Extruded + Pressed Canola Juncea Meal on Hog Growth Performance, Carcass Traits, and Jowl Lipid Profile

Xun Zhou, Malachy Young, Vicente Zamora, Ruurd T. Zijlstra, and Eduardo Beltranena[©]

Gowans Feed Consulting Ltd.

Why Extrusion + Pressing ?

- AA damage ??
- Reduce ANFs

Extruded + Pressed Juncea Canola Meal Inclusion Levels

- 0% constant
- 5% constant
- 10% constant
- 15% constant
- 20% constant
- 20, 15, 10, 5, 0% decreasing by phase to market weight

Growth performance
Carcass traits
Feed cost, margin/hog
Jowl lipid profiles

- 48 pens,
 -24 per side
 -21 ♀ or ♂
- 4 area blocks
- 4 pen reps per gender per canola inclusion regimen

Extruded + Pressed *B. juncea* meal

- Seed sourced in southern Saskatchewan by Viterra
- Extruded and pressed at Apex, Egbert, AB

	%
Moisture	95.83
E. extract	12.22
Crude fibre	7.09
Ash	6.71
ADF	13.57
NDF	22.77
Phosp.	1.04

Grower & Finisher Diets

- ¹Concluded that EvaPig[™] overestimated NE. Used SE CM
 1.6 Mcal/kg; liquid oil 7.8 Mcal/kg x 0.8 assumed available
- SID AA coefficients used as per Seneviratne et al.
- Fed 5 growth phase, wheat-barley diets (2.3 NE Mcal/kg)
- Extr+press canola meal replaced lentil, SBM, and grain
- WDDGS => 25% in G1, G2; 20% in G3, F1, F2

	<u>Grower 1</u> <u>d 0 – 21</u>	<u>Grower 2</u> <u>d 21 - 42</u>	<u>Grower 3</u> <u>d 42 - 63</u>	<u>Finisher 1</u> <u>d 63 – 77</u>	<u>Finisher 2</u> d77 to mkt
SID lys:NE, g/Mcal	4.1	3.7	3.3	3.1	2.8
Avail P, %	0.35	0.32	0.28	0.25	0.25

Feeding Extruded + Pressed *B. juncea* meal on Hog Body Weights

Feeding Extruded + Pressed *B. juncea* meal on Overall Hog Performance

Feeding Extruded + Pressed *B. juncea* meal on Hog Carcass Traits

Feeding Extruded + Pressed *B. juncea* meal on Feed Cost, Margin per Hog

Glucosinolates in Extruded + Pressed *B. juncea* vs. *B. napus* from APEX

µmol/g	B. napus	B. juncea
Allyl	0.06	0.20
3-butenyl	2.13	9.75
4-pentenyl	0.23	0.39
2-OH-3-butenyl	3.28	0.84
2-OH-4-pentenyl	0.09	-
CH3-thiobutenyl	0.1	-
Phenylethyl	0.09	0.19
CH3-thiopentenyl	0.06	-
3-CH3-indolyl	0.23	-
4-OH-3-CH3-indolyl	2.26	1.71
Total aliphatics	5.73	10.99

Conclusions

- Looks like... feeding increasing levels of extruded+pressed *B. juncea* up to 20% ...
 - Reduced final trial body weight by 3.5kg vs. controls
 - At 10, 20%, it increased barn occupancy by ~2 days
 - Linearly reduced ADFI, ADG, F:G
 - Reduced carcass weight vs. controls
 - Linearly reduced dressing %, but didn't affect other carcass traits
- Meal cost was unrealistically high. Canola #1,2 used instead of largely off-grade canola seed crushed by local plants