

Agriculture et Agroalimentaire Canada

2012 Aster yellow outbreak in Saskatchewan

Chrystel Olivier

Agriculture and Agri-Food Canada Research Centre, Saskatoon.

Agronomy update, Lethbridge January 14th, 2012.

Phytoplasmas are specialised wall-less bacteria that are obligate parasites of plant phloem tissue and of insect vectors.

Characteristics

- Pleomorphic, small genome (580-1350 kb).
- Classification based on molecular
- & ecological characteristics.

- 28 groups worldwide (Wei et al, 2007) & 7 groups in Canada (Olivier et al., 2009)

PCR

- AY the most common and widespread (Weintraub & Beanland, 2006)

Transmission

- By insects, mostly leafhoppers (a few planthoppers, psyllids) From plant to plant.

Transmission

- By insects, mostly leafhoppers (a few planthoppers, psyllids)
 From plant to plant
 Via eggs (=transovarially)
 - 4 species (3 exotic, Scaphoideus titanus in Canada)
- Overwinter in roots and dormant tissues of perennial plants (dandelion, quackgrass, shrubs, ..)

Transmission

- By insects, mostly leafhoppers (a few planthoppers, psyllids) From plant to plant

Via eggs (=transovarially)

- 4 species (3 exotic, Scaphoideus titanus in Canada)

- Overwinter in roots and dormant tissues of perennial plants (dandelion, quackgrass, shrubs, ..)

- By seeds?

- Detection in embryos of mulberry, coconut and alfalfa (Jiang et al., 2004; Necas et al., 2008; Nipah et al., 2007).

- Detection in flowers, seeds & seedlings of *Brassica napus*, *B. rapa*, tomatoes and corn (Olivier et al., 2008; 2010; Bertaccini et al., 2012)

Symptom expression

After a latent period: 2-6 weeks, depending on the weather/strain, varieties, stresses, ... (parameters?)

Cause of symptoms: Poorly understood!

Consequences of AY on vectors

- Beneficial: Increased lifespan and fecundity, better survival, host range expansion & higher flight activity.

- Neutral: No consequences
- Detrimental: Decreased lifespan, fecundity, ...

Beneficial effects usually on primary vectors Neutral / detrimental effects usually on secondary vectors

AY symptoms on canola

- Sterile bladder like pods
- Small witches'-broom
- Yellowing, purpling
- Other causes for purpling:
 - Varieties
 - Deficiency in minerals
 - Herbicide injuries

Re-growth of symptomatic branches at the base?

-AY: induce the plant to keep growing.... to attract leafhoppers.

-High temperatures slow down phytoplasmas in above-ground tissues, but in roots <u>may</u> induce symptoms later in the season.

AY symptoms on Camelina sativa & Sinapis alba

AY symptoms on other plants

Garlic

J. Whetter, copied from Twitter

AY symptoms on other plants

Yield losses: AY symptoms on seeds

- Sterile bladder-like pods.
- Normal looking pods with germinated seeds.
- Normal looking pods with normal-looking & misshapen seeds.

AY incidence in canola

About normal-looking seeds in infected plants?

- Phytoplasma DNA detected in seed coats and embryos (PCRs).
 2002-2005: <1%
 2012: ~ 8% (AAFC small plot nursery)
- EMs show intact phytoplasma (?) in seed coats.
- 30-45% progeny plants malformed (high number of trichomes, no growing point, condensed flowers, strong growth delay).

AY incidence in canola

Phytoplasma infection

- Malformed progeny
- Strong growth delay on progeny, meaning no survival of malformed plants.

AY symptoms on cereals

Compendium of Barley Diseases

- Yellowing, red & purple pigmentation
- Leaf rolling, erect habit and necrosis
- Head small, sterile, distorted, twisted.
- Very similar to BYDV....only way to differentiate: PCR

PCR on cereal samples:

- Wheat: <5%
- Barley:~25%
- Oats: 17%
- More PCRs to do...

Aster Yellows phytoplasma (16Srl)

In oilseeds in Canada

- 3 strains (16SrI-A, B, C), +200 plant species.
- Vectors

Main vector: Aster leafhopper (Macrosteles quadrilineatus)

Aster Yellows phytoplasma (16Srl)

In oilseeds in Canada

- 3 strains (16SrI-A, B, C), +200 plant species.
- Vectors

Main vector: Aster leafhopper (Macrosteles quadrilineatus, formerly M. fascifrons)

Migratory: South winds in spring

- High number of leafhoppers
- Infection in South USA
- Several South winds

Local pop.: abundance?

Aster Yellows phytoplasma (16Srl)

In oilseeds in Canada

- 3 strains (16SrI-A, B, C), +200 plant species.
- Vectors

Main vector: Aster leafhopper (*Macrosteles quadrilineatus, formerly M. fascifrons*) 7 other potential leafhopper vectors (role in outbreak, maintain reservoir?, abundance?)

Leafhopper distribution

- M. quadrilineatus is the most abundant leafhopper in canola and camelina..

- M. quadrilineatus is the most abundant leafhopper in cereal.
- 2012: analysis of samples in process.

High % of asymptomatic infected plants

Camelina sativa

SK	Barley		Wheat		Oat	
	Visual	PCR	Visual	PCR	Visual	PCR
2005	(-)	9.4	(-)	6.4	(-)	7.2
2006	(-)	9.3	(-)	24.5	(-)	6.9
2007	(-)	66.6	(-)	38.8	(-)	25.4
2008	(-)	14.3	(-)	10.3	(-)	7.3
2012	(?)	25	(?)	5.0	(?)	17

From samples collected in 2004, AYp was detected from 48% (present in 12 of 25), 36% (present in 9 of 25), and 40% (present in 10 of 25) of plant collections made at transect location points 1, 3, and 5, respectively. Samples of DNA originat-

Hollingsworth et al., 2008

Very high % of asymptomatic infected plants

Next outbreaks????

Cannot forecast the date...

need to monitor winds, and leafhopper arrival and infection.

Are we at risk of more outbreaks? YES!

- Local population of vectors on the increase, AY in weeds
- Warmer winters: higher survival of phytoplasmas and overwintered leafhopper adults and eggs.
- Southerly winds coming earlier ?

Inoculum coming earlier, with higher probability of survival

	Date
2001	April 29
2002	May 22
2003	June 20
2004	May 9
2005	May 7
2006	April 1
2007	April1
2008	April 10
2009	April 11
2010	April 13
2011	April 10
2012	April 1

Phytoplasma weaknesses

- Antibiotics (tetracycline, erythromycin, streptomycin, chloramphenicol)...delay symptom expression

- Heat: > 32°C for several days slows down phytoplasmas 40°C-50°C for several hours kills phytoplasmas
- No commercially available chemicals to control phytoplasmas

Chiesa et al., 2007

plants. If treatments were stopped a bit short of the minimum, the treated plants would recover from the disease and would appear to be cured. Eventually symptoms would reappear, however, and in due course the treated plants become thoroughly diseased.

Kunkel, 1953. Exp.at + 40°C

Commercially non viable to control phytoplasma in annual plants

Insecticides to control the vector population.

- Need several sprayings (waves of southerly winds).
- Negative impact on beneficial insects and environment.
- Leafhoppers are mobile, can transmit the disease before being killed.
- Latent period of 2-6 weeks for symptom development on canola (& most annual plants) after inoculation by leafhoppers.

When symptoms are observed, it is too late to spray

Other control measures:

- Resistance or disease avoidance (?): small plots (no field scale trials yet)

Canola - 2012 (0-80%)

Camelina - 2012 (15-100%)

Other control measures:

- Resistance or disease avoidance
- Early warning system...feasible but lots of unknowns.
 - Ratio local / migratory population of *M. quadrilineatus*
 - Role of other vectors & of reservoir plants
 - Leafhopper movement crop-to-crop.
- Weed management: weed abundance and diversity favors leafhopper population.
- Mulching (aluminium mulching on carrot)
- Insect-exclusion screens (vineyard in Australia)
- Predators / parasitoids...not well known for AY vectors in the prairies

Conclusion

- Phytoplasma diseases: difficult to study & to control.
 - Many unknowns...strains ID, role of vectors, symptom expression
- Risks of increased AY incidence in the future
 - Due to (?) climate change, increased number of leafhoppers, ...
- Solutions?...few!
 - Insecticides: controversial
 - Early warning system and resistance / avoidance: need further study
 - Other options (symbionts, seed treatment...?)

Conclusion

- Phytoplasma diseases: difficult to study & to control.
 - Many unknowns
 - Accurate ID of phytoplasma strains
 - Why and how some leafhoppers are vectors?
 - Extent of the disease reservoir
 - Ratio local / migratory pop. & role of local population in AY outbreak
 - Correlation (symptom severity, incidence) with yield losses.
 - Seed transmission.
 - Parameters involved in symptom expression.
- Risks of increased AY incidence in the future: early warning systems
- Solutions?...few!
 - Insecticides: controversial
 - Other options
 - cultivar resistance
 - seed treatments
 - Symbiont

Acknowledgements

Producers

Many growers, in particular: Ed Seidle (Medstead) Al Mereschuck (Saskatoon) Francois Messier (Alvena) Brock Shear (Osler) Many more, especially in 2012

Funding Agencies

Agriculture Development Fund Canola Council, Genome Research Development Initiative Agriculture and Agri-Food Canada

Colleagues

Dr. O. Olfert Dr. J. Soroka Dr. C. Xiangsheng Dr. C. Heyinck Dr. R. Andrahenndi B. Galka Murray Braun Ross Weiss Larry Grenkow Jennifer Otani Xiaomeng Peng Andrew Pearce A. Lukash S. and H. Ghani

A lot of summer students.....

