Feeds for Bison

Roll call:

Name a feed ingredient which is used in a ration.

Welcome to the level two section of feeds for bison. There is so much to le arn about this topic. Talk to some of these people to find out more: Alberta $\mathfrak{A g r i c} u l t u r e \mathcal{B i s o n}$ specialist, Local bison producers, parents, feed company representatives, 4- \mathcal{H} leaders and senior 4-H members.

Feed intake

There are many factors which can affect how much feed a bison can eat. Youneed to know about these because they will affect the types and amounts of feeds and ingre dients the animal will eat.

Factors affecting forage intake

1) Stage of maturity

The fibre content of forages increases as the forage matures. Higher levels of fibre in forage will reduce feed intake, although it is commonly believed that bison are better at digesting figher levels of fibre than beef counterparts.
2) Weathering

Weathered feeds will suffer from leacking of nutrients and these feeds are more subject to mold, and mold growth will reduce intake. Although it is commonly believed that bison cando better on poorer quality feeds than that of beef cattle, it is still recommended that they be given quality feeds in lesser amounts.

It is also important to note that moldy feeds should not be fed to pregnant bison cows. Ingestion of molds could cause mycotic abortion, which is the result of toxins entering the blood stream and becoming absorbed by the fetus. This could
result in abortion, or it could affect the immune system of the newborn causing the calf to be slowgrowing and suffer from illness. The best prevention is to limit the feeding of any questionable feed to bulls or finishers.
3) Forage species

Ruminants will consume greater amounts of legumes thangrasses. Leafy species, such as legumes, are more digestible resulting in faster passage through the digestive system and therefore increase the consumption. Because bison have a longer feed retention time than cattle, they are believed to be slightly more efficient at digesting grasses.
4) Physical form

In beef cattle grinding will increase forage intake because it will increase digestibility, however to date the effects of grinding have not be thoroughly researched for bison so the benefits are not clear.
5) Grainfeeding

Grain feeding will de press feed intake, especially if grain is fed before forage. All animals tend to eat until they have satisfied their energy requirements. Grains are figher in energy and require less pounds to fill requirements.

6) Fermentation

Consumption of silage, on a dry matter basis, will be less than if the same quality and matter of hay is fed. To date, silage has not been considered a commonfeed source for bison, however with increased numbers being fed for slaughter the use of silage may become more prevalent.

Factors affecting dry matter intake

1) Bison status

$\mathcal{H e}$ althy thin bison will consume more than bison in normalcondition. Older and more flesty bison will consume less than younger, le aner bison. Lactating cows will eat 40 to 60% more thandry cows.

2) Weather

Cold we ather will cause feed intake to increase as animals strive to obtain the extra heat required to maintain body temperature. It is important to recognize that in cold weather the bison need more forage matter thangrainenergy.

The heat of digestion will help to maintain 6ody heat. Warm weather will cause intake to decrease.
3) $\mathcal{N u t r i e n t s}$
$\mathcal{A n}$ animal which has a nutrient deficiency will have a decreased intake of dry matter.

What does all this mean?

Sou can use this information to decide fow to adjust your animal's diet when you must change the feed ingredients. For example, if you are into some better quality hay, you candecrease the amount you need to feed. You can also use this information when deciding how to feed. For example, you will need to feed a group of thinner cows more than a group of older, more fleshy cows. If the we ather becomes colder, you will need to increase the feed available for your animals.

Dry matter/moisture free

Suppose your hay had 13% moisture. Then, it would have 87% dry matter ($\mathcal{D M}$). The results you receive on your feeds may be calculated on a dry matter, a moisture-free or an as-fed basis. It is important that you are able to convert them to the format you require.

Ke ep these formulas in mind:

```
%\mathcal{DM}=\underline{(100-%moisture)}
1 0 0
```

\mathcal{N} utrient Concentration $(\mathcal{A s} \mathcal{F e d})=\mathcal{N}$ utrient Concentration $\mathcal{X} \% \mathcal{D M}(\mathcal{M o i s t u r e} \mathcal{F r e e})$

Feed processing

$\mathcal{F e}$ d processing is a common practice in feeding beef animals. It is done to

1. Increase digestibility.
2. Increase palatability.
3. Improve or facilitate handling and ration formulation.
4. Reduce wastage.

Indications to date have not shown there to be signific ant advantages to processing grains for bison as their digestive system is efficient at digesting high fibre, and the extra cost and labour involved in processing is not proven to be advantageous. Studies conducted for digestion of grains by sheep has incidated that there is no advantage to processing. With more research in bison nutrition we will get a clearer picture of how to improve their cost and efficiency. The following are the types of processing currently done for feeding beef cattle.

Roller mill
The roller mill cruskes the grain to a flat, flake like structure. There will be fewer fine particles in the feed. Fines infeed is undesirable as it could cause bloat.

Hammermill

The grain is bashed around in the hammermill until it is small enough to fall through the screens. The foles in the screens can be varied from $1 / 8$ to $1 / 2$ inch in diameter. Feed companies use the hammermill to prepare feeds for pelleting.

Pe lle ting

Fats and, or molasses are added to the feed ingredients during mixing. They felp the pellet hold its shape as it hardens, and reduce dustiness. Vitamin and mineral supplements are spread evenly through the feed during pelleting.

These are the steps followed in pelleting feeds:

1) The ration is mixed.
2) The feed is put through the fammermill.
3) Feed moves into steam chamber where moisture is added.
4) The feed is forced through a die to shape the pellet.
5) The pellets are put in the cooler to firm and harden.

Typically bison are being grain fed oats. Whole oats have a figher fibre and lower energy levelcompared to whe at and barley.
If you were to substitute an equivalent quantity of either wheat or barley for the current quantity of oats, it could result in rumen acidosis. When comparing the cerealgrains, feeding 10 lbs. of oats is equivalent to 9 lbs.of barley and approximately 8.5 lfs. of wheat; therefore it is important to know this before
 changing the ration.

Bis on ration formulation

All animats need

- An ample supply of fresf water.
- A source of energy to provide the fuel required to operate the ir body and maintain body temperature.
- A source of prote in for growth and replacement of old worn out tissue.
- \mathcal{A} source of minerals and vitamins that act as catalysts and constituents for the chemicalreactions that take place in the body.

The feeds an animaleats should provide these in the proper proportions for efficient production.

The following is an overvie wof bison ration formulation. Work through the formulation, using the information you have about the feeds for your animals.

Step 1- Determine the requirements of the bisonanimal.

What type of bison will you be feeding?

What do you want them to weigh at the end of the feeding period?

What ave rage gain do you want to achieve?

The $\mathcal{N a t i o n a l}$ Research Council ($\mathcal{N}(\mathcal{R} C)$ tables provide the minimum requirements for cattle of different types and ages. These will have to be adjusted for local conditions.

Step 2-Evaluate your feeds.

- What types of feeds do you have available?
- What amount of each of these do you have?
- What costs should you put on these feeds?
- What are the nutrient contents of each feed you intend to use?

List your feeds and supplements. List their nutrient contents. For each feed, indicate the amount of each nutrient in one Kilogram of the feed.

Type of feed	DE Mcal	\% Protein	$\%$ Ca	$\%$ P

($\mathcal{T D N}$ conversion to $\mathcal{D i g e s t a b l e ~ E n e r g y ~ i s : ~ f o r ~ e v e r y ~ u n i t ~ o f ~} \mathcal{T D N} / \mathbb{k g}$ of feed there is $0.04409 \mathfrak{M c a}$ of $\mathcal{D E}$)

Step 3 －Formulate the ration．
Decide on the approximate amounts of each feed to give your animal． （you can obtain approximate value from $\mathcal{N} \mathcal{R} C$ standard tables）
\qquad

Determine the amount of feed needed to supply the animal＇s digestible Energy（DE）requirements． $\mathcal{D E}$ required \qquad

Ulnderstanding what your bison need for energy requirements will make a big difference in your profits and herd health．

The first line information is only an example! Say we fad a feed that we were using and feed tests showed the following:
Alfalfa Brome $\mathcal{H a y}$
9\% protein
2.3 Mcal/Kg energy
0.012% calcium
0.0073% phosphorous
16% moisture (84% DM)

$\mathcal{F e} e d$	Amount fed (kg)		Amount of $\mathcal{D E}$ in 1 Kg (Mcal)	Total $\mathcal{D E}$ supplied (Mcal)
Example: Alfalfa Brome	8	x	2.3 Mcal	18.4 Mcal
		x		
Total				

Can the animalconsume this amount of feed?
$\mathcal{A n i m a l}$ s Body 'Weight \qquad

Amount of Dry Matter fed as \% of Gody weight
$=\underline{\text { Total Amount Fed }} \times 100$ Body Weight

Would your animalconsume this amount? \qquad
$\mathcal{A n}$ animal can consume feed daily at the rate of $1.4-1.8$ percent of bodyweight in dry matter for the winter months and $2.2-3.0 \%$ Godyweight for the summer.
$\mathcal{N o t e}:$ With an increase in day length, there is adecrease in melatonin secretions from the pine algland. Lower melatonin levels allows for an incre ase growth hormone and thyroxin secretion, resulting in an increase metabolic rate. Therefore the summer metabolic rate will require more fuelfrom feed energy. This is a very significant difference between bison and beef cattle.

$\mathcal{F e} e$ d	Amount fed (kg)		$\mathcal{A m o u n t}$ of $\mathcal{D M}$ in 1 kg (Mcal^{\prime})	Total $\mathcal{D M}$ supplied (Mcal)
Alfalfa Brome	8 kg	x	84%	$\begin{aligned} & (.84 \times 8) \\ & 6.72 \mathcal{M c a l} \end{aligned}$
		x		
Total				

Calculate the amount of protein supplied by this feed. DE required

Feed	Amount fed (kg)		Amount of protein 1 kg	Total prote in supplied (kg$)$
Alfalfa Brome	8 kg	x	9%	$8 \times .09)$ 0.72
		x		
Total				

If the protein supplied is not enough to meet the animal's minimum requirement, you will need to supply a protein supplement or try again using a figher prote in feed.

Protein supplement required

If you made significant changes to adjust for protein, checkagain to make sure the energy level is still adequate.

Calculate the amounts of calcium and phospforus supplied by the totalration. Phospforus required

Feed	Amount fed (kg)		Amount of phosphorus in 1 kg	Total phosphorus supplied (kg)
Alfalfa Brome	\mathcal{E}	x	.0073	$(8 x .0073)$.0584 kg or 58 g
		x		
	x	x		
		x		
Total				

Calcium required

$\mathcal{F e} e d$	Amount fed (kg)		Amount of calcium in 1 kg	Totalcalcium supplied (kg)
Alfalfa Brome	8	x	. 012	$\begin{aligned} & (.012 \times 8) \\ & .096 \mathrm{~kg} \text { or } 96 \mathrm{~g} \end{aligned}$
		x		
Total				

$\mathcal{A d d}$ the needed amounts of Vitamin \mathcal{A}, fortified or trace mineralized salt, and other trace minerals as required.

Check to make sure the ration is practicalfor your situation.

Calculate the cost of ration. Ke ep in mind that bison, like a cow tend to waste some feed. This has not been accounted for in your calculations. Therefore, the actual amount of feed you offer should be slightly higher than what you have calculated.

Feed	Amount fed (kg)		Cost $/ \mathrm{kg}(\$ / \mathrm{kg})$	Total cost (\$)
		x		

Feed intake

Each of the following affects the bison by either making it
 increase or decrease its feed intake.
In the Glank, put an "I" if the event makes the animalincrease its feed intake.

Put a" $D^{\prime \prime}$ if the event makes the animaldecrease its feed intake.
\qquad The animal is now lactating.
\qquad The days have become much longer. (summer)
\qquad You have used up all of the poorer quality hay and are now into some very good hay.

Winter has fit!

You have switched to feeding grain before the roughage.
____-_-_ You are nowfeeding legume hay inste ad of grass hay.
-_-_-_-_
Although healthy, your cow is much thinner now.
---_-----
Sou suspect that there is a nutrient missing in your animal's diet.

There are other things which might affect the feed intake of your animals. Describe some of these.

