Nutrient digestibility of 4 varieties of triticale compared to CPS wheat for broilers

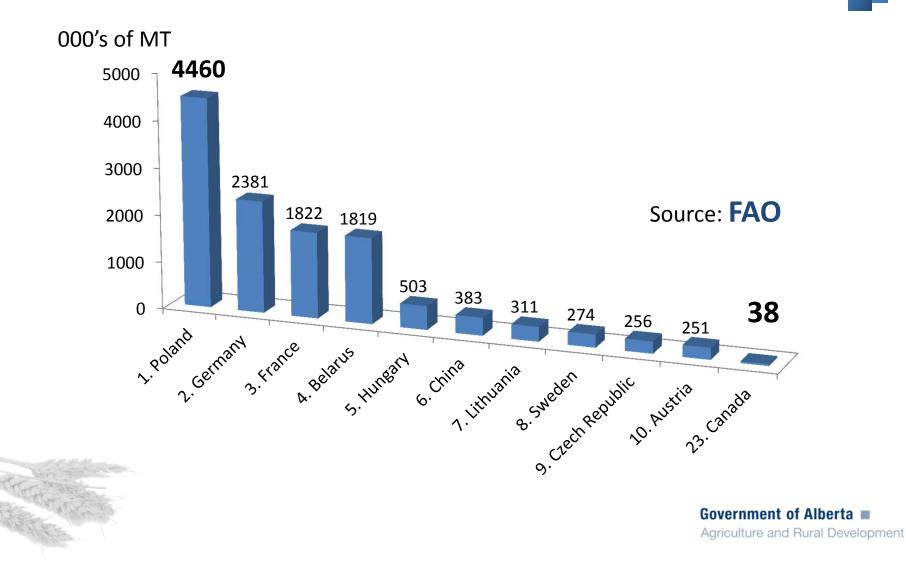
Matt Oryschak^{*1}, Doug Korver² and Eduardo Beltranena^{1,2}

¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

Government of Alberta Agriculture and Rural Development

Abstract 212

A bit about triticale...


Wheat (Triticum spp.)

Rye (Secale cereale)

Triticale (x *Triticosecale*)

Global triticale production rankings

A bit more about triticale...

- Triticale has several agronomic properties that make it as good or better than wheat:
 - 1. Lower input requirements
 - 2. Better disease resistance
 - 3. Better drought tolerance
 - 4. Tolerates a wider range of soil conditions
 - 5. Higher yields

A bit more about triticale...

Why the interest in triticale?

- Canadian Triticale Biorefinery Initiative
 - 10-yr R & D program to develop triticale as a dedicated bio-industrial crop in Canada
 - Growth potential as an alternative grain
 - Alberta accounts for 80% of Canadian production

Triticale as monogastric feedstuff

- Considerable experience feeding triticale to pigs and cattle in North America
- Limited information on feed value of modern North American varieties to poultry
 - Much more experience in Australia and Europe
 - Anecdotal evidence from producers in southern Alberta suggest equal value to CPS wheat

Triticale as monogastric feedstuff

- Korver et al. (2004)
 - Compared the economics of feeding triticale vs.
 wheat to broilers
 - Based on their results suggested that triticale needed to be 95% of the price of wheat minus 18\$ per tonne to balance out reduced performance
 - Also concluded:

the relatively large increase in costs of production using triticale diets at this time. Further work on improvements in feeding characteristics through plant breeding and increased knowledge of the feeding of triticale to poultry may increase the economic value of this grain relative to wheat.

Our objective

To compare nutrient digestibility among 4 modern varieties of spring triticale and two samples of mixed-source Canadian Prairie Spring (CPS) wheat

METHODS & MATERIALS

Our approach

<u>CPS wheat</u> (2 samples)

MARCE	NX11
	1000
Jan .	


<u>Triticales:</u> 'Bunker' 'Alta' 'Tyndal' 'Pronghorn'

Ingredient	% inclusion
Test grain	91.58
Canola oil	3.50
Dicalcium phosphate	1.68
Limestone	1.29
Vit/min premix	0.50
Choline chloride	0.50
Chromic oxide	0.50
Salt	0.40
Antibiotic	0.05

Pronghorn Tyndal CPS₁ CPS 2 Alta Bunker 90.46 DM 90.44 90.29 90.43 87.78 88.82 CP 13.49 16.70 13.56 14.26 13.79 12.77 **Crude Fiber** 2.35 2.44 2.03 2.49 2.12 1.97 **ADF** 3.17 3.64 2.83 3.35 2.89 2.44 11.74 NDF 17.82 30.09 11.82 10.47 9.45 0.04 0.03 0.11 Ca 0.03 0.04 1.23 Ρ 0.22 0.28 0.34 0.37 0.38 0.82 0.46 0.42 0.36 Lys 0.40 0.54 0.48 Met 0.19 0.26 0.22 0.22 0.23 0.19 0.47 0.51 0.53 0.44 Met + Cys 0.58 0.53 0.42 Thr 0.38 0.49 0.42 0.40 0.37 0.16 0.19 0.15 0.15 0.17 0.15 Trp 0.61 0.82 0.68 0.71 0.64 0.58 Arg

Table 1. Analyzed nutrient content of 4 samples of spring triticale and 2 mixed-source samples of Canadian Prairie Spring wheat

Our approach (cont'd)

Experimental design

- Cage (13 birds/pen) = experimental unit
 - Digesta and excreta were pooled to produce one sample of each per pen
- Randomized complete block design
 - Each treatment appeared once in each of 6 blocks for 6 replicate cages per treatment

Measurements

- Feed disappearance measured over the experimental period
- Body weight on d 14 and d 21
- Diets, ingredients, digesta and excreta assayed for DM, Cr, CP and GE, P and Ca
 - Full AA profile also developed for diets and digesta
 - ADF, NDF, CF and EE for diets

Statistical analysis

- Nutrient digestibility coefficients compared using PROC MIXED of SAS (v 9.2)
 - Main effect = test grain
 - Random term = block
 - Covariates tested = ADFI
 - Preplanned contrasts:
 - within triticale varieties
 - triticale vs. wheat

RESULTS

Ba 2 3.8 . 9.00 .

Table 2. Nutrient digestibility of 4 samples of spring triticale and 2mixed-source samples of Canadian Prairie Spring wheat

	ALTA	TYND	PRNG	BUNK	CPS 1	CPS 2	Trit vs. W
ATTD GE	72.89 ^a	69.02 ^a	73.27ª	73.46 ^a	56.28 ^b	72.22 ^a	0.0005
AID CP	79.90 ^a	84.32 ^a	83.22 ^a	82.45 ^a	67.89 ^b	81.39 ^a	< 0.0001
AID Lys	76.44 ^{bc}	82.85 ^a	81.95 ^{ab}	80.30 ^{abc}	63.63 ^d	74.77 ^c	< 0.0001
AID Met	85.10 ^a	90.28 ^a	87.50 ^a	88.39 ^a	74.26 ^b	87.78 ^a	0.0009
AID Met + Cys	81.90 ^a	86.37 ^a	84.29 ^a	84.73 ^a	68.86 ^b	86.11ª	0.0031
AID Thr	69.85 ^b	77.24 ^a	75.09 ^{ab}	73.04 ^{ab}	56.71°	73.61 ^{ab}	0.0005
AID Trp	88.10 ^b	86.93 ^{bc}	86.45 ^{bc}	86.75 ^{bc}	84.21 ^c	91.82 ^a	0.3825
AID Arg	86.95 ^b	91.17 ^a	89.61 ^{ab}	89.31 ^{ab}	74.78 ^c	86.70 ^b	< 0.0001
AID Total AA	84.10 ^a	88.00 ^a	86.66 ^a	86.46 ^a	73.07 ^b	86.51ª	0.0004

Table 3. Digestible nutrient content of 4 samples of spring triticaleand 2 mixed-source samples of Canadian Prairie Spring wheat

	ALTA	TYND	PRNG	BUNK	CPS 1	CPS 2	Trit vs. W
AME, kcal/kg	2975 ^{ab}	2831 ^b	2981 ^{ab}	2988 ^{ab}	2191°	3178 ^a	0.0005
Dig Crude Protein	10.78 ^{cd}	14.08 ^a	11.28 ^{bc}	11.76 ^b	9.36 ^e	10.40 ^d	< 0.0001
Dig Lysine	0.31°	0.45 ^a	0.38 ^b	0.39 ^b	0.27 ^d	0.27 ^d	< 0.0001
Dig Methionine	0.16 ^c	0.24 ^a	0.19 ^b	0.19 ^b	0.17 ^c	0.17 ^c	0.0009
Dig Met + Cys	0.39 ^c	0.50 ^a	0.43 ^b	0.45 ^b	0.36 ^c	0.38 ^c	0.0031
Dig Threonine	0.27 ^c	0.38 ^a	0.32 ^b	0.31 ^b	0.23 ^d	0.27 ^c	0.0005
Dig Tryptophan	0.14 ^b	0.17 ^a	0.13 ^c	0.13 ^c	0.14 ^b	0.14 ^b	0.3825
Dig Arginine	0.53 ^d	0.75 ^a	0.61 ^c	0.64 ^b	0.48 ^f	0.50 ^e	< 0.0001
Dig Total AA	9.85 ^c	13.11 ^a	11.00 ^b	11.30 ^b	9.59 ^c	10.04 ^c	0.0004

Conclusions

- Nutrients in all 4 varieties of triticale appear to be as digestible as those in CPS wheat
 - Appeared to be more similarity among triticale samples than between wheat samples
- Calculated digestible nutrient content suggest that any of these triticale varieties could replace CPS wheat
 - Differences in nutritive value between spring and winter varieties???

The triticale-Star Trek connection?

Acknowledgements

Funding:

Technical assistance:

- Emily Johnson
- Kerry Nadeau
- Staff and students at PRC

