Does your soil have what it takes?

Adriana Navarro Borrell Ph.D.

Agriculture Sciences Program

The world's population is expanding & food production must rise

PRODUCTION REMAINING ON PROVEN RESERVES

World Oil Reserves Infographic. .Photograph: Seismic Micro Technology (SMT)

As global change dictates the need for more efficient cropping systems, the management of beneficial fungi offers many opportunities.

Crop rotation: sustainable agriculture

- Reduces weeds and herbicide requirements
- Increases yields
- Reduces the incidence of diseases
- Diversifies the microbial community

PULSE crops help to reduce summer fallow and fertilizer requirements

How do changes in sequence impact crop performance at a system level?

How this may affect microbial diversity?

The hypothesis:

The hypothesis:

Field sites description South Farm in SPARC/AAFC, Swift Current, SK

(latitude: 50°17'N; longitude: 107°41'W, elevation 825 m)

Conventional management No tillage Orthic Brown Chernozem soil Silt Ioam texture pH = 6.5

The top 0-15 cm layer of the soil contained 9 kg ha⁻¹ mineral N, 36 kg ha⁻¹ Olsen P, 326 kg ha⁻¹ available K, and 53 kg ha⁻¹ available S.

Soil nutrient and water content analysis

Seeding

Fertilizer & pesticide applications

Rizosphere soil and root sampling

Root colonization

Root fungal DNA analysis Agronomic data collection

Disease/pest incidence evaluation

Pesticide applications Agronomic data collection

Harvest

Soil sampling

Soil DNA analysis

Productivity of wheat in phase II

Crops rotations	Plant density (plant m ⁻²)	Mature plant biomass (g m ⁻²)	Yield (kg ha⁻¹)	Seeds plant ⁻¹	Wheat heads (heads m ⁻²)	Seed N (mg g⁻¹)
Chickpea- <u>Wheat</u>	128 a	677 ab	2706 a	65.3 b	347 bc	24.5 a
Lentil- <u>Wheat</u>	103 b	749 a	2707 a	88.6 a	422 a	21.9 b
Pea- <u>Wheat</u>	94 b	726 a	2615 a	92.2 a	394 ab	22.0 b
Wheat- <u>Wheat</u>	105 b	573 b	2121 b	70.0 b	317 c	22.0 b
<i>p</i> value	0.0092	00127	0.0004	0.0097	0.0028	0.0331

Wheat monoculture was the less productive system

Level of root colonization by AM fungi Phases I & II

AM fungi

Pulses had higher levels of AM root colonization than wheat in phase I

Relative abundance of fungi in the roots of crops

Relationship between fungi, wheat productivity and soil properties

Plant Soil Table 7 Significant ($\alpha = 0.05$) Spearman correlations among the agronomic data, soil N and water availability in spring, and the relative abundance of AM and general fungal genera in roots and soil of phase II wheat ($N = 32$) [†]											
Roots											
Claroideoglomus	-0.13	0.11	-0.02	0.1	0.46*	-0.17					
Diversispora	-0.39*	-0.07	0.04	-0.23	0.15	-0.31					
Funneliformis	-0.42*	-0.05	-0.37*	-0.12	-0.24	-0.05					
Paraglomus	0.25	-0.12	0.39*	-0.02	-0.44*	0.4*					
Rhizophagus	0.39*	-0.08	0.47**	0.1	0.07	0.29					
Periconia macrospinosa (OTU1)	0.59***	0.05	0.36*	0.18	-0.06	0.47**					
Microdochium bolleyi (OTU2)	0.62***	0.2	0.35	0.36	-0.13	0.63***					
Fusarium redolens (OTU16)	-0.38*	-0.27	-0.45*	-0.29	0.14	-0.52**					
Thielaviopsis basicola (OTU38)	0.57***	0.23	0.52*	0.22	0.04	0.69***					

В

1.2

Relationship between fungal OTUs in phase II

Possible antagonism between fungal phylotypes?

F. redolens shows its pathogenic nature

Take home message

- The identity of the crops shapes the root-associated fungal community, with a significant distinction between pulses and wheat.
- Pea may influence the structure of AM fungal community associated with the roots of the subsequent wheat crop.
- Fusarium redolens could be a risk to wheat production and the risk is greater in rotations with lentil and pea than chickpea.
- *Rhizophagus* could be playing a protective role by antagonizing with *Fusarium redolens* in wheat roots.
- The changes in fungal communities induced by crop rotation or environmental factors such as water availability could influence wheat productivity.

Reference

Plant Soil DOI 10.1007/s11104-016-3075-y CrossMark

REGULAR ARTICLE

Fungal diversity associated with pulses and its influence on the subsequent wheat crop in the Canadian prairies

A. Navarro Borrell • Y. Shi • Y. Gan • L. D. Bainard • J. J. Germida • C. Hamel ₪

Received: 4 May 2016 / Accepted: 27 September 2016 © Her Majesty the Queen in Right of Canada as represented by: Dr. Geneviève Levasseur 2016

Abstract

Background and aims Variations in root-associated fungal communities contribute to the so-called 'crop rotation benefit' on soil productivity. We assessed the effects of chickpea, lentil, and pea in wheat-based rotations, as roots and rhizosphere soil in a field experiment and agronomic data were collected.

Results Pulses influenced only the structure of the nonmycorrhizal fungal community of roots. *Fusarium tricinctum*, *Clonostachys rosea*, *Fusarium redolens*,

THANK YOU!

Chantal Hamel, Jim Germida Yantai Gan & Luke Bainard

Keith Hanson, Cal McDonalds, Poppy Lee & Elijah Atuku

Morgan, Heather, Chase & Clayton

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

