^b	84.16 ^{ab}	0.72
Methionine	85.51 ^b	88.22 ^a	85.11 ^b	86.68 ^{ab}	0.76
Threonine	75.85 ^{bc}	79.87 ^a	75.41°	77.93 ^{ab}	0.78
Arginine	85.54 ^{bc}	88.16 ^a	84.54 ^c	86.86 ^{ab}	0.52
Total Amino Acids	83.72 ^c	86.66 ^a	83.03 ^c	85.22 ^b	0.53

Different superscripts within rows denote significant differences (P < 0.05)

Table 3.Apparent ileal nutrient digestibility in diets containing30% non-extruded and extruded corn or wheat DDGS

	Corn DDGS		Wheat DDGS		Pooled
Nutrient	Not	Extruded	Not	Extruded	SEM
Dry Matter	61.17 ^c	64.99 ^a	60.13 ^c	63.22 ^b	0.47
Gross Energy	67.92 ^b	70.55 ^a	66.76 ^b	69.52 ^a	0.45
Crude Protein	78.33 ^c	81.62 ^a	79.65 ^b	82.20 ^a	0.46
Lysine	78.05 ^b	82.37 ^a	78.51 ^b	81.97 ^a	0.70
Methionine	81.42 ^b	85.79 ^a	83.34 ^b	85.34 ^a	0.74
Threonine	70.20 ^c	74.29 ^{ab}	73.35 ^b	75.36 ^a	0.76
Arginine	81.83 ^c	85.34 ^a	83.42 ^b	85.48 ^a	0.51
Total Amino Acids	79.46 ^c	82.61 ^a	81.11 ^b	82.97 ^a	0.52

Different superscripts within rows denote significant differences (P < 0.05)

Estimating AID in test ingredients

- Interest in estimating nutrient digestibility coefficients for each DDGS type
 - How much did extrusion improve AID in DDGS?
 - Needed dig nutrient contents in order to formulate diets for performance study

PSA 2009 - July 20-23, 2009 Raleigh, NC

Procedure used to estimate nutrient digestibility in test ingredients

As a result, for the diets in our study:

 $\mathbf{D}_{\text{assay}} = \mathbf{D}_{\text{wheat}} \times \mathbf{RC}_{\text{wheat}} + \mathbf{D}_{\text{conc}} \times \mathbf{RC}_{\text{conc}} + \mathbf{D}_{\text{test}} \times \mathbf{RC}_{\text{test}}$

This can be rearranged to solve for **D**_{test}:

$$\mathbf{D}_{\text{test}} = \frac{\mathbf{D}_{\text{assay}} - \mathbf{D}_{\text{conc}} \times \mathbf{RC}_{\text{conc}} - \mathbf{D}_{\text{wheat}} \times \mathbf{RC}_{\text{wheat}}}{\mathbf{RC}_{\text{test}}}$$

Table 4. Literature AID coefficients for wheat used toestimate AID in test ingredients

	w/ NSPase
Gross Energy	0.68
Crude Protein	0.77
Lysine	0.92
Methionine	0.96
Threonine	0.82
Arginine	0.90

Derived from:

Afshermanesh et al. 1998 (Can. J. Anim Sci. 86: 255-261) Huang et al. 2005 (Brit Poult. Sci. 46: 236-245) Ravindran 1999 (Brit. Poult. Sci. 40: 266-274) Rutherfurd et al. 2002 (Brit. Poult. Sci. 44: 598-606) Rafuse et al. 2005 (Can. J. Anim. Sci. 85: 493-499) Scott et al. 1998 (Poult. Sci. 77: 456-463) Bedford et al. 1998 (Can. J. Anim. Sci. 78: 335-342) Huang et al. 2006 (Poult. Sci 86: 625-634)

Significant terms in models

	_	Main Effects			Interactions			
	Level	Extrusion	Туре	L x E	L x T	ΤxΕ	3-way	
Gross Energy	<.0001	<.0001	<.0001	<.0001	0.0075	0.0137	0.0074	
Crude Protein	<.0001	<.0001	-	0.0018	0.0087	0.0116	-	
Lysine	0.0006	<.0001	0.0089	-	0.0506	-	-	
Methionine	0.0039	<.0001	-	-	0.0917	-	-	
Threonine	<.0001	<.0001	-	0.0550	0.0094	-	-	
Arginine	0.0002	<.0001	-	-	0.0042	-	-	

Interpretation: effect of level not solely the result of wheat inclusion (assumptions underlying difference method reasonable???)

PSA 2009 - July 20-23, 2009 Raleigh, NC

Results: AID in test ingredients

- Level:
 - AID estimates generally lower when based on observed digestibilities in 30% test diets
- Extrusion:
 - Consistent improvements in AID

Results: AID in test ingredients

- DDGS type:
 - AID in extr. corn DDGS > extr. wheat DDGS, based on 15% inclusion
 - Based on 30% diets, AID in extrudates statistically similar

Table 5.Apparent ileal nutrient digestibility in non-extruded and
extruded corn or wheat DDGS (based on 15% inclusion)

	Corn DDGS		Whea	Pooled	
Nutrient	Not	Extruded	Not	Extruded	SEM
Gross Energy	47.44 ^c	75.31 ^a	43.88 ^c	58.31 ^b	1.67
Crude Protein	62.09 ^c	81.26 ^a	64.39 ^c	73.15 ^b	1.76
Lysine	63.24 ^b	83.27 ^a	49.69 ^c	70.89 ^b	4.27
Methionine	83.70 ^{bc}	94.13 ^a	82.78 ^c	89.73 ^{ab}	2.59
Threonine	65.18 ^c	85.78 ^a	62.14 ^c	76.31 ^b	3.25
Arginine	75.06 ^c	92.70 ^a	69.49 ^c	85.10 ^b	2.51

Interpretation: Extrusion large, significant improvements in nutrient digestibility (in particular AA's) in DDGS

Different superscripts within rows denote significant differences (P < 0.05)

Table 6.Apparent ileal nutrient digestibility in non-extruded and
extruded corn or wheat DDGS (based on 30% inclusion)

	Corn DDGS		Whea	Pooled	
Nutrient	Not	Extruded	Not	Extruded	SEM
Gross Energy	45.78 ^{bc}	53.89 ^a	41.68 ^c	50.17 ^{ab}	1.65
Crude Protein	60.03 ^c	68.28 ^{ab}	64.76 ^b	69.79 ^a	1.74
Lysine	52.17 ^b	71.48 ^a	50.06 ^b	69.13 ^a	4.22
Methionine	76.33 ^b	87.12 ^a	82.88 ^a	86.82 ^a	2.56
Threonine	56.28 ^b	67.49 ^a	63.41 ^{ab}	70.58 ^a	3.21
Arginine	67.86 ^c	81.31ª	73.96 ^b	82.07 ^a	2.48

Interpretation: Extrusion resulted in similar pattern and order of improvement as in 15% diets, through AID estimates were lower

Different superscripts within rows denote significant differences (P < 0.05)

Summary

- Increased demand for ethanol will increase availability of DDGS for livestock & poultry feeding
 - US: corn DDGS
 - Canada: wheat (west) and corn (east) DDGS
- Extrusion consistently improves AID of nutrients in both corn and wheat DDGS

Summary

- AID coefficients are similar between corn and wheat DDGS at high inclusion levels
- Level of inclusion in test diets appeared to influence AID estimates for DDGS
 - Possibly due in part to fibre load in test diets
 - Other factors...assumptions of difference method valid (??)

What all this means...

	Increase in dig. nutrient content (units/T)	Value of dig. nutrient content (\$/unit)	Estimated increase in value (\$/T)
Energy	350 Mcal/T	\$0.07/Mcal	\$24.50
Lysine	2 kg/T	\$2.40/kg	\$4.80
Methionine	1 kg/T	\$7.50/kg	\$7.50
Threonine	2 kg/T	\$3.00/kg	\$6.00
		Total	\$42.80

PSA 2009 - July 20-23, 2009 Raleigh, NC

Side benefits of extrusion

- Improved handling characteristics
 - Flowability improved dramatically
- Eliminates or reduces toxin/pathogen levels
 - Some reports suggest extrusion effective against certain mycotoxins (??)

Acknowledgements

ALBERTA

Government of Alberta Agriculture and Rural Development

Eduardo Beltranena

Susan Jack

Fernando Hernandez

Doug Korver Martin Zuidhof

AGRICULTURAL, FOOD & NUTRITIONAL SCIENCE

FACULTY OF AGRICULTURAL, LIFE & ENVIRONMENTAL SCIENCES

DEPARTMENT OF

2009 - July 20-23, 2009 Raleigh, NC