Avoiding Failure with Precision Ag

- What Does it Take?

January 16, 2013

Precision Ag

- Z Varying management within fields
- ž Challenging!
- ž Two issues:

Too much thinking without doing

Too much doing without thinking

Five Steps

Formulate clear goals

Gather information

Make predictions

Implement best option

Monitor progress

Step 1: Formulate Clear Goals

Uniform ® Variable

- Increase net return per acre by at least __\$
- Other goals
 - Synergistic: uniform harvest, land quality, fun
 - Conflicting: time, other opportunities

Step 2: Gather Information

- Why do crop responses to management vary within a field?
- By how much?
- ž Where?

Why do Fertilizer Benefits Vary?

Triticale N Fertilizer Trials

Optimum N Rate for Triticale

Controls of Maximum Benefit

N Strip Trials (Kachanoski, 2008)

N Strip Trials (Kachanoski, 2008)

Field Benefit

(bu/ac)

Durum 19 ± 4

Mustard 17 ± 4

Malt barley 29 ± 8

Wheat

- Saline/knoll 4 ± 3

- Rest of field 17 ± 5

AARD Trials, 2010 and 2011

Greenhouse trial (U of S)

Depression

Knoll

Yield Benefit under Variable Soil Loss (Dormaar et al. 1988)

16-Year Yield Manure Benefit (Larney et al. 2009)

No loss of topsoil

Loss of 6" of topsoil

Step 3: Make Predictions

- What-if scenarios
- ž For example
 - Average manure benefit of 30 bu/ac for 5 years
 - 10 percent of field
 - Manure cost \$60/ac
 - Meet objectives?

Make Predictions

*Based on data from triticale experiments

Step 4: Implement Best Option

- Maximize expected net return
- ž Logistics...

St. Denis, 2004

Range in Optimum Fertilizer Rates at St. Denis, SK

Logistical Optimization

Computer optimization of two blends

$$31 - 13 - 0 - 10$$

$$12 - 5 - 38 - 4$$

Step 5: Monitor Progress

How To Succeed

Al ways Formulate clear goals mul ti pl e Al ways Gather information i ncompl ete Never Make predictions certai n Implement best option Not easy Monitor progress Too

busy

Questions?

Acknowledgement and thanks to:

- ž Ross McKenzie, Doon Pauly and their excellent crew with AARD, Lethbridge
- Z Gary Kachanoski, U of A, now at Memorial University
- ž Edgar Hammermeister and Ken Greer, Western Ag Innovations
- Farmers and agronomists who question and try things out