Maximizing Agronomic Benefit, Minimizing Environmental Threat From Applied Nutrients: Through Good Management It Is Possible!

> Jeff Schoenau PAg Department of Soil Science University of Saskatchewan Saskatoon, SK

Nutrients: Use 'Em, Don't Lose 'Em!

Maximizing Plant Utilization Is of Agronomic, Economic and Environmental Advantage

THE 4R SYSTEM FOR NUTRIENT STEWARDSHIP

Right source at right rate, right time, right place

Sound Nutrient Management = Adoption, Implementation of 4 R Principles

4R concept supported by the following industry organizations initially, support is now growing around the world in counties, states, provinces, countries, agricultural industries, and environmental groups

The Nutrient Management Gearbox

Output is Efficient Cycling of Nutrients!!

- Cropping System: crop selection, rotation
- Soil Management: tillage, residue
- Nutrient Application: placement, rate, source, time

- Perennial-Annual
- Livestock-Crop
- Manure-Fertilizer

Sealing and Cycling

- Mitigating P, N losses in water through 4R
- Reducing gaseous N fluxes to air
- Promoting internal cycling, biological activity

We need to manage, maintain our nutrient gearbox!

One example each of cog, mesh, and sealing management?

- **Cog:** Cropping system: legumes in rotation
- Mesh: Manure-fertilizer synergies
- Sealing: Placement of fertilizer phosphorus

Cog: Cropping System/Rotation

Nitrogen Fixation by Legumes (Courtesy Dr. F. Walley)

Plant sends

energy to

nodule

Rhizobia produce 'nitrogenase' to convert gaseous N to ammonia-N Ammonia-N transferred to plant

Amount of N fixed in Western Canada			
	<u>lbs N / acre</u>		
Alfalfa	100 - 250		
Fababean	80 - 160		
Pea	50 - 150		
Soybean	70 - 100		
Lentil	30 - 120		
Dry Bean	5 – 70		

- Forage legumes fix more N than grain legumes
- N fixation has significant \$ value
- Actual amount <u>depends</u> on inoculation/nodulation, environmental conditions, soil available N and other nutrients like P.

N Fertilizer Replacement Value of Growing a Legume:

How much extra fertilizer N needs to be added to bring yield of non - legume crop on non - legume stubble to same yield as crop grown on legume stubble.

Reflects effect of N benefit and non-N benefit.

Direct N Benefit

 <u>Nitrogen</u> derived specifically from the legume crop is <u>made available</u> to a following crop by <u>microbial</u> <u>decomposition</u> of surface residues, roots, old nodules.

Indirect Benefits

Plant growth, nutrient uptake on legume stubble is often <u>enhanced by a greater amount</u> than what can be explained by the nutrient in the stubble itself.

- Better conditions for root growth
- Stimulated biological activity

The Magic of Legumes! Improved Soil Health

Barley Yield Response to Added N Fertilizer

From Wright 1990 at Melfort SK

Phosphorus mobilization by legumes

- Rhizosphere acidification or alkalization
- Phosphate releasing enzymes
- Morphological root traits
- Symbiotic relationship with arbuscular mycorrhizal fungi that can also increase this beneficial symbiosis in following crops:

 Forage legumes have deep rooting systems, can extend into calcareous subsoils and mobilize insoluble native P reserves <u>at depth</u>, bring to surface for recycling.

Short Rotation Forage Legumes

 Couple years of forage legume (e.g. alfalfa or clover) followed by annual crops (e.g. cereal, oilseed).

• Forage legumes fix N for themselves that also becomes available for following crop.

• Effects on P less well documented.

Crop rotation treatments:

4 Rotations compared:

- 1) Alfalfa-Alfalfa-Wheat-Canola
- 2) Red Clover- Red Clover- Wheat-Canola
- 3) Barley-Pea-Wheat-Canola
- 4) Barley-Flax-Wheat -Canola

N Fertilizer Replacement Value calculated from 2012 wheat yield response

Sites	A-A	RC-RC	B-P	
	(kg N ha ⁻¹)			
Saskatoon	75	100	29	
Lanigan	103	172	167	
Swift Current	n.d.	n.d.	n.d.	
Melfort	317	236	179	

- Nitrogen fertilizer equivalent of forage legume greatest in Black soil zone site.
- Combo of direct N benefit and non-N benefit effects. No large effect on soil N or crop N uptake.
- Similar trend observed for 2013 canola but NFR values less.

P removal (kg P/ha) by crops in rotation over two years (2010+2011)

Sites	A-A†	RC-RC	B-P	B-FL
		(kg P	ha ⁻¹)	
Saskatoon	30.2 ^{a §}	25.0 ^a	6.6 ^b	9.6 ^b
Lanigan	34.6 ^a	25.0 ^b	11.0 ^c	10.5 ^c
Swift Current	15.0 ^a	10.3 ^b	6.1 ^c	5.8 ^c
Melfort	19.0 ^a	19.0 ^a	15.8 ^a	19.6 ^a

A-A is alfalfa-alfalfa; RC-RC is red clover-red clover;
B-P is barley-pea; B-FL is barley-flax.

Impacts on Phosphorus Fertility

 Two years of <u>alfalfa and red clover took up greater amounts of</u> <u>P</u> from the soil relative to barley-pea and barley-flax, especially in the second year.

But no significant reduction in soil available P

- Wheat on legume stubble, especially alfalfa and red clover, yielded significantly higher at three of four sites.
- At Swift Current, alfalfa dried out soil profile.

 Maintenance of soil available P levels, despite greater crop removal of P, reflects <u>ability of</u> <u>legume to mobilize soil P</u>.

Crop P balance over a	four-year rotational	cycle
------------------------------	----------------------	-------

		Fertilizer P	P removed	D halanca*
Site	Treatment	applied	in biomass	T Darance _‡
			$(kg P ha^{-1})$	
Saskatoon	A-A-W-C†	6.6	49.4 ^{a §}	-42.8 ^b
	RC-RC-W-C	6.6	43.2ª	-36.6 ^b
	B-P-W-C	6.6	22.1 ^b	-15.5ª
	B-FL-W-C	6.6	24.7 ^b	-18.1ª
Lanigan	A-A-W-C	6.6	54.5 ^a	-47.9 ^d
	RC-RC-W-C	6.6	48.3 ^b	-41.7°
	B-P-W-C	6.6	22.9°	-16.4 ^b
	B-FL-W-C	6.6	17.0 ^d	-10.4 ª
Swift Current	A-A-W-C	6.6	27.5ª	-21.0 ^b
	RC-RC-W-C	6.6	24.4 ^{ab}	-17.9 ^{ab}
	B-P-W-C	6.6	17.4 ^b	-10.9 ^a
	B-FL-W-C	6.6	18.0 ^b	-11.5ª
Melfort	A-A-W-C	6.6	52.3 ^a	-45.7 ^b
	RC-RC-W-C	6.6	48.7 ^{ab}	-42.2 ^{ab}
	B-P-W-C	6.6	43.5 ^b	-37.0 ^a
	B-FL-W-C	6.6	42.4 ^b	-35.8 ª
Over long-term forage legumes can deplete soil P through greater P removal i				

Over long-term, forage legumes can deplete soil P through greater P removal in harvest.

Forage legumes in rotation for a short time generate significant fertility benefits, reduce fertilizer requirement:

Greater removal of P and other nutrients over longer term means depletion will eventually need to be addressed with fertilizer P and/or manure

Mesh: Manure – Fertilizer Synergies

Effect of Liquid Swine Manure and Urea Applied Without and With Supplemental Sulfur Fertilizer on S Deficient Gray Soil (Schoenau, King and Malhi, 2014)

Liquid Swine Manure:

Readily plant available nutrients, especially N, but may be low in S: Often high Available N: Available S ratio.

- A field trial near Melfort, Saskatchewan on a Dark Gray Chernozem in place since 1999 offers unique ability to examine long-term effects of application of liquid swine manure.
- Band injected liquid swine manure **since 1999** in **Canola-Cereal** (barley or oat) crop rotation

LSM Applications

- 1) Control (no manure or fertilizer)
- 2) 37,000 l[.]ha⁻¹ every year (1X annually)
- 3) 74,000 l·ha⁻¹ every 2nd year (2X every 2nd)
- 4) 111,000 l[.]ha⁻¹ every 3rd year (3X every 3rd)
- 5) Urea at 80 kg N / ha every year

Soil is prone to sulfur deficiency, LSM low in available S

- so sub-plots of no supplemental S fertilizer versus S fertilizer
 - S fertilizer: broadcast elemental S or potassium sulfate @ 40 kg S·ha⁻¹ every third year

Melfort Barley Crop Grain Yield Fall 2013

Best crop yield, utilization of manure N, lowest residual nitrate when supplemental S fertilizer added to ensure appropriate N:S balance for canola.

Very evident for urea and also sometimes for LSM.

Sealing: The Importance of Phosphorus Fertilizer **Placement**

A Field Study of the Effect of Fertilizer P (11-52-0) Application Method on Soybean (Blake Weiseth MSc U of S 2015)

Treatments

- C 1) No P fertilizer
- SP 2) Seed placed P at 20 kg P_2O_5 ha⁻¹
- **DB** 3) Banded P below seed at 20 kg P₂O₅ ha⁻¹
- 4) Broadcast P at 20 kg P₂O₅ ha⁻¹ with incorporation;
- B(20) 5) Broadcast P at 20 kg P₂O₅ ha⁻¹ without incorporation;
- B(40) 6) Broadcast P at 40 kg P₂O₅ ha⁻¹ without incorporation;
- B(80) And 7) Broadcast P at 80 kg P₂O₅ ha⁻¹ without incorporation.

Results

Downslope Soybean Grain Yield by Treatment

[†]A description the of the treatments is as follows: C: Control (no P); SP: Seed-placed (20 kg P_2O_5 ha⁻¹); DB: Deep band (20 kg P_2O_5 ha⁻¹); B/I: Broadcast with incorporation (20 kg P_2O_5 ha⁻¹); B(20): Broadcast (20 kg P_2O_5 ha⁻¹); B(40): Broadcast (40 kg P_2O_5 ha⁻¹); and B(80): Broadcast (80 kg P_2O_5 ha⁻¹).

Results

Mean 2014 Yield by Fertilizer Application Method

In-soil P placement superior to broadcast in increasing crop P fertilizer recovery and crop yield.

What about P movement off-site in run-off?

Thin Section Slab Collection

(Dept. of Soil Science, University of Saskatchewan)

Mean Total Dissolved P Export in Snowmelt by Treatment

Summary

In-soil placement enhances effectiveness of P fertilizer and limits movement off-site in run-off.

The Future

- Rate: *More robust variable rate prescriptions*
- Source: New enhanced efficiency products, novel combinations of organic/inorganic, nanofertilizers
- Timing, Placement More pre-plant and post-plant to spread workload, more interest in broadcasting, strategic tillage. Operational versus Biological Efficiency
- 4R Certification of Farms on the Prairies

Will Keep The Nutrient Management Gearbox Churning and Turning!

Thank you for your attention!