

Effects of a 2-step dry fractionation process on nutrient digestibility in wheat DDGS for broilers

Matt Oryschak*1, Fernando Hernandez1, Doug Korver² and Eduardo Beltranena1,2

¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

Government of Alberta ■
Agriculture and Rural Development

Opportunities and challenges with feeding wheat DDGS to poultry

Opportunities

- Cost
- Local availability
- Protein content
- Minerals highly digestible

Challenges

- Fiber content
- AA balance & digestibility
- Handling issues
- Contamination
- Variation
- Maximum inclusion level(?)

Say hello to our little friends...

SWECO ZS30 vibro-separator

Westrup LA-K

Table 1. Analysed nutrient composition of parent stock wheat DDGS and the 4 resulting fractions.

Nutrient	Wheat DDGS	Fraction 'A'	Fraction 'B'	Fraction 'C'	Fraction 'D'
Crude protein, %	39.40	52.7	43.3	38.0	31.9
Crude fat, %	4.06	2.9	3.6	3.3	3.0
Crude fiber, %	5.46	5.2	8.0	10.6	13.2
ADF, %	15.18	11.0	12.4	14.1	16.7
NDF, %	35.17	27.6	31.9	43.4	44.2
Lysine, %	0.85	1.04	0.92	0.82	0.63
Methionine, %	0.55	0.74	0.58	0.49	0.36
Threonine, %	1.09	1.39	1.16	0.98	0.76
Tryptophan, %	0.42	0.39	0.33	0.31	0.24
Arginine, %	1.54	1.99	1.71	1.52	1.16

Our Objective

To compare nutrient digestibility between wheat DDGS and 3 of the fractions (A, C & D) produced using our2-step process

(i.e., is there any advantage to DDGS fractionation beyond simply increasing nutrient density?)

METHODS & MATERIALS

Government of Alberta ■
Agriculture and Rural Development

Our approach

Ingredient	Basal diet	Test diets	
Wheat	87.75	61.42	
Canola oil	5.00	3.50	
Test ingredient	-	30.00	
Dicalcium phosphate	2.75	1.92	
Limestone	1.72	1.20	
Vitamin/mineral premix	0.71	0.50	
Choline chloride premix	0.71	0.50	
Salt	0.57	0.40	
Antibiotic	0.07	0.05	
Chromic oxide	0.71	0.50	

Our approach (cont'd)

Experimental design

- Cage (13 birds/pen) = experimental unit
 - Digesta and excreta were pooled to produce one sample of each per pen
- Randomized complete block design
 - Each treatment appeared once in each of 6 blocks for 6 replicate cages per treatment

Measurements

- Feed disappearance measured over the experimental period
- Body weight on d 14 and d 21
- Diets, ingredients, digesta and excreta assayed for DM, Cr, CP and GE, P and Ca
 - Full AA profile also developed for diets and digesta
 - ADF, NDF, CF and EE for diets

Statistical analysis

- Nutrient digestibility coefficients compared using PROC MIXED of SAS (v 9.2)
 - Main effect = test ingredient
 - Random term = block
 - Covariates tested = ADFI
 - Preplanned contrast:
 - DDGS vs. fractions

Table 2. Nutrient digestibility of wheat DDGS and 3 fractions produced using a 2-step dry fractionation process.

	Wheat DDGS	Fraction 'A'	Fraction 'C'	Fraction 'D'	SEM	DDGS vs Fractions
ATTD GE, %	62.66	75.08	56.75	69.04	5.20	0.4854
AID Lys, %	73.49	67.27	69.75	77.27	5.42	0.7318
AID Met, %	86.17	84.64	82.83	91.04	4.74	0.9995
AID Met + Cys, %	83.65	79.85	78.42	86.38	5.10	0.7166
AID Thr, %	76.33	74.21	71.83	82.57	5.26	0.9834
AID Trp, %	84.98	76.72	81.23	84.75	3.56	0.3239
AID Arg, %	85.73	82.51	81.88	88.70	2.99	0.6809
AID Total AA, %	85.22	81.15	80.72	86.55	4.15	0.6058

Table 3. Digestible nutrient content of wheat DDGS and 3 fractions produced using a 2-step dry fractionation process.

	Wheat DDGS	Fraction 'A'	Fraction 'C'	Fraction 'D'	SEM	DDGS vs Fractions
AME, kcal/kg	2862	3469	2597	3121	237	0.4755
Dig Lys, %	0.63	0.63	0.63	0.56	0.04	0.5845
Dig Met, %	0.49 ^{ab}	0.55 ^a	0.46 ^{bc}	0.40 ^c	0.02	0.5138
Dig TSAA, %	1.07 ^{ab}	1.18 ^a	0.97 ^{bc}	0.87 ^c	0.06	0.4003
Dig Thr, %	0.85	0.91	0.79	0.72	0.05	0.5417
Dig Trp, %	0.36 ^a	0.36 ^a	0.35 ^a	0.28 ^b	0.01	0.0541
Dig Arg, %	1.35 ^a	1.43ª	1.30 ^a	1.14 ^b	0.04	0.2699
Dig Total AA, %	27.44 ^{ab}	30.40 ^a	25.39 ^{bc}	21.80 ^c	1.24	0.2903

Conclusions

- Nutrient digestibility did not differ among wheat DDGS and fractions produced using our 2-step process
 - Main effect of fractionation seems to be production of DDGS fractions differing in AA and fiber content
- Results may suggest that factors other than fiber content influence AA digestibility in wheat DDGS

Acknowledgements

Funding from:

Agriculture and Agri-Food Canada

FOBI

- Technical assistance:
 - Emily Johnson
 - Kerry Nadeau
 - Staff and students at the Poultry Research Centre