"The first step toward getting somewhere is to decide that you are not going to stay where you are" Unknown

"The only man who never makes a mistake is the man who never does anything." Theodore Roosevelt

Nutrient Management Tools!

Trevor Wallace Len Kryzanowski, Geoff Montgomery, Laura Thygesen Manure Management Update Lethbridge, Jan 16, 2017 ENVIRONMENTAL STEWARDSHIP DIVISION

Objectives:

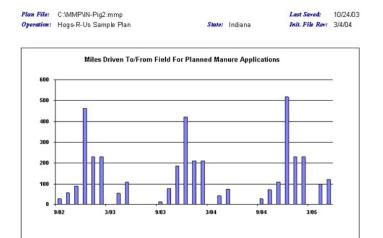
- To outline what the various tools can do for you
- To provide an update / introduction to each tool
- Briefly describe what each tool can do.

So What can these 'tools' do for my operation / me??

- Risk assessment
- Planning & Communication

 Manure & fertilizer to be applied
 Crops to be grown

Operation: Alberta Beef Example 1, Metric Plan File: C:\MMP\TstPlans\Alberta_Test.mmp 123 Rural Route Plan Year: 3 Address: 3 123 Rural Route Plan Year: Anytown, AB TeH 5T6 Last Saved: 4/25/05 Phone: 555-5555 Author: Mr. A. Planner Year Month Field Spread Application Manure Source Equipment Rate Units Loads 2003 Sep A 28.3 Feediot pile McKee Spreader 18 Tonne/Ha 75 2003 Sep H 47.3 Feediot pile McKee Spreader 34 Tonne/Ha 202

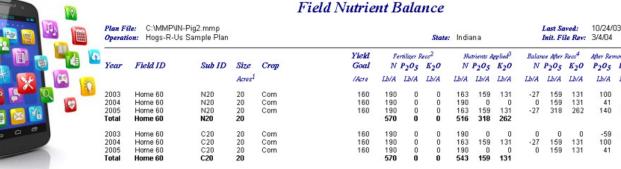

Alberta Manure Applicator Report

2000	oop		2010	r ooalot pilo	montee epiceador		ronnonna	• •
2003	Sep	D	33.2	Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2003	Sep	Н	47.3	Feedlot pile	McKee Spreader	34	Tonne/Ha	202
2004	Мау	В	42.5	Feedlot pile	JD 830	25	Tonne/Ha	367
2004	Мау	E	78.9	Field pile	JD 830	18	Tonne/Ha	168
2004	Мау	E	78.9	Feedlot pile	JD 830	18	Tonne/Ha	322
2004	Sep	A	28.3	Feedlot pile	McKee Spreader	18	Tonne/Ha	64
2004	Sep	D	33.2	Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2004	Sep	Н	47.3	Feedlot pile	McKee Spreader	24.5	Tonne/Ha	145
2005	Мау	В	42.5	Feedlot pile	JD 830	18	Tonne/Ha	264
2005	Мау	E	78.9	Field pile	JD 830	18	Tonne/Ha	169
2005	Мау	E	78.9	Feedlot pile	JD 830	18	Tonne/Ha	321
2005	Sep	D	33.2	Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2005	Sep	Н	47.3	Feedlot pile	McKee Spreader	22	Tonne/Ha	131
2005	Oct	M2	85	Feedlot pile	McKee Spreader	18	Tonne/Ha	192
2006	Мау	В	42.5	Field pile	JD 830	18	Tonne/Ha	168
2006	May	В	42.5	Feedlot pile	JD 830	18	Tonne/Ha	96

- Decision Making & Analysis
 - \circ Scenario testing
 - \circ Analysis of a plan
 - Testing assumptions
 - Risk assessment

K20

15/4


88

45

132

-43

88

Calculators

- \circ Fertilizer application rates
- \circ Manure application rates
- Nutrients applied by an application
- \circ Calibration of equipment

6. Whole Bale Management			Nitrogen	Phosphorus	Potassium	Sulfur
Feed density (tons dry matter/acre)		7. Nutrient Deposits on Land		(lb/acre)		
Bale density (#/acre)	33.6	Nutrient landing from incoded food	645	•		56.4
Number of bales needed	360	Nutrient loading from imported feed	615	68.5	583	56.1
Bales fed per day	3.0	Nutrient loading from imported feed Nutrients removed by cattle weight gain	8.4	2.0	1.2	0.56
Bale spacing		% of time cattle spend outside of feed	ling area		15	
-within row (feet)	36	Net nutrient loading in feeding area	515	56.5	495	47.2
-between row (feet)	36	from manure and waste feed	515	50.5	400	41.2

- Record keeping
 - \circ Succession planning
 - Sharing between family & staff
 - Reporting
 - \circ Sustainability initiatives
 - Market access

Tips and Information

 Some embedded
 Links for online

Automation of some tasks

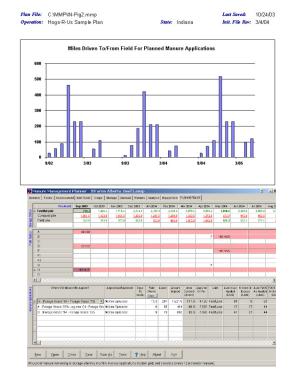
- Geolocating
- Collection of weather data
- \circ Emergency information

In the end!

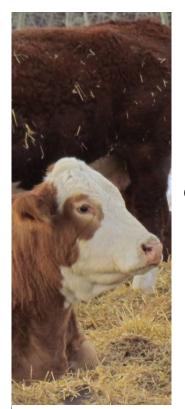
- Make the work easier.
- Reduce risk
- Save you money
- End save you time

"Spend too much time working in the business, and not enough time working on the business." Stan Parsons

MMP Manure Management Planner


http://www1.agric.gov.ab.ca/\$department/softdown.nsf/main?openform&type=M MP&page=information

MMP



- Planning and managing manure applications
- Decision support / scenario
- Planner / analysis
- Calculator
- Communication
- Record keeping tool

MMP

• Input:

fields, soil, crop, animals, storage, equipment

• Output:

- Manure & fertilizer application plan/ recommendation
- \circ Manure volumes, transfers

MMP

Alberta Fertilizer Applicator Report

 Operation:
 Alberta Beef Example 1, Metric

 Address:
 123 Rural Route

 Anytown, AB T6H 5T6
 Phone:

I

 Plan File:
 C:\MMP\TstPlans\Alberta_Test.mmp

 Plan Years:
 3

 Last Saved:
 4/25/05

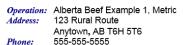
 Author:
 Mr. A. Planner

Year	Month	Field	Subfield	App.	Application Coverage	For Crop	Yield	Yield Units	Type Of Application
				Area			Goal		
2003	Oct	M2		85.00	Entire Field	Wheat, Winter	3360	Kg/Ha	Fertilizer (1-year N)
2004	Apr	В		0.40	Non-Manure Spreadable	Forage Grass	4.5	Tonne/Ha	Fertilizer (1-year N)
2004	Apr	G		19.00	Manure Spreadable	Forage Grass	4.5	Tonne/Ha	Fertilizer (1-year N)
2004	Apr	J, K, L		161.90	Manure Spreadable	Forage Grass	4.5	Tonne/Ha	Fertilizer (1-year N)
2004	Oct	M2		85.00	Entire Field	Wheat, Winter	3360	Kg/Ha	Fertilizer (1-year N)

Year	Month	Field	Subfield	Analysis	Rate	Rate Units	N	P2O5	K2O	Nutrient	Application Method	Total Material
							Applied	Applied	Applied	Units		Applied
2003	Oct	M2		28-0-0	195	Litre/Ha	70	0	0	Kg/Ha	Surface broadcast/incorporate	16,575
2004	Apr	В		28-0-0	195	Litre/Ha	70	0	0	Kg/Ha	Surface broadcast	78
2004	Apr	G		28-0-0	265	Litre/Ha	95	0	0	Kg/Ha	Surface broadcast	5,035
2004	Apr	J, K, L		28-0-0	139	Litre/Ha	50	0	0	Kg/Ha	Surface broadcast	22,504
2004	Oct	M2		28-0-0	195	Litre/Ha	70	0	0	Kg/Ha	Surface broadcast/incorporate	16,575

Alberta Manure Applicator Report

Operation:	Alberta Beef Example 1, Metric
Address:	123 Rural Route
	Anytown, AB T6H 5T6
Phone:	555-555-5555


 Plan File:
 C:\MMP\TstPlans\Alberta_Test.mmp

 Plan Years:
 3

 Last Saved:
 4/25/05

 Author:
 Mr. A. Planner

Year	Month	Field	Spread. Area	Application Date	Manure Source	Equipment	Rate	Units	Loads
2003	Sep	A	28.3		Feedlot pile	McKee Spreader	18	Tonne/Ha	64
2003	Sep	D	33.2		Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2003	Sep	Н	47.3		Feedlot pile	McKee Spreader	34	Tonne/Ha	202
2004	Мау	В	42.5		Feedlot pile	JD 830	25	Tonne/Ha	367
2004	Мау	E	78.9		Field pile	JD 830	18	Tonne/Ha	168
2004	Мау	E	78.9		Feedlot pile	JD 830	18	Tonne/Ha	322
2004	Sep	A	28.3		Feedlot pile	McKee Spreader	18	Tonne/Ha	64
2004	Sep	D	33.2		Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2004	Sep	Н	47.3		Feedlot pile	McKee Spreader	24.5	Tonne/Ha	145
2005	Мау	В	42.5		Feedlot pile	JD 830	18	Tonne/Ha	264
2005	Мау	E	78.9		Field pile	JD 830	18	Tonne/Ha	169
2005	Мау	E	78.9		Feedlot pile	JD 830	18	Tonne/Ha	321
2005	Sep	D	33.2		Feedlot pile	McKee Spreader	18	Tonne/Ha	75
2005	Sep	Н	47.3		Feedlot pile	McKee Spreader	22	Tonne/Ha	131
2005	Oct	M2	85		Feedlot pile	McKee Spreader	18	Tonne/Ha	192
2006	Мау	В	42.5		Field pile	JD 830	18	Tonne/Ha	168
2006	May	В	42.5		Feedlot pile	JD 830	18	Tonne/Ha	96

Alberta AOPA Report

Plan File:	C:\MMP\TstPlans\Alberta_Test.mmp
Plan Years:	3
Last Saved:	4/25/05
Author:	Mr. A. Planner

Animal Production

Animal ID	Animal Type	Count	Ave. Wt.	Units	Confinement Period	% Of Manure Collected
Finishers	Beef finisher	1,300	544	Kg	Jan Early - Dec Late	100
Growers	Beef feeder/backgrounder	1,700	317	Kg	Jan Early - Dec Late	100
Cows on pasture	Beef cow/bull/bred heifer	300	590	Kg	Jan Early - Dec Late	0

Manure Production

Storage ID	Storage Type	Estimated Production	Units	Total N	Units	
Feedlot pile	Open lot (no straw)	5172	Tonne/Year	10	Kg/Tonne	

Field Information

Field	Subfield	Legal Land Description	Spread.	Soil Test		E.C.	Soil Texture	Soil Texture
			Area	Year	Level (ppm in	(dS/m in	(0-15 cm)	(15-30 cm)
					0-60 cm)	0-15 cm)		
A			28.3	2003	4			
В			42.5	2002	6			
С			38.4	2003	21			
D			33.2	2003	11			
E			78.9	2003	14			

MTC Manure Transportation Calculator

http://www1.agric.gov.ab.ca/\$Department/softdown.nsf/main?openform&type =MTC&page=information

MTC

- Excel based tool
- Decision support / calculator
 - \circ Net cost of applying manure or fertilizer
 - \circ Estimates nutrient use / availability
 - \circ Estimate application cost versus benefit

Output:

Inputs:

- Manure production
- Manure application rate
- Nutrient contributions
- Cost/benefit of manure application

17

• Manure nutrient content, fertilizer

recommendation, rotation & yield goal,

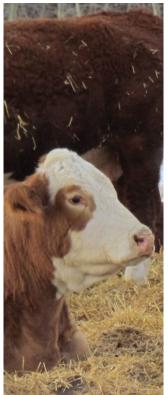
transportation/application info/cost

Summary of 5 Year Cost And	alysis				
Select Units Imperial Metric Select Manure Solid Uquid Select Vield	Spring W	heat		new field will also reset to the model's recomi	
Manure Application Rate - Currently Set At: Do You Wish to Apply a Different Amount of Manure ? Enter the rate of Manure to Apply on Analysis Tab	Yes 💌		Warning: A minimum practic gałac) cannot be met with tł available.		
	6	'OU have chosen to his field. Based on th Vutrients are Availabl			
	Nutrient f Recommendation from Lab (in Year 1 of Plan) Ibs/ac	Nutrients Available from Manure (in Year 1 of Plan) Ibs/ac	Nutrients Utilized from Manure (in Year 1 of Plan) Ibs/ao	Nutrient Shortfall/Excess (based on N optimization) (in Year 1 of Plan) Ibs/ac	
N	110	134	110	24	This nutrient is over-applied and it's value at risk of being los
P ₂ O ₅	44	81	44	37	This nutrient is over-applied and it's value at risk of being los
K ₂ O S	99 16	267 11	99 11	168 5	This nutrient is over-applied and it's value at risk of being lost
					1
			Cost/Benefit		
Cost to Apply Manure	In Yea Total \$ \$12,667	r 1 \$/acre \$40	Over 5 Total \$ \$12,667	5 Years \$lacre \$40	
Value of Manure Nutrients Utilized: N P2Os K2O S	Total \$ \$20,822 \$7,694 \$22,509 \$1,511 \$520,500	\$/acre \$65 \$24 \$70 \$5	Total \$ \$31,029 \$21,466 \$60,633 \$1,511	\$lacre \$97 \$67 \$189 \$5	
Total Net Economic Benefit	\$52,536 \$39,869	\$164 \$125	\$114,639 \$101,973	\$358 \$319	

Wintering Site Assessment and Design Tool

http://www1.agric.gov.ab.ca/\$Department/deptdocs.nsf/all/epw12912/\$FILE/aa fc-wintering-sites-booklet.pdf

WSADT


Risk assessment tool

- Antone Alexandra Antone Canada
- Assess risk of wintering sites & nutrient loss

- Assess at an field/site level
 - Management practices
 - Landscape conditions
- Suggests BMPs to reduce losses

Format

• Series of questions.

- Question layout:
 - Green: low concerns
 Orange: medium concerns
 Red: high concerns

- Potential Concerns
 - i.e., Why does this question matter
- \circ BMP suggestions to address concerns

Fo	Format								
1. In each WS/ chart, identifi current situa the left-hand of the chart.	fy your enviro ation in association curre	ider the level of onmental risk ciated with your nt situation.	Consider the potential concerns.	 Consider the options for BMPs to address the concerns. 	 Go to the Resources section of this publication to find detailed information to help you decide which particular BMPs would best meet the needs of your own operation. 				
Example: Site	Environm	nental Risk Factor and	Pisk Level	Potential Concerns	Beneficial Management Practices				
Characteristic Slope length of wintering site	Less than 300 ft	300 ft to 1300 ft (1/4 mi		With longer slopes, the potential increased water flow/velocity an associated erosion and/or nutrie transport increases.	for If possible, place feeding areas on slopes less d than 300 ft in length. For longer slopes, add				
Depth to groundwater	Greater than 100 ft	25 ft to 100 ft	Less than 26 ft	The risk of nutrients contaminati groundwater increases on sites with shallow, permanent water tables.	ng Move site to high ground or a location that is at least 25 ft above the water table.				
Amount of bare ground on Perennial forage or annual cropland		Annual cropland with stubble and aftermath with 25 to 50% bare ground or perennial pasture with >25% bare ground	Annual cropland with >75% bare ground	There is a greater risk of nutrient pathogen, and sediment movement into water sources if t site has little groundcover or cro residue.	establish groundcover so that at least 75% of the surface is covered with plant material prior				

Nutrient Loading Calculator

http://www1.agric.gov.ab.ca/\$Department/softdown.nsf/main?openform&type =NLC&page=information



NLC

- Excel based tool
- Decision support / calculator
 - Calculated feed requirements
 - Estimates nutrient additions from extensive livestock winter feeding
 - \circ Help make in field feeding/siting decisions
- Risk Assessment

2 Brimany Bala Type	Hay_Perenni	Hay_Perennials Brome		Amount of fe	
2. Primary Bale Type	Brome			Number of fe	
Dry maker content of feed (%)		90		Contribution to	
Protein content of feed (%, dry matter basis) Nitrogen content of feed (%, dry matter basis) Phosphorus content of feed (%, dry matter basis) Potassium content of feed (%, dry matter basis)		Most n	is contained		
		Most plant nitrogen is contained within protein. Dividing protein			
		content by 6.25 to determine			
		total nitrogen is a widely accepted conversion factor.			
Sulfur content of feed (%, dry mat	tter basis)				
		-		10.1.1.2	

NLC

- Inputs:
 - \circ Livestock, feed types, feeding plan
- Output:
 - Amount feed required
 - \circ Estimated nutrient additions
 - Warning on nutrient loading

6. Whole Bale Management		
Feed density (tons dry matter/acre)	1	19.:
Bale density (#/acre)		33.
Number of bales needed		36
Bales fed per day		3.
Bale spacing		
-within row (feet)		3
-between row (feet)		3

7. Nutrient Deposits on Land	Nitrogen	Phosphorus	Potassium	Sulfur
Thunen Deposits on Land				
Nutrient loading from imported feed	615	68.5	583	56.1
Nutrients removed by cattle weight gain	8.4	2.0	1.2	0.56
% of time cattle spend outside of fee		15		
Net nutrient loading in feeding area from manure and waste feed	515	56.5	495	47.2

1. Cow Management		
Number of cows	100	My Own
Average cow weight (lbs)	1300	Value
Daily feed requirement of cow (lb dry matter/day)	33.8	
Area of land used for feeding (acres)	10.7	
Number of feeding days	120	
Cow Days per Acre	1121	
Animal Unit Days per Acre	1458	
Net feed density (tons dry matter/acre)	18.9	

2 Primony Polo Type	Hay_Perennia	My Own	
2. Primary Bale Type	Brome		Values
Dry matter content of feed (%)	Dry matter content of feed (%)		
Protein content of feed (%, dry matte	er basis)	10.6	
Nitrogen content of feed (%, dry mat	1.70		
Phosphorus content of feed (%, dry	0.17		
Potassium content of feed (%, dry n	1.50		
Sulfur content of feed (%, dry matter	0.14		
Percent of total bales provided by	75		
Average bale weight (actual lbs)	1300		
Percentage of primary feed on a dry	76.6		
Feed wastage of primary bale ty	be (%)	10	

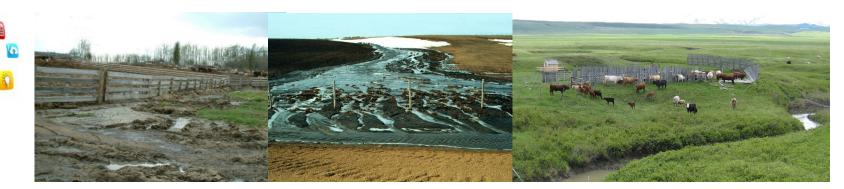
3. Secondary Bale Type	My Own
S. Secondary Bale Type Wheat	Values
Dry matter content of feed (%)	39
Protein content of feed (%, dry matter basis) 3	.9
Nitrogen content of feed (%, dry matter basis) 0.6	52
Phosphorus content of feed (%, dry matter basis) 0.0)8
Potassium content of feed (%, dry matter basis) 1.4	10
Sulfur content of feed (%, dry matter basis) 0.7	12
Percent of total bales provided by secondary type	25
Average bale weight (actual lbs) 120	00
Percentage of secondary feed on a dry matter basis 23	.4

4. Supplementary Feed Type	Grain		My Own
4. oupplementary recurrype	Barley	Values	
Dry matter content of feed (%)		89	
Protein content of feed (%, dry matter basis)		12.5	
Nitrogen content of feed (%, dry matter basis)		2.00	
Phosphorus content of feed (%, dry matter basis)		0.38	
Potassium content of feed (%, dry matter basis)		0.54	
Sulfur content of feed (%, dry matter basis)		0.14	
5. Supplementary Feed Management			
Amount of feed provided at one time (lbs)		300	
Number of feedings per day (eg. 2 = twice per	day)	1	
Contribution to daily feed requirement of cow (lbs d	ry matter/day)	2.66	
Total supplementary feed needed (actual tons)		18.0	
Supplementary feed density (tons dry matter/acre)		1.49	
6. Whole Bale Management			
Feed density (tons dry matter/acre)		19.2	
Bale density (#/acre)		33.6	
Number of bales needed		360	

Number of bales needed	500
Bales fed per day	3.0
Bale spacing	
-within row (feet)	36
-between row (feet)	36

7. Nutrient Deposits on Land	Nitrogen	Phosphorus	Potassium	Sulfur
1. Nutrent Deposits on Land				
Nutrient loading from imported feed	615	68.5	583	56.1
Nutrients removed by cattle weight gain	8.4	2.0	1.2	0.56
% of time cattle spend outside of fee	ding area		15	
Net nutrient loading in feeding area	515	56.5	495	47.2

Alberta Phosphorus Management Tool



- Excel-based risk assessment tool
- Assesses the risk of phosphorus loss
- Focus on surface water

 Risk is based on a variety of environmental and management factors

• Site specific

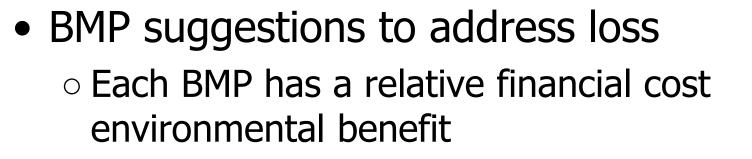
\circ Can split into sub-fields or areas.

- Series of worksheet
- Series of question in each • Yes/no or practice based

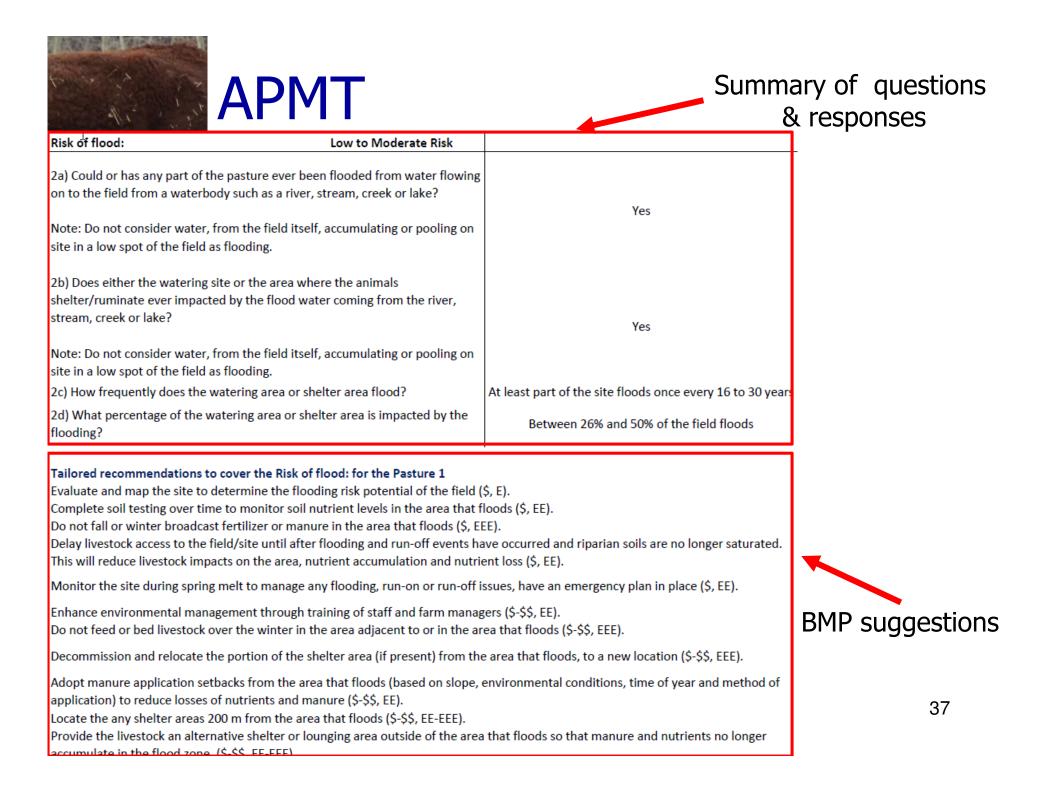
Questions are tailored based on

answers		Cropping System Management (100% completed) Total Fields: 2 For help please visit the website or press the button for instructions: Website Hide/unhide instructions
	Save as a PDF Rapid Field Assessment (100% completed) Close For help please visit the website or press the button for instructions: Website Hide/unhide instructions	Run-Off Potential 1a) What type of tillage system is being used? Zero or conservation tillage system (leaving more than 61% of the crop residue on the surface)
	Question 1 Could or has any portion of the field (crop or pasture) ever flooded from water flowing onto the field from a water body such as river, stream, creek or lake?	1b) How many fall tillage passes are usually completed? Zero _
	Note: For this question do not consider water, from the field itself, accumulating or pooling on site in a low spot of the field as flooding	1c) How frequently is summer fallow part of the rotation? Once every 3 years or less.
	Question 2 Is there a surface water body within 200 meters (660 feet) of the crop or pasture field?	1d) How is post harvest residue managed?
	Question 3 Is there a year round or seasonal stream, creek or waterway running through the field or pasture?	Crop stubble is anchored going into winter and crop residue is spread evenly with more than 76% of ground is covered by residue. Or Crop stubble is anchored going into winter and crop residue is spread evenly with between 51% and
	Yes	 75% of ground is covered by residue. Crop stubble is anchored going into winter and crop residue is spread evenly with between 36% and Sy5% of ground is covered by residue.
	Question 4 Is there or has there been any irrigation run-off, surface water run-off or wind induced soil erosion in the field or pasture?	 Crop Stubble is burned OP Crop stubble is not anchored going into winter. Crop stubble is anchored going into winter but crop residue not evenly spread and covers less than spik of cut area.

Welcome to the Alberta Phosphorus Management Tool (APMT) Hide/unhide details					
Step 1: general information General Questionnaire		Albe	berta overnment		
Step 2: rapid assessment		Manua	I Summary Report	Print/Save PDF	
Rapid Field Assessment	100% completed	Co	ncerns were identified	in 33% of cases	
Rapid Facility Assessment	100% completed	Cor	ncerns were identified	in 100% of cases	


Welcome to the Alberta Phosphorus Management Tool (APMT) Hide/unhide details					
Step 1: general information	_	Albe	ment		
Step 2: rapid assessment		Manual	Summary Report	Print/Save PDF	
Rapid Field Assessment	100% completed	Conc	erns were identified i	in 33% of cases	
Rapid Facility Assessment	100% completed	Conce	erns were identified in	n 100% of cases	

Welcome to the Alberta Phosphorus Management Tool (APMT)			Hide/unhide details
Step 1: general information Alberta			
General Questionnaire	Visit the APMT website	Go	vernment
Step 2: rapid assessment		Manual Summary R	eport Print/Save PDF
Rapid Field Assessment	100% completed	Concerns were ider	ntified in 33% of cases
Rapid Facility Assessment	100% completed	Concerns were iden	tified in 100% of cases
Step 3: detailed assessments]	
Cropping System Management	not started		
Field Management	not started		
Grazing and Riparian Pasture	not started		
Seasonal Feedings & Beddings	not started		
Corrals, Loafing or Day Pastures	not started		
Barns/Livestock Housing	not started		
Catch Basin Management	not started		
Solid Manure Storage	not started		
Temporary Manure Storage	46% completed		
Liquid Manure Storage	not started		
		Developed by SC	recon 🕼


- Includes potential concern descriptions
- Ranking of risk
 - $\,\circ\,$ low, low/medium, medium/high and high

Alberta Farm Fertilizer Information & Recommendation Manager

http://www1.agric.gov.ab.ca/\$department/softdown.nsf/main?openform&type= AFFIRM&page=information

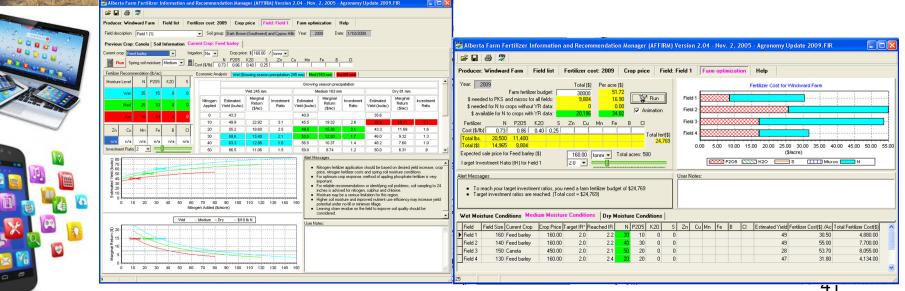
- Fertilizer decision support tool
- Calculator & planner
- Scenario running

- Analytics
- Record keeping

Iberta Farm Fertilizer Information and Recommendation Manager (AFFIRM) Version 2.04 - Nov. 2, 2005

👺 Alberta Farm Fertilizer Information and Recommendation Manager (AFFIRM) Version 2.04 - Nov. 2, 2005

• Input: fields, crops, soil info



÷ 🖬 🚔 🖏	
oducer: Windward Farm Field list Fertilizer cost: 2007 Crop price Field <n a=""> Farm optimization Help</n>	Producer: Windward Farm Field list Fertilizer cost: 2009 Crop price Field 1 Farm optimization Help
Field Information Field ID Field Description Soil Group Eco District	Field description: Field 1 (1) Soil group: Dark Brown (Southwest) and Cyprus Hills Year. 2009 Date: 1/18/2009
	Field description: Field 1 [1] Soil group: Dark Brown (Southwest) and Cyprus Hills Year: 2008 Date: 1/18/2009 Previous Crop: Canola Soil Information Current Crop: Feed bailey Sample depth: Def", 6-12" Image: Construction of the soil of t
Alberta Soil Group Areas	Dark Brown (Southwest) and Cyprus Hills soil group.
🕲 1 of 4	

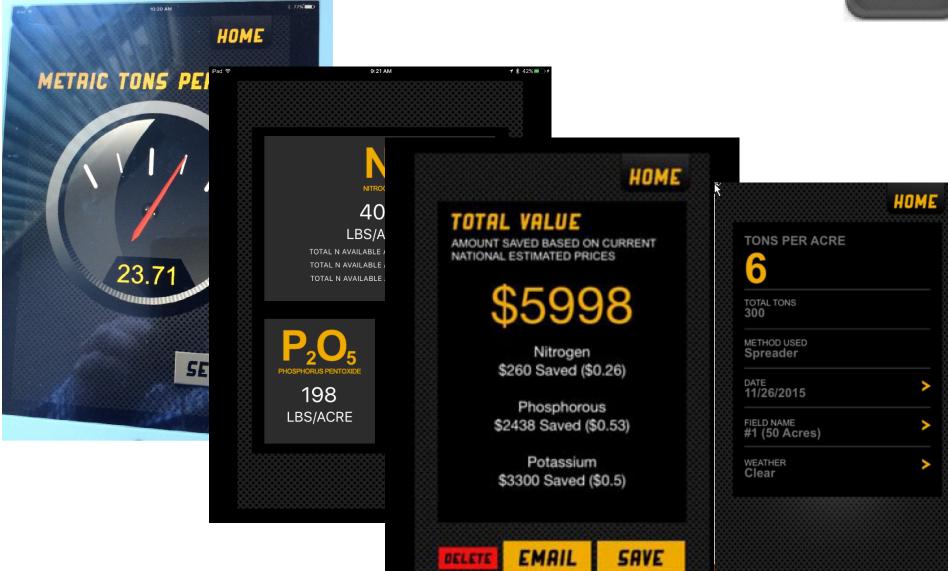
- Output nutrient recommendations
- Evaluation of fertilizer decisions
- Farm optimization of fertilizer \$

- Enhancing functionality
 - \circ Newer operating systems
- New research data
- 4-R nutrient stewardship principles
- Manure management features!!

- Smart phone application
- Manure decision support tool
- Calculator & planner

• Input:

 Applicator size and spread, type of manure, application rate, fertilizer cost


- Output:
 - Calibration of applicator
 - Estimation of nutrients applied
 - \circ Value of nutrients applied

EMAIL

SAVE

Manure Record Keeping App

Record Keeping App

- Smart phone application

 Computer portal
 Cloud syncing
- Record Keeping
 - \circ Automation
- Emergency Response
 - \circ Features & information

Record Keeping App

- Inputs:
 - Manure application, soil, field
 - \circ Emergency info
 - \circ Geolocating
- Automation:
 - Weather data
- Outputs:
 - \circ Information and tips
 - Collected data

Key Take Away

- Several tools available today... more are on the way
- Advanced capabilities
- Know the assumptions behind them
- Only as good as the information that goes into them

Key Take Away

- Tools help with:
 - \circ Risk assessment
 - \circ Planning operations
 - \circ Communication $\tt !!!$
 - \circ Decision making
 - scenarios / testing ideas / risk assessment
 - \circ Record keeping
 - Reporting for sustainability programs or mkts
 - \circ Automation of some work

Thank You

And that's Just One point of View!!

Trevor Wallace Trevor.Wallace@gov.ab.ca 780.980.7587