Appendix 2. Lab Procedures for LFC and OM (%)

The Norwest lab values for the percent organic matter were obtained using a loss on ignition method (McKeague 1978).

The University of Alberta lab values for the light fraction carbon (LFC) were obtained using a loss on ignition method (University of Alberta 2002). The carbon and nitrogen content of the light fraction material was obtained through a dry combustion process using Carlo Erba instrumentation.

Calculation of the LFC (mg/kg) was then completed as outlined below (Figure 10).

Example of Calculation of	Light Fraction	Carbon			
Used data from B.H. Prair	ie, Site #586				
From Lab:					
LF (Wt) $g = 0.1776 \text{ per } 20$	0 grams soil				
% Carbon as LF material =	= 28.918				
Therefore:					
0.1776 g LF x	28.918% Carbon as LF			equals	0.00256792 g LFC
20 grams soil		100		_	1 g soil
To convert to mg/kg:					
0.00256792 g LFC	1000 mg	_ x -	1000 g	equals	2567.92 mg LFC
1 g soil	1 g	Α	1 kg		kg soil

Figure 10. Calculation of light fraction carbon (LFC)