Effect of Graded Levels of DDGS in Broiler Diets on Performance and Breast Meat Yield

M. Oryschak¹, D. Korver², A. Pishnamazi² and E. Beltranena^{1,2}

¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

> Poultry Science Association Annual Meeting Raleigh, NC - July 20-23rd, 2009

AAR Alberta Agricultural Research Institute

Supporters

Government of Alberta Agriculture and Rural Development

Ethanol Production in Canada

Policy Drivers for Expanded Ethanol Production in North America

 Government-mandated 'green' content in fuels:

5% in gasoline by 2010 2% in diesel/heating oil by 2012

36 B Gallons by 2022 (~15% of gasoline consumption)

The math driving expanded ethanol production

- Canadians consume approximately 40 Billion L (11 Billion Gal) of gasoline/yr
 - 5% renewable content = **2 Billion L/yr**
 - 2 Billion L requires approximately 5.5 million metric tonnes of grain

Disposition of Canadian Wheat and Corn (in millions of metric tonnes)

	Corn (for grain)			Wheat (except Durum)		
	2007-08	2008-09	2009-10	2007-08	2008-09	2009-10
Total Supply ¹	16.17	13.95	13.78	22.00	26.83	22.42
Exports	0.91	0.30	0.30	12.68	14.50	12.50
Food & Industrial Use	3.57	3.80	4.30	3.02	3.25	3.20
Feed, Waste & Dockage	10.22	8.73	7.96	1.79	3.67	2.08
Total Domestic Use	13.80	12.55	12.28	5.60	7.73	6.12

¹ Annual domestic production + imports + carry-over stocks

Implication: Further expansion of Canadian starch-based ethanol will likely mean less wheat will be exported

Source: Statistics Canada

Background

- Increased consumption of Canadian grains by ethanol sector will:
 - ↑ demand/competition for feed grains
 - supply of ethanol co-products (i.e., US corn DDGS, Western Canadian wheat DDGS)

Background

- Wider availability of DDGS could allow producers to reduce feed costs by displacing more costly ingredients
 - Info on corn DDGS in wheat-based diets (??)
 - Little or no information on upper inclusion levels of wheat or triticale DDGS for broilers

Objectives

- To compare performance and breast muscle yield of broilers fed 5 or 10% corn, wheat or triticale DDGS compared to a typical Western Canadian diet
- Determine the feasibility of including up to 10% wheat or triticale DDGS in wheatbased diets

PSA 2009 - July 20-23, 2009 Raleigh, NC

Methods and Materials

Test System

- Ross x Ross 308 male and female broilers housed on litter in floor pens in a single experimental room
 - Divided into single-gender groups of approx. 55 birds per pen
 - Continuous access to suspended, adjustable bell feeder and nipple drinkers

Experimental Design

• Randomized Block:

- Pens divided into 4 blocks
- Each treatment fed to at least 1 pen of each gender/block
- Pen = experimental unit

Test Diets

• 7 test diets:

- 2 levels DDGS (15% or 30%), 3 DDGS types (corn, wheat or triticale) and a wheat/SBM control
- Balanced for ME, CP, dig Lys & Ca:Av P
- Separate sets of diets formulated for starter, grower and finisher phases

Table 1. Target specifications for starter (d0-14), grower (d14-28) andfinisher (d28-42) phase test diets

Nutrient	Starter Phase (d 0-14)	Grower Phase (d 14-28)	Finisher Phase (d 28-42)
AME, kcal/kg	3025	3150	3200
Crude Protein, %	22-25	21-23	19-23
Dig. Lysine, %	1.27	1.10	0.97
Dig. Met, %	0.47	0.42	0.38
Dig. Met + Cys, %	0.94	0.84	0.76
Av. Phosphorus, %	0.5	0.45	0.42
Ca: Av P	2:1	2:1	2:1

Measurements

- Pen weight and feed consumption were measured weekly for 6 weeks
 - BW, ADG, ADFI and G:F then calculated on a per bird basis for each pen
- Breast weight and yield (% of BW) measured on 5 birds/pen on day 37

Statistical Analysis

- Performance data analyzed as a repeated measures experiment using mixed models procedure (PROC MIXED) in SAS® v9.1
 - Dependent variables: BW, ADG, ADFI, F:G
 - Model: y = diet | gender | week
 - Repeated term: week
 - Random term: block

Statistical Analysis

- Breast yield data analyzed using mixed models procedure (PROC MIXED) in SAS® v9.1
 - Dependent variables: Breast Wt , Breast Yield
 - Model: y = diet + gender + diet*gender
 - Random term: block
 - Covariate: **BW (d37)**

<u>Results - Part I:</u> Performance

Significance of model terms

	Main Effects			Interactions			
Variable	Treat	Gender	Period	ΤxG	ТхР	G x P	3-way
Liveweight	0.6977	<.0001	<.0001	0.7982	0.8779	<.0001	0.2991
ADFI	0.4576	<.0001	<.0001	0.0584	0.0032	<.0001	0.0187
ADG	0.7717	<.0001	<.0001	0.1668	0.6863	<.0001	0.1122
G:F	0.1015	<.0001	<.0001	0.2406	0.2731	<.0001	0.9992

Table 2.Effect of 5 or 10% wheat, corn or triticale DDGS on
average daily gain (ADG) and feed efficiency (G:F) of
broilers, d0-42

		Wheat DDGS		Triticale DDGS		Corn DDGS		Pooled
Period	Control	5%	10%	5%	10%	5%	10%	SEM
ADG, g/d	62.29	61.07	60.93	61.42	61.88	61.13	60.63	0.78
G:F	0.74	0.73	0.72	0.74	0.73	0.72	0.72	0.01

Table 3.Effect of 5 or 10% wheat, corn or triticale DDGS on
average daily feed intake of broilers (g/d)

		Wheat DDGS		Triticale DDGS		Corn DDGS		Pooled
Week	Control	5%	10%	5%	10%	5%	10%	SEM
1	19.12	18.70	18.21	18.06	18.13	18.19	19.00	3.12
2	43.25	44.70	45.66	44.11	45.88	45.54	46.50	3.12
3	75.75	73.65	78.96	75.68	78.38	79.21	76.38	3.12
4	127.42 ^a	119.00 ^{ab}	123.33 ^{ab}	118.26 ^b	120.50 ^{ab}	120.61 ^{ab}	116.75 ^b	3.22
5	95.88 ^{bcd}	92.65 ^d	101.40 ^{bc}	93.31 ^{cd}	104.63 ^{ab}	111.39 ^a	94.88 ^{cd}	3.16
6	146.63 ^{bc}	159.68 ^a	146.82 ^{bc}	148.19 ^b	147.37 ^b	138.34 ^c	149.75 ^b	3.25
1 to 6	84.67	84.73	85.73	82.93	85.81	85.54	83.88	1.34

Interpretation: no clear pattern to differences in intake

Different superscripts in rows denote significant differences (P < 0.05)

<u>Results - Part II:</u> Breast Weight/Yield

Significance of model terms

Variable	Treat	Gender	Treat x Gender	d37 BW
Breast Weight	0.1123	<.0001	0.9101	<.0001
Breast Yield	0.0855	<.0001	0.7485	<.0001

Figure 2. Effect of 5 or 10% Wheat, Corn or Triticale DDGS on Breast Weight of Broilers (d 37)

Effect of treatment P = 0.1123

Figure 3. Effect of 5 or 10% Wheat, Corn or Triticale DDGS on Breast Yield of Broilers (d 37)

Effect of treatment P = 0.0855

Table 4.Effect of gender on performance (d0-42) and
breast weight variables (d37)

Variable	Males	Females	SEM	P-value
ADFI (g/d)	87.54 ^a	81.98 ^b	0.87	<.0001
ADG (g/d)	65.52ª	57.15 ^b	0.43	<.0001
Gain:Feed	0.74 ^a	0.71 ^b	0.01	<.0001
Breast Wt (g)	394.07 ^b	418.45 ^a	2.38	<.0001
Breast Yield (%)	18.36 ^b	19.57 ^a	0.12	<.0001

Summary

- Increased demand for ethanol will increase availability of DDGS for livestock & poultry feeding
 - US: corn DDGS
 - Canada: wheat DDGS (and possibly DDGS from other currently underutilized crops)

Summary

- Canadian wheat and triticale DDGS appear to be suitable at levels up to 10%
 - No detectable effect on performance or breast meat yield

Implications (...the 'so what')

- Based on current/recent commodity prices, inclusion of 10% DDGS would save producers at least \$5 per metric tonne
 - At observed conversion rates this would save the average AB broiler producer approximately \$2500 per year

Acknowledgements

Government of Alberta

Agriculture and Rural Development

Eduardo Beltranena

Susan Jack

Fernando Hernandez

Doug Korver Ali Pishnamazi

AAR Alberta Agricultural Research Institute

Supporters

Government of Alberta Agriculture and Rural Development