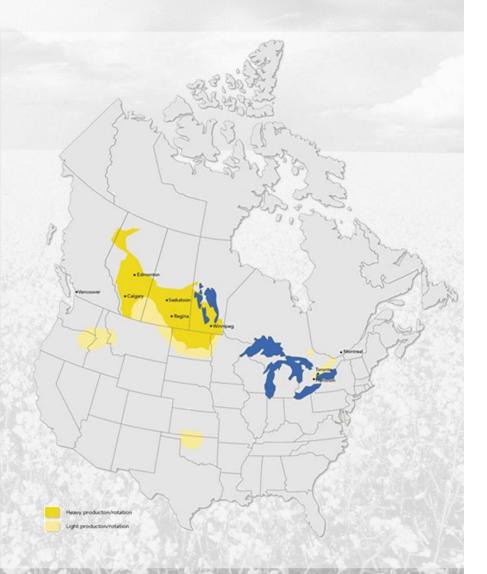


Nutrient digestibility in canola meal for broilers: Effects of oil extraction method and fractionation by air classification

Matt Oryschak^{*1}, Doug Korver² and Eduardo Beltranena^{1,2}

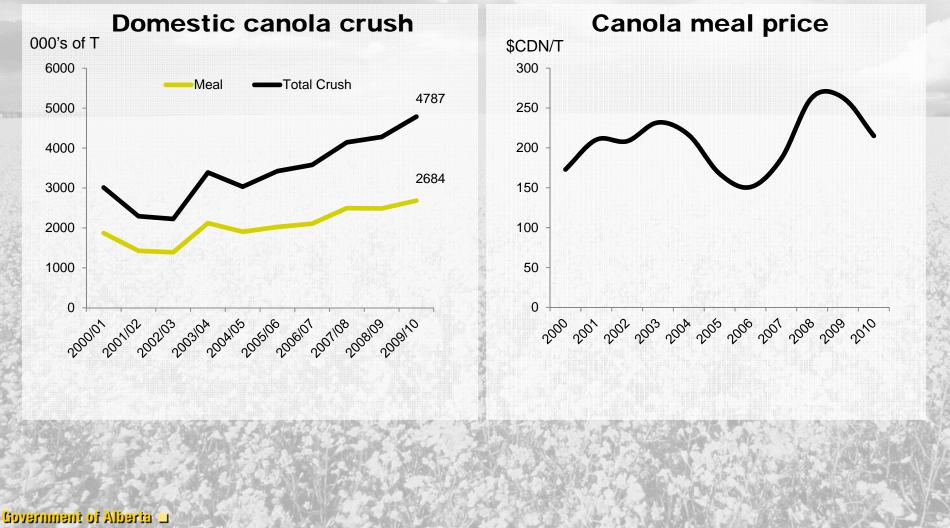

¹Alberta Agriculture and Rural Development, Edmonton, AB, Canada ²University of Alberta, Edmonton, AB, Canada

Government of Alberta Agriculture and Rural Development

Abstract 211

Background

- Canada is cold!
 - i.e., we can't grow
 soybeans in Western
 Canada
- Canola is our dominant oilseed
 - Low erucic acid, low glucosinolate version of rapeseed



Providence Presbyterian Church WHY DIDN'T NOAH SWAT THE TWO MOSQUITOES SUNDAY 8:30 11:00

Government of Alberta ______ Agriculture and Rural Development

Key canola industry trends

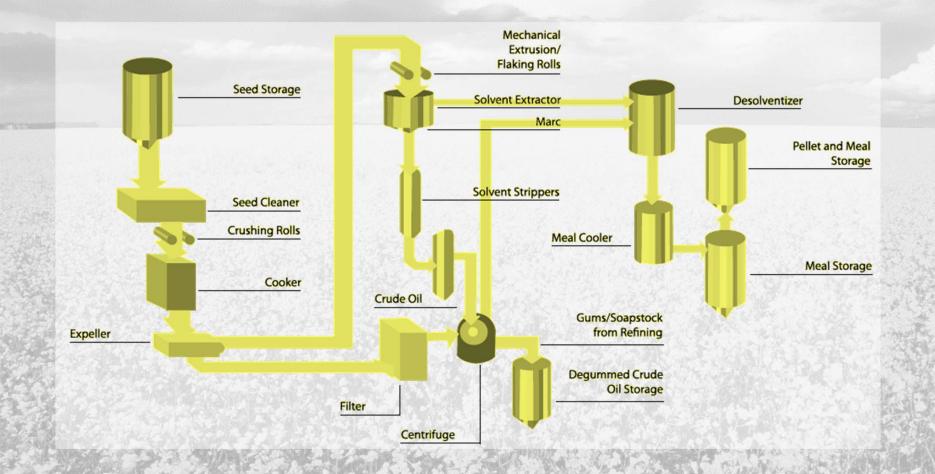
Agriculture and Rural Development

Our group's research interests relating to canola meal

- 1. Adding value to domestic feeds through further processing
 - Particular interest in fractionation technologies

Creating value-added products from canola meal

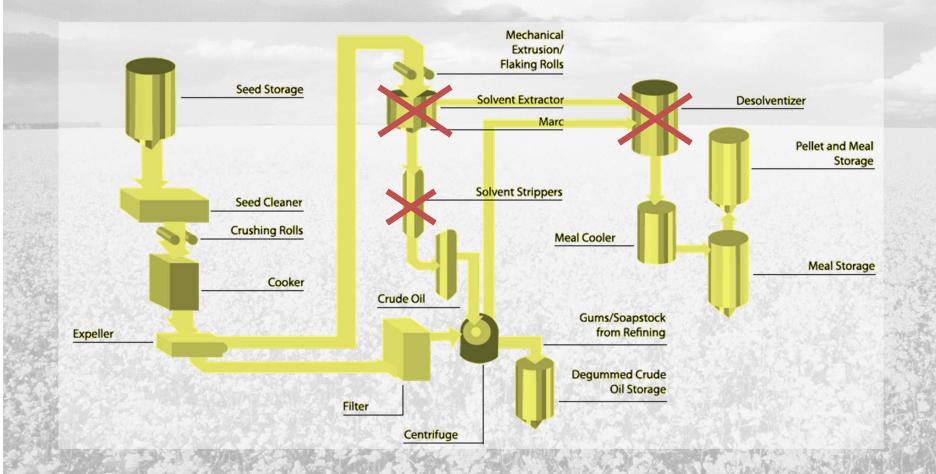
- Fractionation technology may offer opportunity to create several products from a single commodity
 - e.g., could produce separate canola meal fractions geared toward monogastics (∜fiber, îCP) and ruminants (îfiber, ∜CP)
- After trying several fractionation strategies, air classification permitted best separation of fiber between CM fractions


Our group's research interests relating to canola meal

- 1. Adding value to domestic feeds through further processing
 - Particular interest in fractionation technologies
- 2. Gathering information about feeding value of domestically-produced crops and bioenergy co-products
 - All canola meals are <u>not</u> necessarily created equal

Variation in oil extraction processes = different CM??

- Traditional crushing plants maximize oil yield through a combination of pressing and solvent extraction
- Some recently-added crushing capacity employs less capital-intensive systems
 - double press
 - 'homemade'


Conventional canola crushing (pre-press solvent extraction)

Source: Canola Council of Canada

Government of Alberta ______ Agriculture and Rural Development

Double press process (omits solvent extraction)

Source: Canola Council of Canada

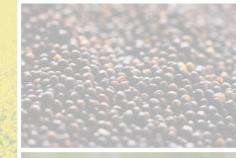
Government of Alberta _____ Agriculture and Rural Development

Alternative extraction processes (small scale, low capital)

Government of Alberta _____ Agriculture and Rural Development

Table 1. Analyzed nutrient content of canola meal samplesand fractions test compared in the present study.

Nutrient	Extruder Press CM	Expeller Press CM	Conventional Canola Meal	ACCM 'Fines' fraction	ACCM 'Coarse' fraction
Moisture	7.51	5.63	7.65	6.21	6.14
Crude Protein	29.54	35.60	37.92	38.77	36.52
Total Amino Acids	23.93	32.39	34.57	33.71	32.69
Crude Fat	17.12	12.75	4.76	4.28	3.23
Crude Fiber	10.04	6.01	7.24	0.40	2.04
ADF	22.34	16.08	15.49	15.85	21.31
NDF	27.79	20.17	24.39	23.21	36.60
Calcium	0.60	0.60	1.33	0.83	1.27
Phosphorus	0.82	1.04	1.13	1.09	1.08
Lysine	1.20	2.11	2.15	2.08	2.03
Methionine	0.54	0.69	0.74	0.73	0.69
TSAA	1.24	1.55	1.63	1.60	1.51
Threonine	1.16	1.52	1.58	1.54	1.48
Tryptophan	0.39	0.52	0.59	0.55	0.49
Arginine	1.54	2.19	2.31	2.17	2.13


Government of Alberta L Agriculture and Rural Development

Objectives

- To compare nutrient digestibility among a sample of conventional canola meal and two fractions produced by air classification
- 2. To compare nutrient digestibility among samples of conventional, double-pressed and extruder pressed canola meals

METHODS AND MATERIALS

Government of Alberta __ Agriculture and Rural Development

Our approach

Ingredient	Basal diet	Test diets	
Wheat	87.75	61.42	
Canola oil	5.00	3.50	
Test ingredient	-	30.00	
Dicalcium phosphate	2.75	1.92	
Limestone	1.72	1.20	
Vitamin/mineral premix	0.71	0.50	
Choline chloride premix	0.71	0.50	
Salt	0.57	0.40	
Antibiotic	0.07	0.05	
Chromic oxide	0.71	0.50	

Our approach (cont'd)

Test diets

Government of Alberta __ Agriculture and Rural Development

Experimental design

- Cage (13 birds/pen) = experimental unit
 - Digesta and excreta were pooled to produce one sample of each per pen
- Randomized complete block design
 - Each treatment appeared once in each of 6 blocks for 6 replicate cages per treatment

Measurements

- Feed disappearance measured over the experimental period
- Body weight on d 14 and d 21
- Diets, ingredients, digesta and excreta assayed for DM, Cr, CP and GE, P and Ca
 - Full AA profile also developed for diets and digesta
 - ADF, NDF, CF and EE for diets

Statistical analysis

- Nutrient digestibility coefficients compared using PROC MIXED of SAS (v 9.2)
 - Main effect = test ingredients
 - Random term = block
 - Covariates tested = ADFI; intake of ADF, NDF, CF and respective nutrient
 - Preplanned contrasts:
 - Between oil extraction processes
 - Fractions vs. parent stock

Government of Alberta
Agriculture and Rural Development

RESULTS

Government of Alberta Agriculture and Rural Development

Table 2. Nutrient digestibility of conventional canola meal compared to 'fine' and 'coarse' air classified fractions

	Conv. CM	AC 'fine' fraction	AC 'coarse' fraction	SEM	P - value
AME, kcal/kg	76.87 ^a	45.51 ^b	48.93 ^b	3.58	< 0.0001
Dig Lysine	88.66	85.89	87.35	1.35	0.2280
Dig Methionine	98.34 ^a	92.53 ^b	95.48 ^{ab}	1.35	0.0166
Dig TSAA	93.59 ^a	85.33 ^b	87.53 ^b	1.84	0.0047
Dig Threonine	82.74 ^a	74.41 ^b	79.11 ^{ab}	2.10	0.0311
Dig Tryptophan	85.07	81.40	82.43	1.28	0.0577
Dig Arginine	94.91	94.48	96.37	0.76	0.5907
Dig Total AA	92.56 ^a	86.22 ^b	89.66 ^{ab}	1.32	0.0098

Table 3. Digestible nutrient content of conventional canola mealcompared to 'fine' and 'coarse' air classified fractions, as-fed basis

	Conv. CM	AC 'fine' fraction	AC 'coarse' fraction	SEM	<i>P</i> - value
AME, kcal	3338 ^a	2056 ^b	2136 ^b	161	< 0.0001
Dig Lys, %	1.91 ^a	1.79 ^b	1.78 ^b	0.03	0.0008
Dig Met, %	0.73 ^a	0.68 ^b	0.66 ^b	0.01	< 0.0001
Dig TSAA, %	1.53 ^a	1.37 ^b	1.32 ^b	0.03	< 0.0001
Dig Thr, %	1.31 ^a	1.15 ^b	1.17 ^b	0.03	0.001
Dig Trp, %	0.50 ^a	0.45 ^b	0.40 ^c	0.01	< 0.0001
Dig Arg, %	2.19 ^a	2.05 ^b	2.05 ^b	0.02	< 0.0001
Dig Total AA,%	32.00 ^a	29.07 ^b	29.31 ^b	0.42	< 0.0001

Table 4. Nutrient digestibility of samples of conventional, double-pressed and extruder pressed canola meal

	Conv. CM	Double pressed CM	Extruder pressed CM	SEM	P-value
ATTD GE	76.87 ^a	56.73 ^b	67.77 ^a	3.58	0.0011
AID Lysine	88.66 ^b	72.52 ^c	97.33 ^a	1.35	0.0339
AID Methionine	98.34 ^a	81.43 ^c	91.37 ^b	1.35	<0.0001
AID TSAA	93.59 ^a	75.79°	84.92 ^b	1.84	<0.0001
AID Threonine	85.07 ^b	85.08 ^b	88.86 ^a	1.28	0.0052
AID Tryptophan	82.74 ^a	67.44 ^b	85.80 ^a	2.10	0.0278
AID Arginine	94.91 ^a	85.41 ^b	97.13 ^a	0.76	0.0009
AID Total AA	92.56 ^a	75.22 ^c	84.83 ^b	1.32	<0.0001

Government of Alberta _____ Agriculture and Rural Development **Table 5.** Digestible nutrient content of samples of conventional double-pressed and extruder pressed canola meal

	Conv. CM	Double- pressed CM	Extruder- pressed CM	SEM	P-value
AME, kcal/kg	3338 ^a	2837 ^b	3344 ^a	161	<0.0001
Dig Lys, %	1.91 ^b	0.87 ^c	2.05 ^a	0.03	<0.0001
Dig Met, %	0.73 ^a	0.44 ^c	0.63 ^b	0.01	<0.0001
Dig TSAA, %	1.53 ^a	0.94 ^c	1.32 ^b	0.03	<0.0001
Dig Thr, %	1.31 ^a	0.78 ^b	1.30 ^a	0.03	<0.0001
Dig Trp, %	0.50 ^a	0.33 ^c	0.46 ^b	0.01	<0.0001
Dig Arg, %	2.19 ^a	1.32 [°]	2.13 ^b	0.02	<0.0001
Dig Total AA,%	32.00 ^a	18.00 ^c	27.48 ^b	0.42	<0.0001

Government of Alberta __ Agriculture and Rural Development

Conclusions

- Despite successfully separating CM into two fractions differing in crude fiber, no real impact on digestible nutrient content
 - Value of AC fractionating CM??
- Extraction process has a large impact on digestible nutrient content of resulting meal
 - Importance of knowing origin of the CM
 - Meal from low-capital crushing facilities can still be of excellent feeding value

Acknowledgements

Funding:

Technical assistance:

- Emily Johnson
- Kerry Nadeau
- Staff and students at PRC

Government of Alberta _____ Agriculture and Rural Development