Effect of Extrusion and Enzyme Supplementation on Nutrient Digestibility in Triticale DDGS for Broilers

M. Oryschak¹, D. Korver², M. Zuidhof ², F. Hernandez¹ and E. Beltranena^{1,2}

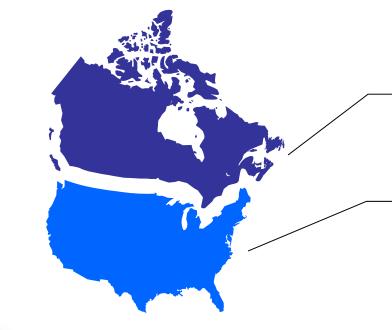
¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

> Poultry Science Association Annual Meeting Raleigh, NC - July 20-23rd, 2009

Supporters

Government of Alberta

Agriculture and Rural Development

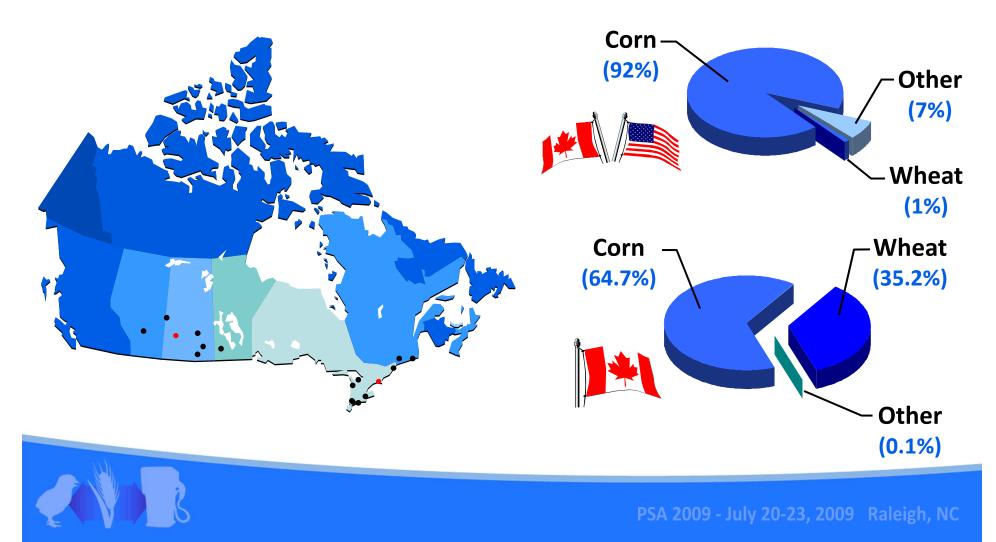


ALBERTA LIVESTOCK INDUSTRY DEVELOPMENT FUND

PSA 2009 - July 20-23, 2009 Raleigh, NC

Policy Drivers for Expanded Ethanol Production

 Government-mandated 'green' content in fuels:



5% in gasoline by 2010 2% in diesel/heating oil by 2012

36 B Gallons by 2022 (~15% of gasoline consumption)

PSA 2009 - July 20-23, 2009 Raleigh, NC

Ethanol Production in Canada

Disposition of Canadian Wheat (in millions of metric tonnes)

	Wheat (except Durum)			
	2007-08	2008-09	2009-10	
Total Supply ¹	22.00	26.83	22.42	
Exports	12.68	14.50	12.50	
Food & Industrial Use	3.02	3.25	3.20	
Feed, Waste & Dockage	1.79	3.67	2.08	
Total Domestic Use	5.60	7.73	6.12	

¹ Annual domestic production + imports + carry-over stocks

Implication: Further expansion of Canadian starch-based ethanol will likely mean less wheat will be exported

Source: Statistics Canada

Background

- Renewable fuel standards will likely stimulate ethanol production in Canada
 - ↑ demand/competition for feed grains

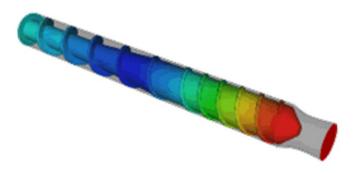
PSA 2009 - July 20-23, 2009 Raleigh, NC

Background

- Triticale (*x Triticosecale*) has equivalent value compared to wheat for ethanol production
 - Using triticale as a biofuel feedstock could alleviate local demand for wheat
 - Would create alternate market for triticale producers

Background

- No published reports regarding feed value of triticale DDGS for livestock or poultry
- Like wheat and corn DDGS, fibre content is likely to be a constraint for non-ruminants



Extrusion

• Extrusion subjects ingredients to heat and shearing forces of a rotating screw auger

- Shear forces disrupt fibrous components

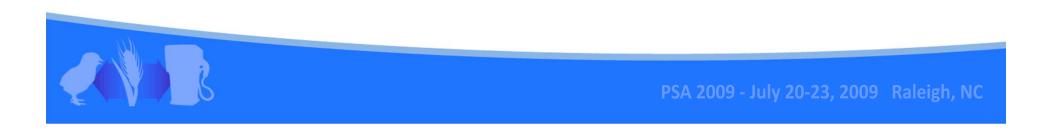
 Heating can improve (or reduce) nutrient digestibility depending on conditions

PSA 2009 - July 20-23, 2009 Raleigh, NC

Enzyme supplementation

- Superzyme[™] DDGS (Canadian BioSystems, Calgary, Canada)
 - Designed specifically for non-ruminant diets containing DDGS
 - Enzyme combination intended to increase fibre degradation and enhance protein digestibility

Superzyme[™] DDGS profile


Enzyme	Guaranteed activity in product	Activity in mixed feed (0.05% inclusion)
Xylanase (XYL)	300 U/g	150 U/kg
Glucanase (GLU)	250 U/g	125 U/kg
Amylase (FAA)	8 000 U/g	4 000 U/kg
Protease (HUT)	3 500 U/g	1750 U/kg
Invertase (INV)	10 000 U/g	10 000 U/kg

Source: Canadian Bio-Systems Inc.

Objectives

- 1. Evaluate extrusion and enzyme supplementation as low-cost processing strategies to improve feed value of DDGS for broilers
- 2. Generate information regarding the feeding value of triticale DDGS for broilers

PSA 2009 - July 20-23, 2009 Raleigh, NC

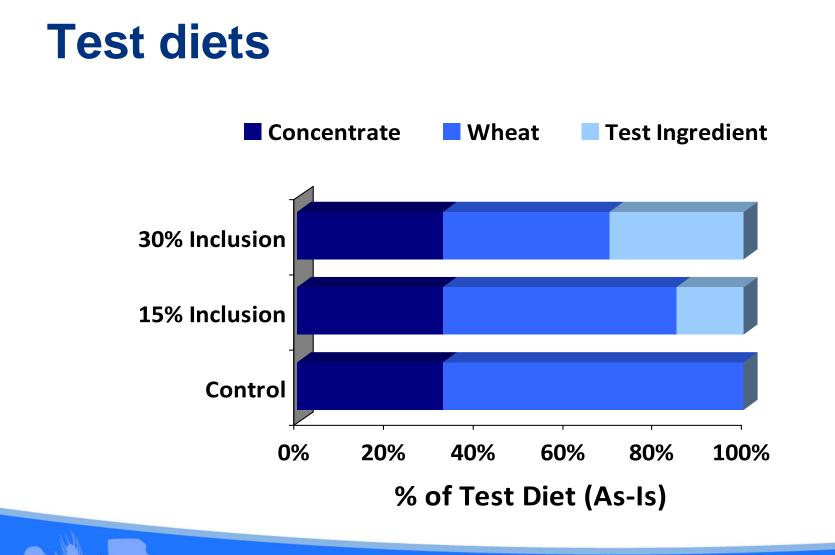
Methods and Materials

Test system

- Male Ross x Ross 308 broilers housed in cage batteries in a single room
 - Approximately 7-8 birds per cage
 - Continuous access to nipple drinkers and trough feeder fitted with solid partitions
 - Wire mesh floors with conveyor belt system for each tier of battery

Experimental management

- Test birds fed basal starter ration from d0-14 and basal grower ration from d14-21
 - Birds received one of 9 test diets from d21-28
 - Sampled for ileal digesta on d 28 (1 pooled specimen/pen)



Test ingredients

• Test ingredients:

- Triticale DDGS
- Single-Screw Extruded Triticale DDGS
- Enzyme:
 - Superzyme[™] DDGS (0.05% inclusion)

PSA 2009 - July 20-23, 2009 Raleigh, NC

Test diets

- 10 test diets:
 - Basal diet w/ and w/o enzyme (2)
 - 15% or 30% triticale DDGS, single screw extruded or not extruded w/ and w/o enzyme (2 x 2 x 2 = 8)

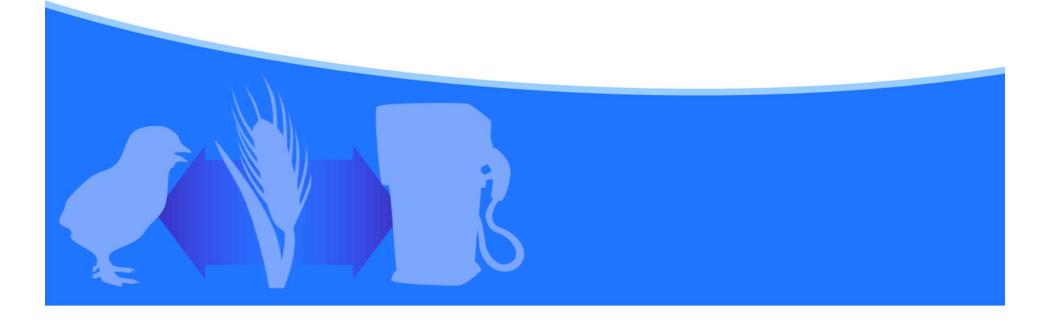
Table 1. Estimated nutrient content of test diets

	Basal -	Tritical	e DDGS	Ext Tritica	ale DDGS
Nutrient	(no DDGS)	15%	30%	15%	30%
Dry Matter, %	89.44	89.95	90.47	89.95	90.45
ME, kcal/kg	3152	3018	2884	3018	2884
Cr. Protein, %	20.11	22.07	24.04	22.95	25.79
Cr. Fat, %	7.15	8.52	9.89	7.96	8.77
Cr. Fiber, %	2.58	2.98	3.38	3.11	3.64
Av. Phosphorus, %	0.45	0.46	0.48	0.47	0.48
Calcium, %	0.9	0.9	0.89	0.91	0.92
Total Lys, %	1.1	1.18	1.27	1.18	1.27
Total Met + Cys, %	0.79	0.86	0.92	0.87	0.96

PSA 2009 - July 20-23, 2009 Raleigh, NC

Experimental design

- Randomized Complete Block:
 - 5 blocks
 - Each treatment fed to 1 pen/block
 - 2 x 2 x 2 factorial (+ basal) arrangement
 - Pen = experimental unit



Statistical analysis

- Nutrient digestibility in test diets compared using mixed models procedure (PROC MIXED) in SAS (v 9.1)
 - Model: y = Extrusion | Enzyme | Level
 - Random term: block
 - Covariates tested: ADF and cr. fibre intake

Results and Interpretations

Significant terms in models

- ADF, fibre intake not significant (P > 0.10) as covariates
- With few exceptions no significant 2 or 3way interactions for any nutrients

Table 2.Effect of level of inclusion on apparent ileal nutrient
digestibility in diets containing triticale DDGS

Nutrient	15%	30%	SEM	P-value
Dry Matter	64.87 ^a	60.67 ^b	0.35	<.0001
Gross Energy	72.52 ^a	68.44 ^b	0.48	<.0001
Crude Protein	79.70 ^a	77.41 ^b	0.26	<.0001
Lysine	84.11 ^a	80.56 ^b	0.49	<.0001
Methionine	85.67 ^a	83.17 ^b	0.47	<.0001
Threonine	75.15	73.71	0.54	0.0662
Arginine	85.06	84.45	0.58	0.4568
Total AA's	82.85 ^a	80.34 ^b	0.39	<.0001

Interpretation: Generally, AID in 15% diets > AID in 30% diets

Table 3.Effect of extrusion of DDGS on apparent ileal nutrient
digestibility in diets containing triticale DDGS

Nutrient	Not	Extruded	SEM	P-value
Dry Matter	62.24 ^b	63.30 ^a	0.35	0.0403
Gross Energy	70.00 ^b	70.97 ^a	0.48	0.0207
Crude Protein	78.21	78.91	0.26	0.0674
Lysine	81.91	82.76	0.49	0.0915
Methionine	83.22 ^b	85.63 ^a	0.47	<.0001
Threonine	74.20	74.66	0.54	0.5545
Arginine	84.20	85.30	0.58	0.1862
Total AA's	81.12 ^b	82.07 ^a	0.39	0.0198

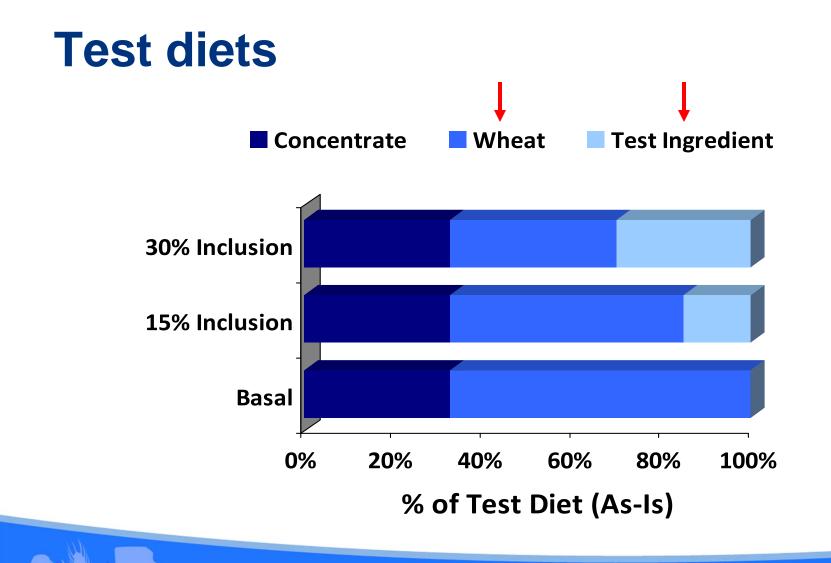
Interpretation: Extruding DDGS increased AID of DM, GE, Met and Tot AA in diets

Table 4.Effect of enzyme supplementation on apparent ileal
nutrient digestibility in diets containing triticale DDGS

Nutrient	(-)	(+)	SEM	P-value
Dry Matter	61.39 ^b	64.15 ^a	0.35	<.0001
Gross Energy	69.20 ^b	71.77 ^a	0.48	<.0001
Crude Protein	78.14 ^b	78.98 ^a	0.26	0.0292
Lysine	81.88	82.79	0.49	0.0712
Methionine	84.18	84.67	0.47	0.232
Threonine	73.69	75.16	0.54	0.0618
Arginine	84.03	85.48	0.58	0.0851
Total AA's	81.11 ^b	82.08 ^a	0.39	0.0178

Interpretation: Enzyme supplementation increased AID of DM, GE, CP and Tot AA in diets

Estimating AID in test ingredients


- Interest in estimating nutrient digestibility coefficients for each DDGS type
 - How much did extrusion improve AID in DDGS?
 - Needed dig nutrient contents in order to formulate diets for performance study

Procedure used to estimate nutrient digestibility in test ingredients

Assumption underlying the difference method:

$$D_{assay} = D_{basal} \times RC_{basal} + D_{test} \times RC_{test}$$

PSA 2009 - July 20-23, 2009 Raleigh, NC

Procedure used to estimate nutrient digestibility in test ingredients

As a result, for the diets in our study:

 $\mathbf{D}_{\text{assay}} = \mathbf{D}_{\text{wheat}} \times \mathbf{RC}_{\text{wheat}} + \mathbf{D}_{\text{conc}} \times \mathbf{RC}_{\text{conc}} + \mathbf{D}_{\text{test}} \times \mathbf{RC}_{\text{test}}$

This can be rearranged to solve for **D**_{test}:

$$D_{\text{test}} = \frac{D_{\text{assay}} - D_{\text{conc}} \times RC_{\text{conc}} - D_{\text{wheat}} \times RC_{\text{wheat}}}{RC_{\text{test}}}$$

Table 5. Literature AID coefficients for wheat used toestimate AID in test ingredients

	w/o NSPase	w/ NSPase
Gross Energy	0.66	0.68
Crude Protein	0.77	0.77
Lysine	0.89	0.92
Methionine	0.94	0.96
Threonine	0.76	0.82
Arginine	0.86	0.90

Derived from:

Afshermanesh et al. 1998 (Can. J. Anim Sci. 86: 255-261) Huang et al. 2005 (Brit Poult. Sci. 46: 236-245) Ravindran 1999 (Brit. Poult. Sci. 40: 266-274) Rutherfurd et al. 2002 (Brit. Poult. Sci. 44: 598-606)

 Rafuse et al. 2005 (Can. J. Anim. Sci. 85: 493-499)

 Scott et al. 1998 (Poult. Sci. 77: 456-463)

 Bedford et al. 1998 (Can. J. Anim. Sci. 78: 335-342)

 Huang et al. 2006 (Poult. Sci 86: 625-634)

Significant terms in models

- Similar outcomes as analysis of diets
 - ADF, fibre intake not significant (P > 0.10) as covariates
 - With few exceptions no significant 2 or 3-way interactions for any nutrients
- Effect of level only for GE, CP and Met

Table 6.Effect of level of DDGS in test diets on estimated
apparent ileal nutrient digestibility in triticale DDGS

Nutrient	15%	30%	SEM	P-value
Gross Energy	78.50 ^a	60.28 ^b	1.73	<.0001
Crude Protein	75.93 ^a	71.02 ^b	0.86	0.0004
Lysine	55.00	54.38	2.30	0.8491
Methionine	62.47 ^b	70.14 ^a	1.07	<.0001
Threonine	58.84	63.99	2.18	0.1061
Arginine	74.50	78.61	2.66	0.2295

Interpretation: effect of level not solely related to wheat level in test diets (assumptions underlying difference method???)

Table 7.Effect of extrusion of DDGS on estimate apparent ilealnutrient digestibility in triticale DDGS

Nutrient	Not	Extruded	SEM	P-value
Gross Energy	71.16 ^ª	67.62 ^b	1.73	0.0447
Crude Protein	72.10 ^b	74.84 ª	0.86	0.0327
Lysine	54.12	55.26	2.3	0.7302
Methionine	63.57 ^b	69.04 ^a	1.07	0.0006
Threonine	60.34	62.49	2.18	0.4915
Arginine	73.93	79.18	2.66	0.1279

Interpretation: Extrusion increased AID of CP and several essential AA's in triticale DDGS

Table 8.Effect of enzyme supplementation on estimated apparentileal nutrient digestibility in triticale DDGS

Nutrient	(-)	(+)	SEM	P-value
Gross Energy	66.95 ^b	71.83 ^a	1.73	0.0072
Crude Protein	71.33 ^b	75.61 ^a	0.86	0.0015
Lysine	51.35 ^b	58.03 ^a	2.3	0.0497
Methionine	65.86	66.75	1.07	0.5356
Threonine	60.79	62.04	2.18	0.6884
Arginine	75.23	77.88	2.66	0.4351

Interpretation: Enzyme supplementation appears to improve AID of nutrients in triticale DDGS

Summary

- Expanded ethanol production in Canada may involve use of novel feedstock to mitigate pressure on wheat supplies
 - DDGS from triticale and other feedstocks may become more widespread as ethanol production expands

Summary

- Feeding value of triticale DDGS appears to be improved by extrusion and enzyme supplementation of diets
 - Extrusion improved AID of CP, eAA's
 - Enzyme improved AID of GE, CP and Lys
- Level of inclusion in test diets appears to influence AID estimates
 - Validity of assumptions in difference method???

What all this means...

Triticale DDGS: not extruded, no enzyme vs. extruded with enzyme

	Increase in dig. nutrient content (units/T)	Value of dig. nutrient content (\$/unit)	Estimated increase in value (\$/T)
Energy	440 Mcal/T	\$0.07/Mcal	\$30.00
Lysine	-	\$2.40/kg	-
Methionine	0.34 kg/T	\$7.50/kg	\$2.55
Threonine	-	\$3.00/kg	-
		Total	\$32.55

Side benefits of extrusion

- Improved handling characteristics
 - Flowability improved dramatically
- Eliminates or reduces toxin/pathogen levels
 - Some reports suggest extrusion effective against certain mycotoxins (??)

Acknowledgements

ALBERTA

Government of Alberta Agriculture and Rural Development

Eduardo Beltranena

Susan Jack

Fernando Hernandez

Doug Korver Martin Zuidhof

DEPARTMENT OF

PSA 2009 - July 20-23, 2009 Raleigh, NC

AGRICULTURAL, FOOD & NUTRITIONAL SCIENCE

FACULTY OF AGRICULTURAL, LIFE & ENVIRONMENTAL SCIENCES