Alberta-Pacific FMA Area – FMU L1 Mixedwood Management Timber Supply Analysis

Prepared by: Alberta-Pacific Forest Industries Inc. Vanderwell Contractors (1971) Ltd. The Forestry Corp Vanderwell

Alberta-Pacific & Vanderwell Contractors

1. EXECUTIVE SUMMARY

ALBERTA-PACIFIC FOREST INDUSTRIES INC

Alberta-Pacific Forest Industries Inc., (Alberta-Pacific) and Vanderwell Contractors Ltd., have completed the joint development of a sustainable Preferred Forest Management strategy for Forest Management Unit L1. This strategy incorporates mixedwood management, combined mixedwood landbase, a well developed operational harvest sequence and a high degree of operator integration. The proposed Annual Allowable Cut (AAC) for FMU L1 (non-J) and L1J is presented in Table 1.

Table 1. L1 and L1J AAC (m³/yr @ 15/10 utilization) (proposed).

Annual Allowable Cut (m ³ /yr)					
	Coniferous		Deciduous	Total	
J (FMA)	non-J	total			
102,300	7,700	110,000	180,200	290,200	

Considerable effort was expended upon the development of a 15-year operational harvest sequence to tighten the linkages between strategic and operational planning. The operators' have committed to follow the harvest sequence (within $\pm 20\%$) as detailed in Section 6. The proposed Annual Allowable Cut distributions for each operator are presented in Table 2.

Table 2. Proposed L1 and L1J AAC distribution (m³/yr).

_		AAC (m ³ /yr)	
	Coniferous	Deciduous	Total
	Alberta	Pacific Forest Industr	ies
	21,862	178,460	200,322
	Vander	well Contracting Limit	ed
	58,738	0	58,738
		MTU Program	
	29,400	1,740	31,140
Total	110,000	180,200	290,200

*Note: Coniferous stand structure retention is 1% for all dispositions in Table 2

In Table 2, total AAC's have been rounded to the nearest 100; accordingly, the above table illustrates 39 m³ (Conifer) and 67 m³ (Deciduous) less than the FMA area AAC table and the L1 FMU AAC summary tables and graphics, in the TSA documentation. Additionally, the above Table 2 differs from Table 3.16 (Page 171) in the FMP due to rounding in the allocations.

Table of Contents

1.	EX	ECUTIVE SUMMARY	I
2.	IN	FRODUCTION	1
2	2.1.	HISTORICAL ANNUAL ALLOWABLE CUTS	2
2	2.2.	MIXEDWOOD MANAGEMENT	3
2	2.3.	MIXEDWOOD MANAGEMENT IMPLEMENTATION	4
3.	YI	ELD CURVES	5
3	3.1.	Overview	5
3	3.2.	MERCHANTABLE VOLUME PREDICTIONS	5
3	3.3.	MIXEDWOOD MANAGEMENT STRATIFICATION	6
3	3.4.	MIXEDWOOD MANAGEMENT TREATMENTS	8
3	3.5.	AREA-WEIGHTED YIELD CURVES	11
4.	LA	NDBASE	. 12
4	4.1.	Overview	12
4	4.2.	TRADITIONAL NETDOWN LANDBASE	. 12
4	1.3.	MIXEDWOOD MANAGEMENT LANDBASE	. 12
4	1.4.	FINAL WOODSTOCK LANDBASE DESCRIPTION	. 18
4	4.5.	PATCHWORKS LANDBASE	19
4	1.6.	FINAL PATCHWORKS LANDBASE DESCRIPTION	20
4	1.7.	STRATA NOTES	20
4	4.8.	THEMES DESCRIPTION	20
5.	L1	TIMBER SUPPLY ANALYSIS	. 22
5	5.1.	Overview	22
5	5.2.	Modelling Tools	. 23
5	5.3.	Assumptions and Inputs	. 24
5	5.4.	TIMBER SUPPLY RESULTS	29
5	5.5.	TIMBER SUPPLY INSIGHT	36
5	5.6.	FEASIBLE MANAGEMENT ALTERNATIVES	.37
5	5.7.	TIMBER SUPPLY ISSUES SUMMARY	37
6.	PR	EFERRED FOREST MANAGEMENT STRATEGY	40
6	5.1.	Overview	40
6	5.2.	PREFERRED FOREST MANAGEMENT DESCRIPTION	40
6	5.3.	Forest Management Targets	51
6	5.4.	FOREST MANAGEMENT PLAN IMPLEMENTATION	56
7.	AP	PENDIX I: YIELD CURVES	57
8.	AP	PENDIX II: LANDBASE NETDOWN CODE (APRIL 2004)	62
8	3.1.	COMBINE.AML	62
8	3.2.	CREATE_LAND_TEMP.SQL	. 66
8	3.3.	UPDATE_STEMS.SQL	. 67
8	3.4.	UPDATE_THEMES.SQL	68
8	3.5.	UPDATE_AGE_AREA.SQL	71
8	8.6.	CREATE_LAND_FINAL.SQL	72
9.	M	WM ADDENDUM - FMU L11 PREFERRED FOREST MANAGEMENT STRATEGY	.72
10.	A	APPENDIX 3 – L1 TIMBER SUPPLY RUNS	.73

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

Table Listing

TABLE 1. L1 AND L1J AAC (M ³ /yr @ 15/10 UTILIZATION) (PROPOSED)	I
TABLE 2. CURRENT APPROVED L1 AND L1J AAC DISTRIBUTION (M ³ /YR).	I
TABLE 3. HISTORICAL AAC DISTRIBUTION FOR L1 AND L1J (15/10-11 UTILIZATION)	2
TABLE 4. L1 AND L1J EMPIRICAL AAC AND DISTRIBUTION (15/10-11 UTILIZATION).	3
TABLE 5. UTILIZATION STANDARDS FOR MERCHANTABLE VOLUMES.	5
TABLE 6. MERCHANTABLE TREE SPECIES IN TIMBER SUPPLY YIELD CURVES.	6
TABLE 7. MIXEDWOOD MANAGEMENT STRATIFICATION RULES.	7
TABLE 8. EMPIRICAL YIELD CLASS DESCRIPTIONS FOR AREA-WEIGHTED MIXEDWOOD STRATA	8
TABLE 9. TRADITIONAL TIMBER SUPPLY NETDOWN LANDBASE SUMMARY.	17
TABLE 10. MWM OPERABLE WOODSTOCK SPECIES DISTRIBUTION (THEME 2).	19
TABLE 11. MWM OPERABLE WOODSTOCK DENSITY DISTRIBUTION (THEME6).	19
TABLE 12. FINAL PATCHWORKS NET OPERABLE LANDBASE DESCRIPTION.	20
TABLE 13. LIST OF ITEMS ADDED TO THE LANDBASE.	21
TABLE 14. NATURAL STAND BREAKUP AGES.	28
TABLE 15. MINIMUM TREATMENT OPERABILITY AGES (YEARS).	29
TABLE 16. SUMMARY OF WOODSTOCK MODELLING ASSUMPTIONS.	30
TABLE 17. LIST OF WOODSTOCK RUNS.	31
TABLE 18. SUMMARY OF PATCHWORKS PREFERRED FOREST MANAGEMENT MODELLING ASSUMPTIONS.	32
TABLE 19. List of Patchworks runs.	35
TABLE 20. TIMBER SUPPLY ISSUES.	38
TABLE 21. FINAL PATCHWORKS NET OPERABLE LANDBASE DESCRIPTION.	41
TABLE 22. L1 and L1J recommended AAC.	51
TABLE 23. 15-YEAR AVERAGE HARVEST SEQUENCE VOLUME TARGETS (M ³ /YR)	55
TABLE 24. 15-YEAR AVERAGE HARVEST SEQUENCE AREA TARGETS (HA/YR).	56

Figure Listing

Figure 1. Area-weighted mixed wood management standing volume yield curve $(15/10-11)$	
UTILIZATION)	11
FIGURE 2. AML PROCESSING OF THE NETDOWN LANDBASE	13
FIGURE 3. SQL PROCESSING OF LANDBASE	14
FIGURE 4. MANUAL PROCESSING TO CREATE FINAL SHAPEFILE	15
FIGURE 5. PROCESSING TO CREATE WOODSTOCK AREAS FILE AND PATCHWORKS MODEL	16
FIGURE 6. INITIAL TRANSITION MATRIX (DECEMBER 6TH, 2002).	26
FIGURE 7. FINAL TRANSITION MATRIX (MAY 7, 2003)	27
FIGURE 8. PATCHWORKS OPERATIONAL COMPARTMENT BOUNDARIES.	33
FIGURE 9 PREFERRED FOREST MANAGEMENT HARVEST TARGETS (M ³ /YR)	42
FIGURE 10. PREFERRED FOREST MANAGEMENT CONIFEROUS AND DECIDUOUS HARVEST VOLUME (M ³ /	YR).43
FIGURE 11. PREFERRED FOREST MANAGEMENT MANAGED GROWING STOCK TARGETS (M ³ /YR)	43
FIGURE 12. PREFERRED FOREST MANAGEMENT OPERABLE GROWING STOCK (M ³)	44
FIGURE 13. PREFERRED FOREST MANAGEMENT AGE CLASS DISTRIBUTION (HA)	45
FIGURE 14. PREFERRED FOREST MANAGEMENT TARGETS FOR OPERABLE FOREST STRATA LANDBASE A	AREA
(HA/YR)	46
FIGURE 15. PREFERRED FOREST MANAGEMENT OPERABLE FOREST STRATA AREA DISTRIBUTION (HA).	46
FIGURE 16. PREFERRED FOREST MANAGEMENT TARGETS FOR ANNUAL AREA HARVESTED (HA/YR)	47
FIGURE 17. PREFERRED FOREST MANAGEMENT AREA HARVESTED BY STRATA (HA/YR).	47
FIGURE 18. PREFERRED FOREST MANAGEMENT AREA HARVESTED BY TREATMENT (HA/YR)	48
FIGURE 19. PREFERRED FOREST MANAGEMENT SPECIES COMPOSITION DISTRIBUTION (HA).	49
FIGURE 20. PREFERRED FOREST MANAGEMENT COMPARTMENT SEQUENCE	50
FIGURE 21. RECOMMENDED L1 AND L1J AAC ALLOCATION	52
FIGURE 22. PREFERRED FOREST MANAGEMENT SHS MAP	54

Vanderwell

2. INTRODUCTION

ALBERTA-PACIFIC FOREST INDUSTRIES INC

This document describes the development of an implementation plan for a mixedwood management common landbase forest management strategy for Forest Management Unit (FMU) L1. The term L1 is used through out this document and unless specifically noted referrers to both the FMU L1 (non-J) and FMU L1J as described in the main FMP document. This strategy is part of Alberta-Pacific 2004 Forest Management Plan (FMP) submission and must be considered within the FMP framework. A similar strategy was used for FMU L11. The FMU L11 "Preferred Forest Management Strategy" documentation is attached as an addendum to this L1 report. Additionally, landbase determination and Patchworks process flow-sheets were prepared for presentation purposes for the two FMU mixedwood projects. These two flow-sheets are attached to the L1 yield curve appendix and within a CD.

The approach utilized in developing the L1 preferred forest management strategy is unique among the FMUs within Alberta-Pacific's FMP submission. The primary differences are the application of mixedwood forest management silviculture, the use of the Patchworks forest modelling tool, the level of effort undertaken in developing an operational harvest sequence and the level of cooperative planning undertaken between Alberta-Pacific and Vanderwell (the primary quota holder). This approach has produced a higher level of integrated cooperative planning with tighter linkages; strategically–operationally, inter-company and silviculturally– ecologically. This approach and the information generated will provide an adaptive management framework leading to improved understanding of the forest and ultimately better forest management.

The document opens by briefly describing the current and historical strategic forest management situation. The next section summarises the growth and yield information including mixedwood silviculture treatments and their responses. This is followed by a landbase summary which describes the additional steps above and beyond the empirical methodology on an integrated landbase required to implement mixedwood management and operational harvest sequencing. Timber supply assumptions and results leading to the Preferred Forest Management (PFM) strategy follow. The document ends with the rules and targets for implementation and tracking.

2.1. HISTORICAL ANNUAL ALLOWABLE CUTS

Vanderwell

ALBERTA-PACIFIC REST INDUSTRIES INC

The Forest Management Agreement (FMA) between Alberta-Pacific and the Government of Alberta came into effect in 1991. The FMA altered many of the FMU timber areas boundaries and some of the FMU harvesting rights, thus making a clear comparison of Annual Allowable Cuts (AAC) before and after the creation of the Forest Management Agreement problematic. Harvesting rights and allowable cut distribution between operators are dealt with in other sections of the Forest Management Plan submission.

Clarification of the Annual Allowable Cut distribution among timber right holders was required to move from timber harvesting rights based upon divided coniferous and deciduous landbases to a common landbase mixedwood management approach. The historical Annual Allowable Cut distributions at the creation of the FMA are presented in (Table 3).

Company	Timber Rights		EMIL	Notos	
Company	Conifer	Deciduous	FINO	Notes	
MTU	39.20%		L1, L1J	from C and CD stands	
MTU		1.00%	L1J	from all stands	
Vanderwell	60.80%		L1, L1J	from C and CD stands	
Al-Pac	100% incidental		L1J	offer to sawmills	
Al-Pac		99.00%	L1J	from all stands	

Table 3. Historical AAC distribution for L1 and L1J (15/10-11 utilization).

A three-step process was used to determine allowable cut distribution from the mixedwood management strategy.

First, current coniferous and deciduous timber rights under the traditional forest management strategies as listed in Table 3 were applied to areas both within and outside the FMA. This was addressed by bridging the Alberta-Pacific FMA portion ('J') and the area outside the FMA (non-'J') into a single timber supply area. Even flow was required only on the bridged timber supply area. Deciduous (D and DU) stands were not sequenced in the non-'J' landbase.

Secondly, coniferous and deciduous timber rights apply to either the coniferous or deciduous portion of the operable landbase as described in the notes column of Table 3. Mixedwood management requires a combined landbase with no coniferous or deciduous landbase designation.

The third and final issue to address for Annual Allowable Cut Distribution was the additional volume available for the operators that participate in the mixedwood forest management strategy. The additional Allowable Cut due to mixedwood management was determined according to EFM protocols by subtracting the Patchworks baseline run (Table 4) from that derived with mixedwood management.

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

Strata	Total AAC	Company AAC	Allocation	Company
	m3	m3		
	Deciduo	us Volumes		
Deciduous	159,500	157,905 1,595	99% 1%	Alberta-Pacific MTU
Incidental Deciduous (20 yr avg)	14,500	14,355 145	99% 1%	Alberta-Pacific MTU
Total Deciduous	174,000			
	Conifero	us Volumes		
Incidental Conifer (20yr avg)	19,000	19,000	100%	Alberta-Pacific
Primary Conifer	75,000	45,600 29,400	60.8% 39.2%	Vanderwell MTU
Total Conifer	94,000			
Total L1 FMU	268,000			

Table 4. L1 and L1J empirical AAC and distribution (15/10-11 utilization).

Vanderwell

Source: Patchworks Baseline run 70008

ALBERTA-PACIFIC FOREST INDUSTRIES INC

The volumes presented in Table 4 have been reduced for spatial considerations, structural retention and cull. The applied deductions were: spatial considerations were 10% for all strata, structural retention was 5% for deciduous and 1% for coniferous, and cull was 4% for deciduous and 2% coniferous. These are proposed numbers from the Patchworks baseline (run 70008).

2.2. MIXEDWOOD MANAGEMENT

This document sets the strategic direction for the implementation of mixedwood forest management in L1. The mixedwood management philosophy is based upon the concept of working within the natural succession pathways of the boreal forest ecosystem and utilizing these natural processes to achieve a desired future state. Mixedwood management will be implemented at the forest level and the stand level. Forest level implementation balances the stand types harvested and the silviculture treatments to be applied to meet the forest level objectives. Stand level implementation is the on-ground application of mixedwood silviculture techniques throughout a stand's life cycle (initiation, mid rotation and final harvest). Forest level targets dictate the amount and timing of each treatment. The forest level targets were derived during the timber supply exercise to meet forest management goals.

Alberta-1 actife & Vander wen Con

L1 Mixedwood Management Forest Level Objectives are:

Vanderwell

- maintain a balance of main strata types (AW, AWSW, SWAW, SW) through time (maintain 85% of initial distribution);
- maintain or increase the current harvest volumes and balance of species delivered to the mills; and
- maintain landscape patterns.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

2.3. MIXEDWOOD MANAGEMENT IMPLEMENTATION

Alberta-Pacific's mixedwood management program was implemented as a two-phase program. The first phase was divided into two components; the first component involved the development of mixedwood treatment yield response predictions and the second component determined the forest level implications of these mixedwood treatments. The first phase was conducted as a pilot program on FMUs L1 and L4 and was documented in two reports: the yield curves are described in <u>Mixedwood Management Alternatives Pilot Project Yield Curves Round 5</u>, The Forestry <u>Corp., July 27, 2000</u>, and the timber supply analysis in <u>Mixedwood Management Pilot – Timber Supply Analysis for FMU L1 and L4</u>, The Forestry Corp., June 8, 2001. These reports were provided to Alberta Sustainable Resource Development (SRD) for review and comments on the general approach and concept.

The second phase of the mixedwood management program is the implementation phase that applies the principles and lessons from phase 1 into the FMP process and subsequent operating plans for FMU L1. This document describes the FMP portion of the second phase.

The efforts undertaken in the pilot project were not duplicated in this implementation phase. However, the important findings from the pilot project are summarized in the appropriate sections.

3. YIELD CURVES

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

3.1. OVERVIEW

Mixedwood management yield curves for timber supply were prepared to model the volume impact of mixedwood silvicultural treatments. Mixedwood curves were developed using a combination of stand growth models, plot data, empirical evidence, existing yield curves and expert knowledge. The process is explained in detail in <u>Yield Curves for Mixedwood</u> Management, The Forestry Corp., August 12, 2002 (The Forestry Corp 2002).

Mixedwood yield strata were created to meet silviculture and modelling requirements of mixedwood treatments. Empirical plot-based standing timber yield curves were constructed for each stratum following traditional volume-age techniques. These curves were capped at the level of Alberta-Pacific's empirical FMP-wide curves approved for traditional timber supply. A stand growth model, the Mixedwood Growth Model (MGM) was used to develop initial stand conditions that approximated the empirical standing timber yields. Further analysis with MGM was conducted to determine the yield implementations and response of mixedwood silviculture treatments.

The mixedwood yield curves derived from this process were reviewed and compared to the approved FMP empirical standing timber yield curves. Adjustments were made to total volumes to ensure consistency between strata and treatment responses before these curves were used for timber supply. Cull and stand structure reductions were deducted from the yield curves in the analysis.

Mixedwood treatments were developed for only the white spruce and aspen leading strata. Mixedwood regeneration of jack pine (Pj) and black spruce (Sb) strata is more difficult and were considered too costly to attempt real world mixedwood treatments and therefore were modeled as having the clearcutting options.

3.2. MERCHANTABLE VOLUME PREDICTIONS

Merchantable tree volumes were determined using the utilization standards in Table 5 for the merchantable species listed in Table 6. Note that these utilization standards are referred to as 15/10-11 throughout this document.

Species Group	Minimum Top Diameter (cm)	Stump Height (cm)	Minimum Stump Diameter (cm)	Minimum Merchantable Length (m)
Deciduous	10.0	30.0	15.0	3.66
Coniferous	11.0	30.0	15.0	3.66

Table 5. Utilization standards for merchantable volumes.

Yield Curve Species	Merchantable Species Group
Aspen	Deciduous
Balsam poplar	Deciduous
Birch	Deciduous
Balsam fir	Coniferous
Black spruce	Coniferous
Jack pine	Coniferous
Lodgepole pine	Coniferous
White spruce	Coniferous

Table 6. Merchantable tree species in timber supply yield curves.

Vanderwell Contractors (1971) Ltd

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

3.3. MIXEDWOOD MANAGEMENT STRATIFICATION

The mixedwood management strata descriptions used for yield curve development are described in Table 7. Jack pine and black spruce are included to permit the stratification of the entire landbase.

Yield Stratum Name	Inventory Stratum Name	Inventory Stratum Description	Inventory Stratum Overstory Definition
Aw	Aw	Pure deciduous with no coniferous understory	% Aw + Pb + Bw >= 80
AwUN	Aw/Sw	Pure deciduous with coniferous understory, lag in coniferous height	% Aw + Pb + Bw >= 80, Sw and Sb stems in understory < 400 stems/ha
AwUA	Aw/Sw	Pure deciduous with coniferous understory, lag in coniferous height	% Aw + Pb + Bw >= 80, Sw and Sb stems in understory >= 400 and < 600 stems/ha
AwUY	Aw/Sw	Pure deciduous with coniferous understory, lag in coniferous height	% Aw + Pb + Bw >= 80, Sw and Sb stems in understory >= 600 stems/ha
AwSw	AwSw	Deciduous leading mixedwood aspen- white spruce	50 <= % Aw + Pb + Bw < 80, and 20 <= % Pl + Pj + Sw + Sb + Fb + Lt < 50, with Sw or Fb leading coniferous group
SwAw	SwAw	Coniferous leading mixedwood white spruce-aspen	$50 \le \%$ Pl + Pj + Sw + Sb + Fb + Lt ≤ 70 , and $20 \le \%$ Aw + Pb + Bw < 50 , with Sw or Fb leading coniferous group
Sw	Sw	White spruce leading coniferous	% PI + Pj + Sw + Sb + Fb + Lt >= 80, with Sw or Fb leading
Pj Pure	Pj	Pine leading coniferous	% PI + Pj + Sw + Sb + Fb + Lt >= 80, with PI or Pj leading
Di Miy	PjAw	Coniferous leading mixedwood pine- aspen	50 <= % PI + Pj + Sw + Sb + Fb + Lt <= 70, and 20 <= % Aw + Pb + Bw < 50, with PI or Pj leading coniferous group
r j wix	AwPj	Deciduous leading mixedwood aspen-pine	50 <= % Aw + Pb + Bw < 80, and 20 <= % Pl + Pj + Sw + Sb + Fb + Lt < 50, with Pl or Pj leading coniferous group
Sb Good	Sb	Black spruce leading coniferous	% PI + Pj + Sw + Sb + Fb + Lt > 20, with Sb or Lt leading, TPR Good
Sb Fair/Medium	Sb	Black spruce leading coniferous	% PI + Pj + Sw + Sb + Fb + Lt > 20, with Sb or Lt leading, TPR Fair or Medium
None	NonMerch	All stands not fitting into one of the strata above	No definition

Table 7. Mixedwood management stratification rules.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

The stratification developed for the mixedwood pilot project was altered to better align with the empirical timber supply and company operations. One of the biggest changes was changing the definition of the pure Aw strata from >80% deciduous to =>80% deciduous. This had a large impact on the area of pure Aw but did not alter the mixedwood yield curves as they were created with MGM and capped at the levels of the empirical yield curves. For more information refer to Mixedwood Management Yield Curve Comparison, The Forestry Corp., June 9, 2003.

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

Operational considerations, specifically for understory protection and understory avoidance in deciduous stands with an understory required the splitting of some the yield strata so that the timber supply could model operations. The subdivided timber supply strata retained the same volume as the original yield strata.

3.3.1. JACK PINE AND BLACK SPRUCE STRATA

Mixedwood management treatments were not developed for the jack pine and black spruce strata. Instead, the existing Alberta-Pacific Empirical FMP volume predictions were used for those strata. However, the difference in strata definitions between the empirical and mixedwood processes required the construction of area-weighted yield curves for the black spruce and jack pine strata according to the rules in Table 8.

Mixedwood	DFMP Yield Class Descriptions							
Stratum	Yield Class Number	Yield Class Label	Broad Cover Group	Lead Conifer	Crown Closure	TPR		
PJ Mixed	10	PjAw/AwPj	CD/DC	Pj	BCD	FMG		
PJ Pure	19	Pj-O	С	Pj	AB	FMG		
	20	Pj-C-FM	С	Pj	CD	FM		
	21	Pj-C-G	С	Pj	CD	G		
SB Fair/Med	16	Sb-O	С	Sb	AB	FMG		
	17	Sb-C-FM	С	Sb	CD	FM		
SB Good	18	Sb-C-G	С	Sb	CD	G		

Table 8. Empirical yield class descriptions for area-weighted mixedwood strata.

source: 2003 FMP

3.3.2. CULL AND STAND STRUCTURE REDUCTIONS

Cull and structural reductions are applied directly to the yield curves. The amount of reduction was 3% for Coniferous and 9% for Deciduous. This removed the need to reduce the modelling results after each run.

3.4. MIXEDWOOD MANAGEMENT TREATMENTS

Alberta-Pacific and Vanderwell staff developed appropriate mixedwood management treatments for each of the Aw, Aw/Sw, AwSw and SwAw strata. The white spruce strata, while considered part of the mixedwood management strata, was eligible for only clearcutting treatments and thus no mixedwood treatments were developed for Sw. A description of each treatment as modelled in the yield curve building process is presented for each stratum. The values used were designed for average conditions and to facilitate modelling. The specific values and treatment timing described here are average conditions and deviations from these values will be made in field application. These treatments are not designed to constrain field treatment possibilities and should not be used to approve or limit field applications. Overtime, the average result of the field treatments must however, meet the sum of the yield curve volume predictions to support the allowable cut.

3.4.1. STRATUM AW

One alternative mixedwood treatment was developed for the Aw stratum.

UNDERPLANT SW IN AW

White spruce is underplanted in aspen stands greater than 60 years of age. Twenty years later an understory protection harvest would be used to remove the aspen canopy and release understory spruce. The following points describe the changes made to the Aw 'basic' crop plan in order to produce merchantable volumes for this mixedwood management alternative.

3.4.2. STRATUM AW/SW

One mixedwood management treatment applicable at two different ages was initially developed. However, operational input prescribed three different treatments applicable to pure aspen with an identified understory based upon understory density (stems per hectare). These treatments were: understory protection (strata AwUY) for stands with understorys greater than or equal to 600 trees/ha; understory avoidance (AwUA) for stands with understory density of 400 to 600 trees/ha; and clear cutting (AwUN) for stands with an identified understory less than 400 trees/ha.

UNDERSTORY PROTECTION HARVEST OF AW/SW (AWUY)

In this treatment the aspen canopy was removed at either 60 or 80 years of age releasing the white spruce understory in stands with greater than or equal to 600 trees/ha in the understory. The following points describe the changes made to the Aw 'basic' crop plan in order to produce merchantable volumes for this mixedwood management alternative. Crop plans and yield curves were produced for the application of this treatment at two different ages in order to reflect different responses based on stand age.

UNDERSTORY AVOIDANCE HARVEST OF AW/SW (AWUA)

This was a new treatment added in the final round of analysis to better reflect operational reality of understory protection application. Alberta-Pacific completed a coniferous understory density classification based on colour infrared leaf-off photography. Harvesting operations use this density information to initially determine the split between understory protection and understory avoidance. No yield modelling was undertaken for this stratum, but it only applies to understory stands with 400-599 trees/ha of white spruce understory. The initial yield curve retains the same volume as the understory protection curve but the response to treatment is different. Understory avoidance produces deciduous leading mixedwood (curve 2) compared to understory protection, which produces a coniferous stand (curve 4). Refer to the May 7, 2003 transition matrix in Section 5.3 for more information.

3.4.3. STRATUM AWSW

One alternative mixedwood management treatment was developed for the AwSw stratum.

Vanderwell

UNDERPLANT SW IN AWSW

Underplant white spruce in aspen-white spruce stands greater than 60 years of age. After 20 years, an understory protection harvest removes the aspen canopy and releases the understory spruce. The following points describe the changes made to the AwSw 'basic' crop plan in order to produce merchantable volumes for this mixedwood management alternative.

3.4.4. STRATUM SWAW

No mixedwood management treatments were included for the SwAw stratum. Shelterwood and seed tree treatments were considered in the early analysis but removed for the Preferred Forest Management strategy due to the uncertainty of the treatment response at this time, and the small AAC impact. Alberta-Pacific will continue to research these treatments.

3.4.5. STRATUM SW

Mixedwood management treatments were not developed for this stratum. A seed tree treatment was considered but dropped from the Preferred Forest Management Strategy. An enhanced response to white spruce planting and tending was developed in the pilot project to compare forest level mixedwood management to successful pure species plantation management regime, but was not implemented in the operational model.

3.5. AREA-WEIGHTED YIELD CURVES

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

To facilitate historical and future comparisons, area-weighted standing volume yield curves were constructed for the timber supply area. Two curves were constructed, one for all coniferous species combined and one for all deciduous species combined (Figure 1). Refer to Appendix I for the complete set of yield curves used in the TSA.

Figure 1. Area-weighted mixedwood management standing volume yield curve (15/10-11 utilization).

The area-weighted curves were not used in any of the analysis, and are included here strictly for a quick assessment of volumes across the FMU.

4. LANDBASE

4.1. **OVERVIEW**

Alberta-Pacific's FMP netdown landbase was developed by following a consistent process on all management units. The L1 version of this landbase was modified to incorporate mixedwood management strata, operational compartment sequencing and for use in Patchworks. The intent of these changes was to incorporate mixedwood management treatments and greater operational realism in the timber supply, while minimizing landbase netdown changes from the traditional FMP process and to retain as many operability assumptions as possible without comprising mixedwood management or operational realism.

4.2. TRADITIONAL NETDOWN LANDBASE

Vanderwell

The starting point for the L1 mixedwood management implementation was the netdown landbase file developed by Al-Pac following the process used for all the Forest Management Units in the FMA. The process and outcome is documented in <u>Alberta-Pacific Landbase Determination</u> <u>Document Version 2.0</u>, <u>April 2002</u> <u>Timberline Forest Inventory Consultants</u>. This netdown landbase is referred to in this document as the traditional timber supply netdown landbase.

4.3. MIXEDWOOD MANAGEMENT LANDBASE

The implementation of Mixedwood Management required additional information to be added to the traditional timber supply netdown landbase. Most of the additional information required was in the form of attributes. The changes required were:

- assign mixedwood yield strata;
- assign Woodstock themes for timber supply;
- assign compartment boundaries for operational planning; and
- assign planned harvest block boundaries.

The application of two different timber supply tools (Woodstock and Patchworks) necessitated the creation of two different landbase files. To distinguish between the two landbases each one was named after the timber supply tool. The Patchworks landbase file was derived from the Woodstock landbase shapefile. The intent was to permit the different tools to operate, not to change management assumptions and values between landbases.

Figures 2 through 5 outline the processing steps done on the landbase files to prepare for the mixedwood management analysis. The aml and sql code is provided in Appendix II. A comparison of the netdown landbase before and after the overlays is presented in Table 9.

Vanderwell

Alberta-Pacific & Vanderwell Contractors

Figure 2. AML Processing of the Netdown landbase

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Figure 4. Manual processing to create final shapefile

L1 Landbase P377 - Al-Pac and Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

ArcView Processes

Figure 5. Processing to create Woodstock areas file and Patchworks Model

Vanderwell Contractors (1971) Ltd

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

L1 Landbase Model Set-up P377 - AI-Pac and Vanderwell Woodstock Model Files Woodstock file: L11_base.opt Woodstock file: L11_base.rep Woodstock file: sps.out Shapefile: L1_fin.shp Woodstock/Stanley: Woodstock file: L1_base.are area file generator Also Used for Patchworks Woodstock file: L11_base.pri Woodstock file: L11_base.lan Woodstock file: L11_base.act Patchworks: Woodstock to XML converter Woodstock file: L11_base.trn Woodstock file: L1_pilot.yld Woodstock file: L11_base.lif Patchworks XML Code: Manually change: BLOCK to BLOCK_SPS, AREA to N_HA Patchworks XML Code: Patchworks Model Files Patchworks Tracks: blocks.csv Patchworks: Patchworks Tracks: curves.csv Matrix generator Patchworks Tracks: features.csv Z Patchworks Tracks: groups.csv Z Patchworks Tracks: products.csv Patchworks Tracks: track names.csv Ĺ Patchworks Tracks: treatments.csv Shapefile: L1_fin.shp Patchworks Pin file: L1.pin Manually create other files Patchworks Tracks: accounts.csv

	From	Forestry Corp		
	Timberline	Post Process	Difference	
Netdown Category (Timberline)	FMU area 1 (ha)	FMU area 2 (ha)	(ha)	% Total
Prohibits/Precludes Timber Harvesting				
1.a Provincial Park	1,042.78	1,042.78	0.00	0.3%
1.d Protected Notations	66.13	66.13	0.00	0.0%
1.e PSP Buffers	89.61	89.62	-0.01	0.0%
1.h Private Land (non-spatial)	518.40	518.36	0.04	0.2%
Sub-total	1,716.92	1,716.89	0.03	0.5%
Depender Disturbed Areas				
Recently Disturbed Areas	E0 076 74	E0 076 07	0.12	45 00/
2.a File	20,070.74	00,070.07	-0.13	15.3%
2.0 OII and Gas	4,193.10	4,193.13	-0.03	1.3%
Sub-iolai	55,009.84	55,070.00	-0.76	10.3%
Inoperable / Isolated Stands				
3.a Slope	0.57	0.57	0.00	0.0%
3.b Isolated Harvestable stands	210.03	210.03	0.00	0.1%
3.c Non-Forested (CC)	586.15	586.15	0.00	0.2%
3.d Non-Forested Natural Disturbance	5,978.47	5,978.47	0.00	1.8%
3.e Non-Forested Vegetated	10,501.69	10,501.76	-0.07	3.1%
3.f Anthropogenic Vegetated	1,632.88	1,632.88	0.00	0.5%
3.g Anthropogenic Non-Vegetated	1,384.47	1,384.52	-0.05	0.4%
3.h Naturally Non-Vegetated	11.47	11.47	0.00	0.0%
3.i Non-Commercial TPR	14,086.96	14,086.95	0.01	4.2%
3.j Non-Commercial Species	47,848.87	47,848.80	0.07	14.3%
3.k Non-Commercial Stand Density	2,568.69	2,568.72	-0.03	0.8%
3.I Non-Commercial Site Index	32,852.75	32,852.69	0.06	9.8%
3.m Horizontal Stand Adjustment (non-				
spatial)	475.70	475.75	-0.05	0.1%
Sub-total	118,138.70	118,138.76	-0.06	35.4%
Water Course Buffere				
water Course Buffers	0 200 27	0 200 42	0.14	2 00/
4.a Duileis	9,309.27	9,369.13	0.14	2.0%
Sub-iolai	9,309.27	9,309.13	0.14	2.0%
Aquatic Features				
5.a Rivers	320.95	320.94	0.01	0.1%
5.b Lakes	18,419.93	18,419.94	-0.01	5.5%
5.c Flooded Areas	987.76	987.75	0.01	0.3%
Sub-total	19,728.64	19,728.63	0.01	5.9%
Timber Harvesting Landbase				
6 a Harvestable Deciduous	65 507 18	65 597 21	-0.03	19 7%
6 h Harvestable DC	6 046 32	6 046 27	-0.03	1 8%
6 c Harvestable CD	6 178 67	6 178 70	-0.00 -0.03	1.0%
6 d Harvestable Coniferous	44 522 83	<u>44</u> 522 77	-0.03 0.06	13.3%
6 e Harvestable Deciduous with	- - ,022.00	77,022.11	0.00	10.070
Coniferous Understory	7 213 /7	7 213 /8	-0.01	2 20/-
Sub-total	129,558.47	129,558.53	-0.01	38.8%
0	200.004.04	000 004 04	0.40	400.00/
Grand Lotal	333,601.84	333,601.94	-0.10	100.0%

Table 9. Traditional timber supply netdown landbase summary.

Vanderwell Contractors (1971) Ltd.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Source1: October 2002 traditional netdown landbase using net_label and nha

Source2: May 2003 netdown landbase (post overlays) using net_label and n_ha

4.4. FINAL WOODSTOCK LANDBASE DESCRIPTION

The MWM Woodstock net operable species distribution and density distribution are presented in Table 10 and Table 11. Note that the total net operable area remains identical between tables 9, 10, 11, and 12.

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

Theme2 - Species Strata, Timber Harvesting Landbas	e	Area (ha)	% Operable
1 Pure Aspen (AW)		64,193.6	49.5%
2 Deciduous Leading Mixedwood (AWSW)		4,438.3	3.4%
3 Conifer Leading Mixedwood (SWAW)		4,920.3	3.8%
4 Pure White Spruce (SW)		10,632.5	8.2%
5 Aspen with White Spruce Understory (AWUN)		2,924.1	2.3%
5 Aspen with White Spruce Understory (AWUA)		1,278.2	1.0%
5 Aspen with White Spruce Understory (AWUY)		2,652.7	2.0%
6 A density Aspen (AW-A)		1,721.4	1.3%
7 Pure Jack Pine (PJP)		26,314.0	20.3%
8 Jack Pine Mixedwood (PJMX)		1,974.3	1.5%
9 Good site Black Spruce (SBG)		3,759.0	2.9%
10 Medium-Fair site Black Spruce (SBMF)		4,750.2	3.7%
	Total	129,558.5	100.0%

 Table 10.
 MWM Operable Woodstock species distribution (Theme 2).

Vanderwell

Source: Woodstock netdown landbase

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Theme6 - Stand Density, Timber Harvesting Landbase	Area (ha)	% Operable
A	5,983.1	4.6%
В	17,869.2	13.8%
С	83,326.2	64.3%
D	22,380.0	17.3%
Total	129,558.5	100.0%

 Table 11. MWM Operable Woodstock density distribution (Theme6).

Source: Woodstock netdown landbase

4.5. PATCHWORKS LANDBASE

Patchworks models required a Patchworks formatted landbase. Initially, creation of a Patchworks landbase was more complex than simply formatting the Woodstock landbase. The process involved the aggregation and division (in the case of larger polygons) of harvestable polygons into "blocks" that were similar enough in age and treatment eligibility to be harvested (treated) as a single unit. Note that these "blocks" are not what is typically called a harvest block but are aggregated together within Patchworks to form harvested "patches". The Stanley model uses a similar process that aggregates smaller polygons into "potential blocks" that are later combined into harvest "blocks". The intent of the Patchworks preblocking process was to provide the Patchworks model with operationally realistic blocking options for harvest and to reduce the number of small polygons in the dataset, not to alter the landbase description. This preblocking step was not necessary for the final Round, as increasing computer speed and simpler transitions allowed more polygons to exist in the model. One benefit of this was greater similarity between the Patchworks and Woodstock landbase.

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

4.6. FINAL PATCHWORKS LANDBASE DESCRIPTION

Vanderwell

The final Patchworks net operable landbase summary is identical to the Woodstock breakdown by area (Table 12).

Table 12. Final Patchworks net operable landbase description.	
---	--

Feature.Area.Managed.* - Timber Harvesting Landbase	e	Area (ha)	% Operable
1 Pure Aspen (AW)		64,193.6	49.5%
2 Deciduous Leading Mixedwood (AWSW)		4,438.3	3.4%
3 Conifer Leading Mixedwood (SWAW)		4,920.3	3.8%
4 Pure White Spruce (SW)		10,632.5	8.2%
5 Aspen with White Spruce Understory (AWUN)		2,924.1	2.3%
5 Aspen with White Spruce Understory (AWUA)		1,278.2	1.0%
5 Aspen with White Spruce Understory (AWUY)		2,652.7	2.0%
6 A density Aspen (AW-A)		1,721.4	1.3%
7 Pure Jack Pine (PJP)		26,314.0	20.3%
8 Jack Pine Mixedwood (PJMX)		1,974.3	1.5%
9 Good site Black Spruce (SBG)		3,759.0	2.9%
10 Medium-Fair site Black Spruce (SBMF)		4,750.2	3.7%
	Total	129,558.5	100.0%

Source: Patchworks netdown landbase

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

The information in Table 12 was derived from summing up the Feature. Area. Managed. * for each strata, where * = Aw, AwSw, etc from the patchworks model at time zero. This time zero file was exported from the Patchworks block table utility.

4.7. STRATA NOTES

The AWA strata is defined as the A-density aspen. This strata is not merchantable, but when it dies at age 155 it is regenerated to a B-density aspen stand age age 0. 60 years after that, it becomes eligible for harvest.

The SBMF strata is defined as medium or fair site black spruce. The final set of runs did not use stands in this strata except where included in existing harvest plans.

4.8. THEMES DESCRIPTION

Several items were added to the landbase to enable patchworks modeling. The items added and their descriptions are in Table 13.

Table 13.	List	of items	added	to the	Landbase.
-----------	------	----------	-------	--------	-----------

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Code	Item Name	Туре	Description	Source Fields	Selection Fields	Values
Combin	a aml					
Combi	New_link	Integer	Unique key for combined landbase files from Al-Pac	link_key		1,000,000 - 6,000,000
	Block_sps	Integer	Unique key for final coverage/shapefile	L1_fin#		1 - End of file
update	_stems.sql					
	tsa_sph	Integer	Total understory stems/ha	usp*_per, ustems_ha	usp*	0+
update	_themes.sql					
	thm1	String	Compartment	comp_label	theme1	С*
	Theme1	String	FMA		net_label	L1J, L1, OUTFMA
	Theme2	String	Species Strata		leadcon, con, dec, uleadcon, ucon, udec, st used net state	AW, AWA, AWU, AWSW, SWAW, SW, P.IP. P.IMX, SB
	Theme3	String	Site quality	tor	tor	1 2 3 U X
	Theme4	String	Stand origin type	T	cc_yr, g_cc_yr, q_cc_yr, year_cut, mtu_year, year class	FIRE, REGEN
	Theme5	String	Treatment types		net_label, fire_year, fire2002	NONE, OIL, BURNT
	Theme6	String	Operability and Stand density	net_den	ex1, ex2, ex3, theme3, theme1	NONOP, A, B, C, D
	Theme7	String	Understory category		theme2. tsa sph	N. A. Y. X
	core_strat	String	Strata used for base core analysis		Theme2	Mesic, PJ, SB
	core_mesic	String	Strata used for detailed core analysis		Theme2	AW, MX, SW, PJ, SB
	pre_seis	String	core_strat before deletion of seismic	core_strat		Mesic, PJ, SB
update	age area.sgl					
	pre_blk	Integer	potential year of harvest for pre- blocks		various preblock fields	2002 - 2006
	tsa_age	Integer	age in years based on 2001 starting point		cuur_age, ucurr_age, various cut age fields and fire age fields	1 - 400
	nha_per	Double	percent of net land area	nha, priha, horzha		0-1
	priha_per	Double	percent of non-spatial private land area	nha, priha, horzha		0-1
	horzha_per	Double	percent of horizontal stand area	nha, priha, horzha		0-1
	n_ha	Double	Area field used in analysis	area, nha_per		0+
	pri_ha	Double	non-spatial private land	area, priha_per		0+
	horz_ha	Double	horizontal stand area	area, horzha_per		0+
	thm1a	String	Compartment, with preblock and non-J designations also	thm1	theme1	c*, preblk, nonJin, nonJout

5. L1 TIMBER SUPPLY ANALYSIS

5.1. **OVERVIEW**

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

The timber supply analysis for this mixedwood management implementation was built upon the findings from the earlier L1 mixedwood management pilot project. Critical factors supporting harvest levels, trade-offs, treatments effects and implications of mixedwood management strategies were investigated through Woodstock-based analysis.

The objectives of the pilot project and the primary findings were:

Vanderwell

- 1. Determine the sustainability and AAC impact of the mixedwood management concept Mixedwood management achieved 200-year sustainable harvest levels that were equal or greater than traditional forest management strategies;
- 2. Reduce the reliance upon traditional stand replacement silviculture while retaining existing coniferous harvest levels Coniferous harvest levels were maintained while the amount of traditional silviculture was reduced;
- 3. **Maintain a proportion of mixedwood stand types through time** Mixedwood management increased or maintained the proportion of mixedwood stands types through time; and
- 4. **Quantify the impact of mixedwood treatments** 10% to 30% total harvest volume increases over the baseline scenarios were achieved. Combined species harvest levels were predicted to increase up to 20% for L1 over existing harvest levels.

This implementation phase did not reconstruct the pilot project analysis. Although new data sets (landbase and yield curves) were constructed, the differences from the data sets employed in the pilot project were small and were assumed to not alter any of the primary findings. The approach taken to determine a recommended harvest level and associated harvest sequence was to update the datasets, retain similar management assumptions and yield responses and use a spatial modelling tool to determine the harvest level while developing a feasible harvest sequence.

A number of timber supply tools were used to determine the recommended Annual Allowable Cut (AAC) levels. Woodstock was used to guide strategic direction and refine the mixedwood management model. Patchworks was used to develop the spatially explicit harvest sequence and the associated recommended AAC.

Where possible, common data sets were used between the tools. After the Woodstock models were developed, the Woodstock model and data files were used in the construction of Patchworks data files and models. The Patchworks model was used to develop the Preferred Forest Management strategy, which included a 15-year operational harvest sequence and an associated recommended Annual Allowable Cut.

5.2. MODELLING TOOLS

ALBERTA-PACIFIC FOREST INDUSTRIES INC

5.2.1. WOODSTOCK

Woodstock is a strategic forest estate-modelling tool developed and serviced by Remsoft¹¹. It was used for strategic analysis of timber supply and comparisons of alternative mixedwood management strategies. This strategic analysis provided insight into the selection of specific silviculture treatments, their levels and timing. This information was used to determine the combination of silvicultural treatments that best achieved forest management objectives.

A structured progressive approach was used in the development and analysis of Woodstock models. Increasing levels of constraints were applied in successive runs to meet forest management objectives and to answer specific management questions and issues. The end result of the Woodstock stage were a number of forest management scenarios that met non-spatial objectives.

5.2.2. PATCHWORKS

Patchworks is new to forest management planning in Alberta. It is a spatially explicit wood supply modelling tool developed and serviced by Spatial Planning Systems¹². Patchworks was designed to provide the user with operational-scale decision-making capacity within a strategic analytical environment. Trade-off analysis of alternative operational decisions are quickly determined and visually displayed.

The tool is fully spatial through both time and space. Patchworks decision space can be thought of as a matrix consisting of each polygon and each potential outcome for every time slice in the planning horizon. Since it is fully spatial, the impact on an adjacent polygon 165 years into the future is considered in the first year of the simulation.

Patchworks is a simulation model that attempts to achieve close to an optimal solution for the objectives and constraints defined. In this case, a variety of constraints and objectives were defined in the data sets and through the user interface. The model solver seeks a solution that maximizes the value of the objective function while not violating the constraints. The terms of the objective function were represented by different features (*i.e.* cubic meters of growing stock, hectares present in each strata) and measured in different units. The terms were combined using weighting factors, which rank the importance and contribution of each factor towards the objective. This formulation allows planners to explore the interactions between attributes such as physical wood supply, harvesting economics and other values.

¹¹ Remsoft Inc. New Brunswick

¹² Spatial Planning Systems. Ontario

As previously stated, Patchworks operates at the polygon level. In Patchworks terminology, polygons are the smallest element, which in this case were subdivided AVI stands. In the early Rounds of analysis, these polygons were combined together to form operable Patchworks "blocks" (which are the smallest spatial element in the model). Patchworks applies treatments to polygons within an entire block. The outcome for each polygon can be different, but the timing of the treatment is the same for the entire block. For this reason blocks were small and generally constructed of similar yield strata and close to the same age. When Patchworks operates, one or more blocks adjacent to each other can be combined to form "patches". It is these "patches" that are comparable to the traditional harvest block. Opening constraints and objectives are applied at the patch level as the model runs. In the initial Patchworks dataset building process, larger polygons were subdivided to allow for more options in creating harvest blocks and patches.

The final Round of analysis did not aggregate polygons into blocks and as such polygons equaled a Patchworks "block". The rest of the process remained the same.

Patchworks models were constructed from Woodstock models. These ensured tight linkages between models in that the assumptions were similar and provided a check on the operation of both models. The differences between the tools can be summarized as:

- Woodstock is completely non-spatial, every unique type is rolled up into forest classes (strata X age class). The model can then apply actions to all or a portion of that unique forest class. Post-action transitions can be one to many relationships defined as percentages. The optimizer selects the optimal combination of treatments throughout the entire planning horizon to solve the objective function. The forest class temporal solution space is similar to Patchworks except Woodstock operates at the forest class level instead of the polygon level.
- Patchworks tracks all original polygon information within each block. Treatments are applied to an entire block. The solver attempts to solve the optimal solution for the objective function over the entire planning horizon. However, unlike Woodstock, spatial relationships (i.e. patch size distribution) can be applied in the objective function.

5.3. ASSUMPTIONS AND INPUTS

ALBERTA-PACIFIC FOREST INDUSTRIES INC

The silvicultural treatment and response assumptions (transition matrix) developed in the pilot project were modified to be used in this analysis. The Pilot project treatment matrix (Figure 6) was developed to facilitate investigations of mixedwood management treatment impacts using Woodstock. The application of the transitions matrix with its one-to-many post-treatment responses presented difficulties and greatly increased the Patchworks model size. The Forest Companies decided to develop a simpler transition matrix that would be easier to apply to different management units and greater areas at once. The result was the May 7, 2003 transition matrix (Figure 7).

Vanderwell Contractors (1971) Ltd

Alberta-Pacific & Vanderwell Contractors

Across the top of the transition matrix in both versions are the strata grouping by similar transition outcome (e.g. only one of the two Sb strata is shown but the transition outcome is the same). The left hand column lists the treatments by management intensity. The treatments in the pilot project are additive in that the "mixedwood" treatment set are added to the "herbicide" and "status quo" treatment sets when a mixedwood management strategy is permitted.

Vanderwell Contractors (1971) Ltd.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

	Silvicultural Treatment			Initial	Strata			
		AW	AW/SW	AWSW	SWAW	SW	PJ	SB
	CC and LFN							
atus Quo	CC and Plant							
Sta	CC, Site Prep and Plant							
de	CC, Site prep, Plant and Herb.							
Herbici	CC, Site prep, Plant and double Herb.							
	CC and leave Seedtree							
p	CC, understory protection							
lixedwoo	Underplant and CC							
2	Underplant							
	Shelterwood							

Figure 6. Initial Transition Matrix (December 6th, 2002).

Legend:

Colours represent proportion of area transitioning to each strata

Figure 7. Final transition matrix (May 7, 2003).

Treatments are possible where the cells are coloured at a row and column intersection. The post treatment strata distribution is presented in 10% increments represented by the amount of each colour. For example, under the Aw strata for clearcut, site preparation and plant treatment (CC, Site Prep and Plant) the post treatment transition is 20% Aw, 60% Aw/Sw and 20% AwSw.

2004 Timber Supply Analysis - FMU L1 Timber Supply Alberta-Pacific & Vanderwell Contractors

The primary difference between the December 6th and May 7th transition matrices was the simplification of post-treatment responses from one-to-many to a one-to-one relationship. Conversion options were included to permit polygons to shift either 1 or 2 strata towards coniferous or deciduous. This change in approach is acceptable because of the overlying forest level constraint that retains 85% of the initial strata distribution throughout the planning horizon. Under either transition matrix, conversions were made up to the 85% limit for a specific stratum.

Part of the transition simplification process was to remove unused mixedwood treatments and include the understory avoidance treatments. This required the subdivision of the old Aw/Sw strata into no understory treatment (AwUN), understory avoidance (AwUA) and understory protection (AwUY). AwUA and AwUY are eligible for understory avoidance or protection between the ages of 60 and 115. They are eligible for the rest of the treatments only after they are 120 years or older. Finally, for the clearcut and regeneration treatments, treatment descriptions summaries are not present, only the required outcome. The actual regeneration method employed remains the silviculturalist's option, only the average outcome is modelled.

The differences between the treatment matrixes can be thought of as the difference between strata level and polygon level approaches. The outcomes in Figure 6 indicate how each strata responds to a specific treatment. The outcomes in Figure 7 describe what each stand can become regardless of treatment. This means that the sum of the stand distribution into the post-treatment strata is driven by the forest land objective. Additionally, Figure 7 describes potential outcomes and does not instruct the silviculturalist on how to generate the desired outcome, only shows the desired outcome.

The transition matrix describes the outcome from silviculture treatments. Natural stand breakup transitions were also included. All stands broke up at specific ages and returned to the same strata at 0 years of age. This rule was selected to mimic the long term impact of fire, not to represent the actual dynamics of each stand type. Breakup ages for each strata were determined according to stand structure and are presented in Table 14.

Theme2. Species Strata, Timber Harvesting Landbase	Breakup Age
1 Pure Aspen (Aw)	160
2 Deciduous Leading Mixedwood (AwSw)	200
3 Conifer Leading Mixedwood (SwAw)	200
4 Pure White Spruce (Sw)	200
5 Aspen with White Spruce Understory (Aw/Sw)	200
6 A density Aspen (Aw-A)	160
7 Pure Jack Pine (PjP)	160
8 Jack Pine Mixedwood (PjMX)	160
9 Black Spruce (Sb)	200

Table 14. Natural stand breakup ages.

The eligibility of a stand for a treatment is based on two factors. One is that the stand be operable according to productivity-based rules in the landbase. This is outlined in the transition matrix in Figure 7. Final transition matrix (May 7, 2003). The second is that the current stand condition pass minimum treatment operability conditions based upon projected stand development patterns. This is represented as stand minimum operability age (Table 15).

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

Strata	Treatment	Minimum Harvest Age (yrs)
Δ	Underplant, wait 20 years then Understory Protection	80
Aw	All Others	60
 ^	Underplant, wait 20 years then Understory Protection	80
AwSw	All Others	60
SwAw	All harvesting	80
Sw	All harvesting	80
Awd 10	Understory Avoidance Harvest	60
AWUA	All Others	120
AwLIV	Understory Protection Harvest	60
Awur	All Others	120
Pj	All harvesting	80
Sb Good	All harvesting	120
Sb Medium/Fair	All harvesting	120

Table 15. Minimum treatment operability ages (years).

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Stands must meet the minimum operability ages to be harvested. For the underplant treatments, the treatment was applied 20 years before harvesting. Understory protection moved the stand to a new condition, which was eligible for clearcut at 80 years for the Sw strata.

5.4. TIMBER SUPPLY RESULTS

The results of all documented runs are presented here in a standard format for each model type. Details for specific runs can be found in Appendix III.

5.4.1. WOODSTOCK

Woodstock modelling was used to investigate strategic non-spatial issues. 24 Woodstock runs were conducted. A summary of the general Woodstock parameters is presented in Table 16. Not all parameters were used in every run. A summary of the Woodstock runs is presented in Table 17.

Table 16. Summary of Woodstock modelling assumptions.

Vanderwell Contractors (1971) Ltd

Woodstock Modeling Inputs and Constraints

• Maximize Total Harvest Volume

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

- Even Flow Coniferous and Deciduous Volume
- Prevent Growing Stock decline in last 100 years
- Smooth out Species Flows (Aw, AwSw, SwAw, Sw only)
- Force Sb and Pj harvest to be +/- 10% of period 1 harvest
- Strata area restrictions -> each strata 85% of original area
 - (Aw, AwSw, SwAw, Sw only)
- No Green-up delay

Vanderwell Contractors (1971) Ltd.

Alberta-Pacific & Vanderwell Contractors

Table 17. List of Woodstock runs.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Transition set Nam	e Objective
December 6th Transitie	ons
Run10	00 No Harvest
Run10)1 Bare bones model
Run10	02 Smooth Species Volumes
Run10	03 Smooth Treatment areas
Run10)4 Retain Strata Areas
Run10	05 Smooth Treatment areas and Retain Strata Area
Run10	6 Smooth Treatment areas and Smooth Species volumes
Run10	7 Retain Strata areas and Smooth Species volumes
Run10)8 Smooth Treatment areas, Retain Strata areas and Smooth Species volumes
Run20)1 Base Run
Run20	2 Conventional treatments only
Run20	03 Add in Old Growth Constraints
Run20)4 Constrain Species Composition Categories
Run30	1 Pre-fire Landbase
Run30	2 60% burnt area regenerated
Run30	3 Pj and Sw GT 18 height regenerated
Run30	A Pj and Sw GT 15 height regenerated
Run30	15 Force 33% coniter and 67% deciduous narvest split
Run30	J6 Maximize Deciduous volume
Runa Duna	7 Maximize Connerous volume
Rull40	10 base to compare with 402 and 405
Rull40 Pup4(ncrease Pi operability age
Rull40 Pup/I	12 Increase Pi and Sh operability age
Run40	M Increase Sh operability age
Run4(5 D(C) changed from mixedwood to pure Aw
Final Set (May 2003)	
Run6	1 New transitions and old landbase, but with underplant on
Run6	0
	Test new yields and landbase, pilot project yields and landbase used
Run6 ⁴	1 Test new yields and landbase, pilot project yields but new landbase
	used.
Run6 ²	2 Test new yields and landbase, new yields and pilot project landbase used.
Run6	3 Test new vields and landbase, new vields and landbase used.
Run6 [,]	4 Test new vields and landbase, pilot project vields but new landbase
. conto	used.
L1_ba	se Model to create Patchworks model

5.4.2. **PATCHWORKS**

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Patchworks runs were conducted to arrive at a spatial operationally feasible Preferred Forest Management (PFM) scenario. Changes in landbases, yield curves and model debugging consumed a large portion of the undocumented runs. However, over 30 runs were dedicated towards the primary purpose of developing an operational harvest sequence. Patchworks modelling assumptions from the Preferred Forest Management strategy are summarized in Table 18 and in detail in Appendix III. Note that the major difference from Woodstock to Patchworks is the addition of spatial constraints such as compartments and pre-blocks.

Table 18. Summary of Patchworks Preferred Forest Management modelling assumptions.

Patchworks Modeling Inputs and Constraints

- Control flow of volume with compartments
- Include pre-blocks in harvest sequence
- Maximize Coniferous and Deciduous Harvest Volumes separately

Vanderwell

- Even Flow Coniferous and Deciduous Volume
- Prevent Growing Stock decline in last 100 years
- Smooth out Species Flows
 - (Aw, AwSw, SwAw, Sw only)
- Smooth Sb and Pj harvest to be nearly even flow
- Strata area restrictions -> each strata 85% of original area
- (Aw, AwSw, SwAw, Sw only)
- Minimize Med-Fair Sb harvest
- Underplant in young aspen stands treatment is not used
- No Green-up delay

In Woodstock modelling, objectives or constraints are rigid and literal. In Patchworks most objectives are targets and a weighting factor determines the impact of deviation from the objective. Even when a high weighting is applied, some deviation from an objective may be noted.

Spatial control over the operable harvest sequence was exercised through the development of operational Patchworks compartments (Figure 8) and the application of treatment availability windows for each compartment.

Compartment control over treatments is very effective in the Patchworks environment. Compartments can be completely turned on or off, or can have block schedules enforced within them. Currently, all actions (including underplanting without immediate harvest) are affected by compartment control. Underplanting and release treatment required a modification as the underplanting action must occur 20 years before the harvest action. This would not be possible with the compartment closed for actions. The underplanting action was manually applied to stands 20 years before the compartment was open based up to the limits determined by runs without compartment controls.

Vanderwell Contractors (1971) Ltd.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Compartment Boundaries for L1

Developing operationally realistic compartment boundaries and a workable harvest sequence was a large undertaking. Operational and strategic planners from both Vanderwell and Alberta-Pacific designed and modified the compartment boundaries and operational sequence to meet their corporate harvesting objectives while maintaining the harvest level and an appropriate flow of the species harvested.

Operational harvesting objectives applied during compartment sequencing were:

• maintain consistent species flows to all mills;

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

- minimize impact of compartment sequence upon harvest levels;
- harvest compartments that are decaying faster ahead of more stable compartments. The rate of deciduous volume decay is not the same over the management unit. Stand decay was based upon observation as AVI attributes do not provide this information. Stand age alone does not provide this information. Much of this information was derived from field checking initial harvest sequences and is not reflected in the yield curves at the compartment level;
- group harvesting activities to reduce transport costs;
- balance the amount of merchantable volume extracted with the opportunity cost of delaying harvest in other compartments with significant volume decay; and
- combine coniferous and deciduous harvest operations in the same compartments.

The Patchworks runs undertaken are summarized in Table 19 and presented in greater detail in Appendix III.

Alberta-Pacific & Vanderwell Contractors

Table 19. List of Patchworks runs.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Transition set Name	Objective					
December 6th Transition	IS					
Run100	00 No Harvest					
Run100	1 To establish harvest levels with minimum number of targets					
Run100	02 To retain 85% of initial strata					
Run200	01 Base Patchworks run					
Run200	02 To mimic current operating conditions					
Run200	03 Introduce Overmature constraint					
Run200	04 Constrain Species Composition Categories					
Run200	05 First attempt at Compartments					
Run200	06 Second attempt at Compartments					
Run200	7 Third attempt at Compartments. Introduce later compartment					
	constraints					
Run200	08 Attempt at two pass harvest.					
Run300	00 Redo run 20001 with revised model					
Run300	1 Use Al-Pac plan to sequence first 15 years					
Run300	2 Use Al-Pac plan to sequence first 15 years					
Run300	3 Use Al-Pac plan to sequence first 15 years, then force other					
5	compartments					
Run300	Allow block movement within periods					
Run300	35 Allow block movement within and between periods					
Run300	06 Allow block +/- 2 years					
Run300	7 Remove blocks and force compartments (#5 is opened)					
Run300	Blocks within 5 years and compartments including #5					
Run300	J9 Allow block +/- 2 years and compartments including #5					
Run300	IV New compartments, no planned blocks					
Run300 Run200	Faster cycling through some compartments, others postponed.					
Run300	Iz Force one 5 year entry per compartment in first 20 years					
Run300	In Intermediate compartment sequence in meeting					
Run300	15 Last compartment sequence in meeting					
Run300	6 Add small block constraint					
Run400	0 No compartments block ages are fixed (round 5)					
Run400	1 Similar to run 30015, new model (round 5)					
Run400	02 Split compt 13 into north and south zones					
Run400	03 Oct 22 meeting results					
Run400	04 Sb removed from harvest					
Run400	05 Test new compartments and sequence from AI-Pac					
Run400	06 Slight revision to sequence from Al-Pac					
Run400	07 Compartment 10 is split					
Run400	08 Result of Dec 3, 2002 meeting					
Run400	9 Further compartment changes from Dec 3, 2002 meeting					
Run500	00 First run with new landbase and curves					
Run500	02 First run with SB as its own compartment					
Run500	3 To determine harvest level without compartment control					
Run500	04 Manually allow young Pj stands to be harvested in Compartment 8					
_						
Run500	05 Reduce Pj curves by 10%					
Run500	06 60 year compartment sequence					

Transition set	Name	Objective					
May, 2003							
	Run60004 Run60007	Model with 60 year compartment sequence, New transitions, etc. Model with 60 year compartment sequence, Planned blocks are separate compartment.					
	Run60008	Planned blocks are separate compartment.					
	Run60009 Run60010	Close to final run to be included in final report Underplant removed from treatment options. Planned blocks are separate compartment.					
	Run60012	Non-J properly split (MTU vs Al-Pac) and smooth decline of Aw and Sw strata.					
	Run60013	Only use BTI and SHIFT treatments					
	Run60014	Only use BTI treatments					
	Run70001	Add in pre-blocks for 2004					
	Run70002	Includes 89,263m3 of carryover volume in first five years. Preferred Forest Management scenario					
	Run90001	New PEM run					
	Run90002 Run90003	C-shift2 and D-shift2 removed C-shift2 and D-shift2 removed. Extended time allowed to remove 15% of AW strata to 40 years.					
	Run91001	C-shift2 and D-shift2 removed. Extended time allowed to remove 15% of AW strata to 40 years. Fix problem with minimum ages.					
	Run91004	C-shift2 and D-shift2 removed. Extended time allowed to remove 15% of AW strata to 40 years. Fix problem with minimum ages and underplanting volumes					
	Run92001	Model with scheduling changes prescribed by Operations staff. Some other small changes also. September 13, 2004.					

5.5. TIMBER SUPPLY INSIGHT

The timber supply insight sections summarises the timber supply issues and discusses their implications for forest management. This insight was derived from both the earlier pilot project and the implementation phase.

The impact of the May 7th transition was an increase of 2.5% total harvest volume (compare Run50006 to Run60009). The difference is likely due to the changes in rates at which conversion can happen but constraints upon the conversion rates and silviculture reduced this impact.

The cooperative harvest sequence development was a first for Vanderwell and Alberta-Pacific's operational planners. This process produced better integration of the two companies' operations and strategic planning and will ease GDP and AOP development and approval.

Mixedwood management scenarios increased the amount of mixedwood stands over time at the expense of pure stand types. This is the opposite trend noted in traditional forest management.

Similar mixedwood treatment options were selected between the Rounds and timber supply runs. The treatment options selection is therefore relatively robust.

There is no short-term (for the next 60 years) operational (spatial) impact on timber supply. Numerous compartment sequencing options were investigated without altering harvest levels. The older forest stands will lose volume faster than they can be cut under an even flow timber-harvesting objective.

It is currently uneconomic to harvest entire compartments in a single entry given the range of age and diameter class distributions present in each compartment and scattered through the management unit. A complete aggregated approach would force harvesting of very young stands while overmature stands decay.

5.6. FEASIBLE MANAGEMENT ALTERNATIVES

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC

A number of economically feasible forest management scenarios were developed incorporating mixedwood management strategies. Alterations in the timing of the operational harvest sequence differentiated these scenarios both spatially and at the rate at which silviculture treatments were applied. A formal list of alternatives from which the preferred would be selected was not formally developed, as the aim was to develop a sequence that meets the management objectives. Therefore a joint Alberta-Pacific and Vanderwell Preferred Forest Management Strategy is presented in section 6.

5.7. TIMBER SUPPLY ISSUES SUMMARY

There were a number of timber supply issues that were addressed in developing the Preferred Forest Management Strategy. Issues and their resolution are summarized in Table 20.

Issue	Solution
Pine strata operability	Concerns were raised over the inventory accuracy of the pine strata and the minimum
i ne suuu operaonity	operability conditions. Field investigations demonstrated a large variability between the
	inventory and field observed heights. This issue was addressed through increased field
	verification of stand condition and compartment sequence and the coniferous component
	of the pine curves was reduced by 10%.
Black spruce strata	Similar concerns were raised about the black spruce strata. Investigating height age
operability	relationships and increasing the minimum operability age from 100 to 120 years
	addressed this issue.
Black spruce	Fair/Medium sites are not harvested.
merchantability	
Black spruce harvest	Harvesting and regeneration of black spruce strata is a management concern due to
volume	smaller piece size, low volumes and high regeneration costs. The impact of excluding all
	or parts of the black spruce strata was investigated with a sensitivity analysis.
Harvest profile control	To control the harvest profile variations, the fluctuation in the annual harvested area of
	SB, and PJ was limited to +/- 10%.
Compartment Sequencing	Operational harvest control was largely driven by the application of compartment
	sequencing. Harvesting was constrained to available compartments. The timing of
	compartment entry was developed to meet volume flow requirements and concentration
	of harvesting activities.
Compartment design	Compartments were designed in an adaptive process by Alberta-Pacific and Vanderwell
	operational staff to meet harvesting objectives while minimizing the impact on AAC.
011.	
Older forest targets	Old Forest objectives were defined, tracked and monitored at the FMA level, not the
Species conversions	FMU level.
species conversions	Droad Cover Group (BCG) control based upon initial classification of traditional D, DC,
	CD and C was achieved in the modeling unough a requirement to maintain throughout the
Species Composition	_planning nonzon 85% of the initial strata distribution.
Classes (SCC)	its life cycle. This is especially true in mixed wood types. An attempt was made to better
Classes (SCC)	reflect the temporal species composition of each strata using Species Composition Classes
	(SCC) The 4 broad categories used in BCG were calculated for each strate at each 5-
	vear ageclass using volume instead of AVI species composition. The impact of this
	method was minor and did not fit well with Alberta-Pacific's FMA-wide BCG objectives
	so this approach was deferred for further study
Stand headrun	
Stand breakup	of the same type reflecting the impact of fire. Stand breakup ages were strate specific
	of the same type reflecting the impact of the. Stand breakup ages were strata specific.
Wildlife zones	Wildlife zones for both caribou and moose are present in L1. These zones did not affect
Whatte Zones	scheduling and were not removed from the analysis
Patchworks transitions	In the Woodstock models one-to-many relationships following treatments were utilized to
following treatment	account for uncertainty. In spatial optimization models such as Patchworks this is not
8	possible at the sequencing level. To utilize the Woodstock transition process in
	Patchworks, one-to-many relationships were applied non-spatially within each polygon.
Cutblock size control	Patchworks permits the setting of objectives for opening sizes. This requires the
parameters	definition of an "opening". The time span between the harvesting event in adjacent
-	blocks will impact the "opening". The initial Patchworks opening was set to greenup
	delay times for each strata.
MTU allocation	Blocks are scheduled in with the rest of the harvest sequence. Allocation of blocks by
	company will be undertaken at the AOP level.
L1 and L1J harvest	L1 and L1J were not fully bridged for timber supply. The Clyde Lake area which
integration	represent the majority of the non-J area was in the operational landbase and treated as two
	operational compartments, one being the operational strata for coniferous operations and
	the other the non-operable deciduous strata.

Table 20. Timber supply issues.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Issue	Solution
Grazing leases	Treated as part of the operational landbase (1,388 ha) - therefore fully bridged - available
C C	for all treatments. Assigned as part of the "non-J" landbase.
Cut block opening size	No cut block shape specific parameters were addressed. A number of different cut block
and shape	size opening limitations were investigated. Maximum cut block size limitations were not
und shupe	annlied in the PEM strategy 59 meters were used as the maximum snan between
	polygons within a cut block so that blocks did not span riparian buffers
Existing harvest plans	Existing preliminary harvest plans for both Vanderwell, Alberta-Pacific and MIU blocks
	determined by Alberta-Pacific were used in the construction of the harvest sequence.
Single vs two pass	Moving towards aggregated logging (remove a higher percentage of merchantable fibre
harvesting	from a compartment then leave for extended periods) was a management objective. This
narvesting	noin a compartment then leave for extended periods) was a management objective. This
	was accomprished unough the use of compartment control and the amount of narvesting
Plack annuas hanvast	In each.
black spluce halvest	concern was expressed over the fluctuation in black splice shata (and to a ressel degree
volume inuctuation	In jack pine) harvest volumes. An initial fluctuation of 5% was used and sensitivity
	analysis was conducted that demonstrated that allowing 10% black spruce fluctuation had
	little effect in L1, due to the small volumes harvested from black spruce stands. The
	impact of increasing both pine and black spruce harvest volumes to 10% was about 1%.
	The final harvest sequence based on Patchworks allocated pine and black spruce stands
	for harvest as part of the sequencing effort.
Overmature seral stage	Overmature seral stage value from 0 to 1 was included for each strata to determine the
control	contribution in Patchworks. Older forest targets were set by Alberta-Pacific at the FMA
	level.
Harvest block condition	The condition of existing harvest blocks was determined by detailed block planning by
	Alberta-Pacific and Vanderwell Operations staff.
Shelterwood treatment	Removed as a silvicultural treatment in the modeling to simplify the model since it
	produced little AAC effect.
Cull and stand structure	Losses for cull and green tree retention used the FMP values of 3% for coniferous and 9%
retention deductions	for deciduous and were applied to the yield curves.
Operational volumes	Volume estimates from Alberta-Pacific's operational volume tables and volumes
	predicted from TSA yield curves are different. This is especially noticeable in the
	development of spatial harvest sequences. L1 mixedwood yield curves were used for all
	volume predictions for L1 but annual variation in the harvest sequence will be required to
	meet recovered volume objectives. This differences will be resolved when compared to
	actual in the Stewardship report.
Deciduous - coniferous	The objective was to maximize total harvest volume. Sensitivity analysis demonstrated
AAC ratio	the impacts of favoring either conjectus or deciduous harvest volumes
	are impuess of favoring ender connerous of accidations had rest volumes.
Silviculture treatments	Patchworks compartments were designed to control harvesting treatments, not
outside operable	silvicultural treatments such as underplanting. The underplanting treatment leading to
compartments	overstory removal after 20 years, was not allowed for in the Patchworks model
I	construction. This problem was overcome by manually applying underplanting to selected
	stands before compartments were available for harvesting. Only the first 60 years
	required this assignment
Carry-over volume	89.263 m3 of conjerous volume is available for carry-over in the first five years. This
i i i i i i i i i i i i i i i i	has been added to the final sequence at an average rate of 17 800 m3/year
Distributing mixedwood	The benefits of mixedwood management was shared by AAC percentage among the
management henefits	operators that plan and commit to mixedwood management treatments. Refer to the
manugement benefits	sections describing the AAC distribution
Woodstock - Patchworks	The impact of formulating a Woodstock model into a Patchworks model was
comparisons	annrovimately an 7% reduction from non-spatial Woodstock harvast levals
comparisons	approximately an 770 reduction non-spatial woodstock harvest levels.

Table of Timber supply issues continued.

Vanderwell Contractors (1971) Ltd.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

6. PREFERRED FOREST MANAGEMENT STRATEGY

Vanderwell

6.1. **OVERVIEW**

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

The Preferred Forest Management (PFM) strategy presented here represents a joint development between Vanderwell and Alberta-Pacific woodlands staff. Both operational and strategic staff were involved in its development.

6.2. PREFERRED FOREST MANAGEMENT DESCRIPTION

Mixedwood management and concentrated harvest blocks are hallmarks of the Preferred Forest Management (Run92001). The main parameters are summarized below and more details can be found in Appendix III.

- retain a minimum of 85% of the current Broad Cover Group distribution;
- ☐ maximize total harvest volume object while maintaining an even flow of total coniferous and deciduous harvest volumes;
- congregate harvest activities into operational compartments;
- single combined landbase to manage timber flows, not individual coniferous and deciduous areas;
- regenerated stand patches to reflect the natural distribution of patch sizes and shapes;
- iminimized harvest of Medium/Fair site Black Spruce, represents harvest of fringe areas, average is 10 ha/year;
- removed Underplant of immature Aw and AwSw;
- removed C-Shift2 and D-Shift2 treatments;
- removed deciduous harvest from non-J part of FMU; and
- select stands for underplant then clearcut action in the first 15 years.

Vanderwell

Alberta-Pacific & Vanderwell Contractors

Feature.Area.Managed.* - Timber Harvesting Landbase	Area(ha	% Operable
1. Pure Aspen (AW)	63,837	49.3%
2. Deciduous Leading Mixedwood (AWSW)	4,582	2 3.5%
3. Conifer Leading Mixedwood (SWAW)	4,919	3.8%
4. Pure White Spruce (SW)	10,629	8.2%
5. Aspen with White Spruce Understory (AWUN)	2,817	2.2%
5. Aspen with White Spruce Understory (AWUA)	1,255	5 1.0%
5. Aspen with White Spruce Understory (AWUY)	2,531	2.0%
6. A Density Aspen (AW-A)	2,172	2 1.7%
7. Pure Jack Pine (PJP)	26,310) 20.3%
8. Jack Pine Mixedwood (PJMX)	1,974	1.5%
9. Good site Black Spruce (SBG)	3,758	3 2.9%
10. Medium-Fair site Black Spruce (SBMF)	4,749	3.7%
	Total 129,533	<u> </u>

Table 21. Final Patchworks net operable landbase description.

Source: Patchworks netdown landbase

ALBERTA-PACIFIC FOREST INDUSTRIES INC

The strata profile is slightly different as compared to the Woodstock area file. During the later stages of the model, the understorey strata was harmonised with their associated strata. For example, strata previously harvested with an Aw, A density label were updated to AWA. This updated was also applied to the Aspen with White Spruce understory label, where stands were updated to their appropriate strata group (i.e. AWUY/AWUA became AWSW and AWUN became AW). AW-A stands are not initially in the merchantable landbase, upon reaching senescence they return to the merchantable landbase as AW "B-density" stands.

Furthermore, Patchworks performs internal rounding, sliver removal and generalization to make the model efficient. As a result there may be some area differences between the raw landbase file and the area.csv file located in the model.

Outputs from selected reporting parameters are presented on the following pages in graphical form. The 200-year planning horizon is on the x-axis and the parameter in question on the y-axis usually in cubic meters or hectares.

6.2.1. CARRY OVER VOLUME

Carry over volume as a result of harvesting burnt timber is 89,263 m3. This volume is spread out over the first five years at a rate of 17, 500 m3/year. This increase in volume is represented in Figure 9 and Figure 10. (Source: Alberta SRD, 2003)

Harvest Volume

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

An even flow objective for both total coniferous and total deciduous harvest volume was applied in Patchworks (Figure 9). There were no primary or incidental harvest volumes identified from the common mixedwood landbase. Harvest volume results are presented in (Figure 10). The Pine and Black Spruce harvest targets are also provided. The resultant of the provided target is the most optimal range.

Figure 9 Preferred Forest Management harvest targets (m³/yr).

Vanderwell

Pine Harvest Volume Target

Black Spruce Harvest Volume Target

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

Vanderwell

Growing Stock

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Changes in operable coniferous and deciduous growing stock on the landbase over the planning horizon were controlled by the targets in Figure 11 with the results graphed in Figure 12.

Figure 11. Preferred Forest Management managed growing stock targets (m³/yr)

Coniferous Growing Stock (managed)

Vanderwell Contractors (1971) Ltd

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Age Class

Figure 13 shows the 20-year age classes distribution for operable stands over the planning horizon. No Patchworks targets were established for future age class distributions.

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

Figure 13. Preferred Forest Management age class distribution (ha).

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Area Strata

A forest-level objective required 85% of initial areas by broad cover group to be retained throughout the planning horizon. This objective was met by controlling the area of operable strata over the planning horizon by the targets in Figure 14 with the results presented in Figure 15.

Figure 14. Preferred Forest Management targets for operable forest strata landbase area (ha/yr)

Vanderwell

Figure 15. Preferred Forest Management operable forest strata area distribution (ha).

Area Harvested by Strata

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

Targets in Figure 16 controlled the area harvested from each stratum. Note that the AW area harvested required a large weighting factor (represented by the thickness of the target line with a higher weight representing by a thicker line). The results are plotted in Figure 17.

Figure 16. Preferred Forest Management targets for annual area harvested (ha/yr).

Vanderwell

Area Harvested in Aw Strata

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Figure 17. Preferred Forest Management area harvested by strata (ha/yr).

Area Harvested by Treatment

Area harvested by each treatment over the planning horizon is presented in Figure 18. Conversion rates were constrained to reflect operational treatments levels.

Vanderwell Contractors (1971) Ltd

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Species Composition Classess

The distribution of Species Composition Classes (SCC) is provided in Figure 19. These were defined based upon stand species composition as it varied through time for each stratum. No objectives were established for maintaining species composition classes over the planning horizon.

Figure 19. Preferred Forest Management Species composition distribution (ha).

Compartment sequence

The compartment sequence used in the Preferred Forest Management strategy is presented in Figure 20. The time period of the model is across the top (years in future), with the first 15 years represented by annual columns, and the remaining columns represent 5-year periods. The compartments are listed down the side. When a cell is grey, there is no harvesting allowed for that compartment for that period if time. If the cell is green, then harvesting is allowed for that compartment and time period. The yellow cells force the harvest schedule for the coloured compartment. Additionally, yellow cells may represent the underplant action of the "underplant – then-cut" treatment; these compartments were also was tied to the lock down of the harvest sequence when adding additional blocks. The reason for scheduling these compartments into the sequence is because they occur in compartments that are otherwise turned off for harvest action. The compartment accessibility in the last column is repeated for the rest of the planning horizon as per SRD direction.

Figure 20. Preferred Forest Management compartment sequence.

6.3. FOREST MANAGEMENT TARGETS

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC

Forest management targets are specific indicator statements that were selected to control the actual forest management activities on the ground. They were derived from the output of the timber supply model. To be selected, forest management targets must be quantifiable, easily reportable and appropriate for the preferred forest management strategy. Forest management targets were selected for harvest volumes, the stands harvested and silviculture activities.

6.3.1. ANNUAL ALLOWABLE CUT

Annual Allowable Cut (AAC) targets were derived by coniferous and deciduous species for the total harvest volume.

	AAC (m ³ /yr)	
Coniferous	Deciduous	Total
 110,000	180,200	290,200

Table 22. L1 and L1J recommended AAC.

The AAC-chargeable species comprising the coniferous volume are: pine, black spruce, white spruce, balsam fir. The deciduous AAC- chargeable species are aspen and balsam poplar.

The AAC is applicable to the timber supply area, which in this case is FMUs L1 and L1J, as defined in the netdown landbase. Thus the AAC above is fully bridged between the FMA and non-FMA component. Note that the non-J component is not scheduled until 31 years into the future.

6.3.2. ALLOWABLE CUT DISTRIBUTION

The AAC allocatation among disposition holders is presented in Figure 21. This information is presented to demonstrate the impact of harvesting within specific strata. The actual rationalization of the AAC distribution and harvest control method is presented in the FMP.

In the following tables, total AAC's have been rounded to the nearest 100; accordingly, the tables illustrate 39 m³ (Conifer) and 67 m³ (Deciduous) less than the FMA area AAC table and the L1 FMU AAC summary tables and graphics, in the TSA documentation. Additionally, the following tables differ from Table 3.16 (Page 171) in the FMP due to rounding in the allocations.

Figure 21. Recommended L1 and L1J AAC Allocation

Step 1. Emperical analysis AAC

Obtain AAC volumes from empirical analysis done in Patchworks

		Conif	Deciduous	Total		
	Primary		Incidental	Total	Total	
	J (FMA)	non-J				
Baseline	67,400	7,600	19,000	94,000	174,000	268,000

Source: Patchworks Run70008

Step 2. Company distribution percentages

Obtain current company distribution percentages from FMA agreement

	(Deciduous		
	Prima	ary	Incidental	Total
	J (FMA) non-J			
Al-Pac			100.00%	99.00%
Vanderwell	60.80%	60.80%		
MTU	39.20%	39.20% 39.20%		1.00%

Source:

Step 3. Company distribution volumes

Calculate company distribution volumes from emperical analysis with values from Step 1 and 2.

	Coniferous							
	Primary J (FMA)		Primary non-J		Incidental		Total	
	Percent	Volume	Percent	Volume	Percent	Volume	Volume	
Al-Pac	0.00%	0	0.00%	0	100.00%	19,000	19,000	
Vanderwell	60.80%	40,979	60.80%	4,621	0.00%	0	45,600	
MTU	39.20%	26,421	39.20%	2,979	0.00%	0	29,400	
Total	100.00%	67.400	100.00%	7.600	100.00%	19.000	94.000	

	Decid	Total				
	Percent	Percent Volume				
Al-Pac	99.00%	172,260	191,260			
Vanderwell	0.00%	0	45,600			
MTU	1.00%	1,740	31,140			
Total	100.00%	174,000	268,000			

Step 4. Mixedwood analysis AAC

Obtain AAC volumes from Mixedwood analysis Preferred Forest Management (PFM) scenario.

	Coniferous			Deciduous	Total
-	J (FMA)	non-J	total		
Mixedwood	102,300	7,700	110,000	180,200	290,200

Source: Patchworks Run92001

Step 5. Mixedwood Management increase

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Subtract Baseline (Step 1) from Mixedwood Management PFM (Step 4) to determine increase due to mixedwood management.

Vanderwell

		Coniferous	Deciduous	Total	
	J (FMA)	non-J	total		
Mixedwood	102,300	7,700	110,000	180,200	290,200
Baseline	86,400	7,600	94,000	174,000	268,000
Increase due to Mixedwood	15,900	100	16,000	6,200	22,200

Step 6. Company volume gains from Mixedwood Increase

Apply negotiated percent split to the increase due to mixedwood from Step 5.

	Coniferous		Coniferou	s (non-J)	Deciduous		
	Percent	Volume	Percent	Volume	Percent	Volume	
Al-Pac	18.00%	2,862	0.00%	0	100.00%	6,200	
Vanderwell	82.00%	13,038	100.00%	100	0.00%	0	
MTU	0.00%	0	0.00%	0	0.00%	0	
Total	100.00%	15,900	100.00%	100	100.00%	6,200	

Step 7. Add up company volumes

			Coniferous		
	Basel	ine	Mixedwood	PFM	
	J (FMA)	non-J	J (FMA)	non-J	(total)
Al-Pac	19,000	0	2,862	0	21,862
Vanderwell	40,979	4,621	13,038	100	58,738
MTU	26,421	2,979	0	0	29,400
Total	86.400	7.600	15.900	100	110.000

	Deciduous			Total			
	Baseline Mixedwood PFM		Baseline	Baseline Mixedwood			
		Increase	(total)		Increase	(total)	
Al-Pac	172,260	6,200	178,460	191,260	9,062	200,322	
Vanderwell	0	0	0	45,600	13,138	58,738	
MTU	1,740	0	1,740	31,140	0	31,140	
Total	174,000	6,200	180,200	268,000	22,200	290,200	

6.3.3. HARVEST SEQUENCE

The harvest sequence was spatially controlled at both the polygon level and at the broader compartment level by timing compartment availability for harvesting activities. As a result, there are both spatial and non-spatial harvest targets derived from the harvest sequence. The first 15 years of the harvest sequence is the list of stands eligible for harvest for the period 2001 until 2016. See Figure 22 for the spatial harvest sequence (SHS) map

Non-spatial harvest targets are present for both volume and area by strata. The harvest targets are presented in Table 23 and Table 24. These tables are calculated from the 15 year sum of harvest areas and volumes divided by number of years (15).

Initial Strata	Volum	he Harvested	(m³/yr)	Volume Harvested (m ³ /ha)				
	Conifer	Decid	Total	Conifer	Decid	Total		
Clearcut								
Aw	12,800	120,300	133,100	20	190	200		
AwUN	1,500	13,700	15,200	20	170	190		
AwUA	1,900	2,100	4,000	190	210	400		
AwUY	0	0	0	0	0	0		
AwSw	7,900	9,400	17,300	110	130	250		
SwAw	16,600	5,500	22,100	210	70	280		
Sw	29,700	3,200	32,900	210	20	240		
PjP	29,800	4,000	33,800	120	20	140		
PjMx	2,000	1,800	3,800	100	90	190		
SbG	3,600	500	4,100	120	20	140		
SbMF	1,000	100	1,100	100	10	110		
Sub-total	106,800	160,600	267,400	80	120	200		
Understory Pr	otection / Av	oidance						
AwUY	900	4,900	5,800	30	160	190		
AwUA	700	3,900	4,600	40	200	230		
Sub-total	1,600	8,800	10,400	30	180	210		
All Treatments	108,400	169,400	277,800	80	120	200		

Table 23. 15-year average Harvest Sequence volume targets (m³/yr).

Vanderwell Contractors (1971) Ltd.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Initial Strata	Final Strata (ha/yr)								
	Aw	AwSw	SwAw	Sw	PjP	РјМх	SbG	SbMF	Total
Clearcut									
Aw	440	210	-	-	-	-	-	-	650
AwUN	50	30	-	-	-	-	-	-	80
AwUA	0	0	10	-	-	-	-	-	10
AwUY	-	-	-	-	-	-	-	-	0
AwSw	20	10	40	-	-	-	-	-	70
SwAw	-	10	40	30	-	-	-	-	80
Sw	-	-	70	70	-	-	-	-	140
PjP	-	-	-	-	240	-	-	-	240
PjMx	-	-	-	-	-	20	-	-	20
SbG	-	-	-	-	-	-	30	-	30
SbMF	-	-	-	-	-	-	-	10	10
Sub-total	510	260	160	100	240	20	30	10	1,330
Understory P	rotectio	n / Avoida	ance						
AwUA	-	30	-	-	-	-	-	-	30
AwUY	-	-	-	20	-	-	-	-	20
Sub-total	-	30	-	20	-	-	-	-	50
Underplanting	3								
Aw	20	-	-	-	-	-	-	-	20
AwSw	-	0	-	-	-	-	-	-	0
Sub-total	20	0	-	-	-	-	-	-	20
All Treatments	530	290	160	120	240	20	30	10	1,400

Table 24.	15-year	average	Harvest	Sequence	area	targets	(ha/yr).
-----------	---------	---------	---------	----------	------	---------	----------

Vanderwell

ALBERTA-PACIFIC FOREST INDUSTRIES INC

6.3.4. SILVICULTURE TARGETS

Silviculture targets are also included as part of the management plan. Silviculture targets are the areas (ha) regenerated to each strata and the area by silvicultural systems (i.e. clearcut or understory protection). Targets are provided for the average of the first fifteen years and expressed as an average annual value, and can also be referenced in Table 24. For regenerated areas, the FMP targets are the outcome of the regeneration treatments (e.g. the resulting regenerated strata distribution). The actual regeneration treatments applied to regenerate stands are at the discretion of the silviculture forester and are not specified in this document.

6.4. FOREST MANAGEMENT PLAN IMPLEMENTATION

The timber supply and related harvesting and regeneration activities are scheduled to take effect after Alberta SRD approval.

Not all mixedwood or silviculture treatments were modelled in the timber supply. It is not the intent that non-modelled management treatments be excluded from operations. However, these other potential treatments will be AAC neutral. It should also be noted that averages were modelled, but that operational application will have greater variation and apply to a wider range of stand types.

Alberta-Pacific & Vanderwell Contractors

7. APPENDIX I: YIELD CURVES

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

Page 59

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

Alberta-Pacific & Vanderwell Contractors

8. APPENDIX II: LANDBASE NETDOWN CODE (APRIL 2004)

Vanderwell

8.1. COMBINE.AML

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

```
/* combine.aml
/* L1 landbase processing
/* step 1: extract lla, llb, llc, lld and lle compressed files into
arc info
/* step 2: append lla, llb, llc, lld and lle coverages together and
add new_link field
/* step 3: union with existing harvest blocks, potential blocks,
compartments, etc
/* step 4: post data to oracle for attribute calculation
/* step 5: copy oracle processed data to 11 fin.themes info file
/* step 6: temp file cleanup
/*
/* Written by Bob Christian
/* The Forestry Corp
/*
&arg routine
&wo c:\projects\p377\landbase_may2003
&if [null %routine%] &then
 &call USAGE
&call %routine%
&return
&routine USAGE
/***********************************
&type
&type &r process < CREATEALL | IMPORT | APPEND | UNION | ORACLEIN |
ORACLEOUT | CLEANUP | USAGE >
&TYPE
&type where
&TYPE CREATEALL: runs IMPORT, APPEND, UNION, ORACLEIN and CLEANUP
routines
&TYPE IMPORT: imports e00 and dbf files, also concatenates the
attributed files
&TYPE APPEND: mapjoins the coverage pieces
&TYPE UNION: adds in compartments and planned blocks
&type ORACLEIN: sends pat and att files to p377 oracle database
&type ORACLEOUT: brings back themes information from p377 oracle
database
&type CLEANUP: delete temporary coverages and info files
&type USAGE: this message
&type
&return &warning
```

```
2004 Timber Supply Analysis - FMU L1 Timber Supply
```

```
Alberta-Pacific & Vanderwell Contractors
```

```
&routine CREATEALL
/* loops through all the import routines
/*_____
&call import
&call append
&call union
&call oraclein
&call cleanup
&return
&routine IMPORT
/*********
/* loops through the five e00 and dbf files and imports into info
/*_____
&do sub &list a b c d e
    &if [exists l1%sub%_fin -cover] &then kill l1%sub%_fin all
    &if [exists ll%sub%_fin.att -info] &then killinfo ll%sub%_fin.att
    /* imports coverages from e00 files
    /*-----
    import cover l1%sub%_fin l1%sub%_fin
    /* imports info files from dbf files
    /*_____
    dbaseinfo l1%sub%_net_final.dbf l1%sub%_fin.att
    /* creates and assignes new_link field
    /*_____
    &if %sub% = 'a' &then &s link = 1000000
    &if %sub% = 'b' &then &s link = 2000000
    &if %sub% = 'c' &then &s link = 3000000
    &if %sub% = 'd' &then &s link = 4000000
    &if %sub% = 'e' &then &s link = 5000000
    tables
    additem l1%sub%_fin.pat new_link 8 8 i # link_key
    sel l1%sub%_fin.pat
    calc new link = link key + %link%
    additem l1%sub%_fin.att new_link 8 8 i # link_key
    sel l1%sub%_fin.att
    calc new_link = link_key + %link%
    q
    clean l1%sub%_fin
&end
&return
/**********
&routine APPEND
/***********
/* appends coverages together into one coverage
&if [exists l1_fin_temp -cover] &then kill l1_fin_temp all
&if [exists lle2_fin -cover] &then kill lle2_fin all
&if [exists l1e3_fin -cover] &then kill l1e3_fin all
```

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

```
Alberta-Pacific & Vanderwell Contractors
```

&if [exists l1_fin.att -info] &then killinfo l1_fin.att /* combines info files into one info file /*_____ &do sub &list a b c d e ap infofile l1%sub%_fin.att info l1_fin.att a &end $/ \star$ removes small overlaps between J and non-J coverages /*_____ erase lle_fin llc_fin lle2_fin poly erase l1e2_fin l1b_fin l1e3_fin poly /* append coverages together /*_____ mapjoin l1_fin_temp poly lla_fin llb fin llc fin lld fin lle3_fin end &return &routine UNION /******** /* unions landbase with harvest plans, compartments, etc &if [exists l1_fin -cover] &then kill l1_fin &if [exists l1_temp1 -cover] &then kill l1_temp1 all &if [exists l1_temp2 -cover] &then kill l1_temp2 all &if [exists l1_temp3 -cover] &then kill l1_temp3 all &if [exists l1_temp4 -cover] &then kill l1_temp4 all &if [exists l1_temp5 -cover] &then kill l1_temp5 all &if [exists l1_temp6 -cover] &then kill l1_temp6 all &if [exists 11 temp7 -cover] &then kill 11 temp7 all &if [exists 11 temp8 -cover] &then kill 11 temp8 all &if [exists l1_temp9 -cover] &then kill l1_temp9 all &if [exists l1_temp10 -cover] &then kill l1_temp10 all /* union landbase with additional coverages /*_____ union pre_blks_apr2004/alpac_032604 ../compartment_revisions/comp_dec2002 l1_temp1 0.001 /* Al-Pac blocks and compartment boundaries union l1_temp1 ../vanderwell_pj/unit8_n27 l1_temp2 0.001 /* Vanderwell PJ stands with incorrect ages union l1_temp2 harv_blocks/mtu_2004_n27 l1_temp3 0.001 /* MTU 2004 blocks from SRD union l1_temp3 harv_blocks/van_2004_n27 l1_temp4 0.001 /* Vanderwell 2004 blocks union l1_temp4 harv_blocks/van_block_n27 l1_temp5 0.001 /* Vanderwell 2002 - 2003 blocks

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

2004 Timber Supply Analysis - FMU L1 Timber Supply

```
Alberta-Pacific & Vanderwell Contractors
```

```
union l1_temp5 harv_blocks/mtu_blk l1_temp6 0.001
                                              /* MTU 2001 -
2002 blocks (harvested)
union l1_temp6 pre_blks_apr2004/mtu_032604 l1_temp7 0.001 /* MTU
blocks from Al-Pac
union l1_temp7 pre_blks_apr2004/too_steep l1_temp8 0.001 /* area
deemed to be too steep
dropitem l1_temp8.pat l1_fin_temp8.pat pass grid timber_id disp_holder
block_area optype status timb_num zone source block_num areaha
clip l1_temp8 l1_fin_temp l1_temp9
union l1_fin_temp l1_temp9 l1_temp10 0.001
/* eliminate small polygons (less than 200 m2)
/*_____
eliminate l1_temp10 l1_fin keepedge poly # area
res area < 200
[unquote '']
Ν
Ν
/* create and assign block_sps link field
/*_____
tables
additem l1_fin.pat block_sps 16 16 i # link_key
sel l1_fin.pat
calc block_sps = l1_fin#
q
&return
&routine ORACLEIN
/*disconnect oracle
/* connects to oracle and copies info files to oracle
/*_____
connect oracle p377/p377@oracle_hp
dbmsexecute oracle drop table 11 may2003 pat
dbmsexecute oracle drop table 11_may2003_att
infodbms oracle l1_fin.pat l1_may2003_pat
infodbms oracle l1_fin.att l1_may2003_att
disconnect oracle
&return
&routine ORACLEOUT
/*disconnect oracle
/* connects to oracle and copies oracle files to info
/*_____
connect oracle p377/p377@oracle_hp
```

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

Vanderwell

```
&routine CLEANUP
&do sub &list a b c d e
     &if [exists l1%sub%_fin -cover] &then kill l1%sub%_fin all
     &if [exists ll%sub%_fin.att -info] &then killinfo ll%sub%_fin.att
&end
&if [exists l1_fin_temp -cover] &then kill l1_fin_temp all
&if [exists lle1_fin -cover] &then kill lle1_fin all
&if [exists lle2_fin -cover] &then kill lle2_fin all
&if [exists lle3_fin -cover] &then kill lle3_fin all
&if [exists l1_temp1 -cover] &then kill l1_temp1 all
&if [exists l1_temp2 -cover] &then kill l1_temp2 all
&if [exists l1_temp3 -cover] &then kill l1_temp3 all
&if [exists l1_temp4 -cover] &then kill l1_temp4 all
&if [exists l1_temp5 -cover] &then kill l1_temp5 all
&if [exists l1_temp6 -cover] &then kill l1_temp6 all
&if [exists l1_temp7 -cover] &then kill l1_temp7 all
&if [exists l1_temp8 -cover] &then kill l1_temp8 all
&if [exists l1_temp9 -cover] &then kill l1_temp9 all
&if [exists l1_temp10 -cover] &then kill l1_temp10 all
```

&return

8.2. CREATE_LAND_TEMP.SQL

REM create_land_temp.sql REM script to create land_temp table from netdown coverage. drop table land_temp; rem Combine pat and att files create table land_temp as (select p.area, p.block_sps, a.nha, a.priha, a.horzha, p.l1_fin#, p.ll_fin_id, p.link_key, p.new_link, a.ap oper, a.entryyear, a.poly num, a.density, a.height, a.tpr, a.nat_non, a.anth_veg, a.anth_non, a.udensity, a.uheight, a.usp1, a.usp1_per, a.usp2, a.usp2_per, a.usp3, a.usp3_per, a.usp4, a.usp4_per, a.usp5, a.usp5_per, a.con, a.dec, a.ustems_ha, a.cgrp, a.ucon, a.udec, a.ucgrp, a.leadcon, a.uleadcon, a.st_num, a.ust_num, a.strata, a.ustrata, a.net_strata, a.net_den, a.net_state, a.st_used, a.ex1, a.ex2, a.ex3, a.landbase, a.net_season, a.curr_age, a.ucurr_age, a.net_p_age, a.cc_yr, a.g_cc_yr, a.q_cc_yr, a.avi_yr, a.year_cut,

```
Alberta-Pacific & Vanderwell Contractors
```

a.cc_lb, a.har_cov, a.isol_flag, a.net_label, a.sw_sph, a.du_leadcon, a.net_du, a.net_cgrp, a.fire_year, a.fire2002, p.comp_num, p.comp_label, p.mtu_yr, a.mgr, p.mtu_2004, p.van_pre, p.van_2004, p.van_2002, p.year_class, p.log_year, p.m_year_class, p.m_log_year, p.steep from l1_may2003_att a, l1_may2003_pat p where a.new_link(+) = p.new_link); commit; rem add in new items for woodstock and Patchworks alter table land_temp add (thml char(8), thmla char(8), theme1 char(8), theme2 char(8), theme3 char(8), theme4 char(8), theme5 char(8), theme6 char(8), theme7 char(8), tsa_age number(6), nha_per number(10,5), priha_per number(10,5), horzha_per number(10,5), n_ha float, pri_ha float, horz_ha float, tsa sph number(4), pre_blk number(4), pre_seis char(8), core_strat char(8), core_mesic char(8)); commit;

8.3. UPDATE_STEMS.SQL

ALBERTA-PACIFIC FOREST INDUSTRIES INC.

```
rem update_stems.sql
rem calculate fields to use in determining the understory type
rem usp*_per is percent of understory as calculated in Al-Pac netdown
process
rem ustems_ha is understory stems per ha as calculated in Al-Pac
netdown process
update land_temp set tsa_sph = 0;
update land_temp set tsa_sph = tsa_sph + usp1_per where usp1 in ('Sw',
'Sb');
update land_temp set tsa_sph = tsa_sph + usp2_per where usp2 in ('Sw',
'Sb');
```

Alberta-Pacific & Vanderwell Contractors update land_temp set tsa_sph = tsa_sph + usp3_per where usp3 in ('Sw', 'Sb'); update land_temp set tsa_sph = tsa_sph + usp4_per where usp4 in ('Sw', 'Sb'); update land_temp set tsa_sph = tsa_sph + usp5_per where usp5 in ('Sw', 'Sb'); update land_temp set tsa_sph = tsa_sph / 10 * ustems_ha;

2004 Timber Supply Analysis - FMU L1 Timber Supply

commit;

8.4. UPDATE_THEMES.SQL

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

```
rem theme1
update land temp set theme1 = 'L1';
update land_temp set theme1 = 'OUTFMA' where link_key = 0;
update land_temp set theme1 = 'OUTFMA' where net_label = 'O AREA
OUTSIDE FMA';
update land_temp set theme1 = 'L1J' where theme1 = 'L1' and mgr = 'J';
update land_temp set thm1 = 'c' || comp_label where theme1 <> 'OUTFMA';
update land_temp set thm1 = 'c0' || comp_label where comp_num < 10 and
theme1 <> 'OUTFMA';
update land_temp set thm1 = 'c00' where comp_num = 0 and theme1 <>
'OUTFMA';
update land temp set thm1 = 'X' where thm1 is null;
rem theme2
rem Overstory
update land_temp set theme2 = 'INOP';
update land_temp set theme2 = 'PJP' where leadcon = 'Pj' and con >= 8
and st_used = 'OVER';
update land temp set theme2 = 'PJMX' where leadcon = 'Pj' and con < 8
and st used = 'OVER';
update land_temp set theme2 = 'SB' where leadcon = 'Sb' and st_used =
'OVER';
update land_temp set theme2 = 'SB' where leadcon = 'Lt' and st_used =
'OVER';
update land_temp set theme2 = 'AW' where con <= 2 and dec > 0 and
st_used = 'OVER';
update land temp set theme2 = 'AWSW' where con > 2 and con < 5 and
leadcon in ('Sw', 'Fb') and st used = 'OVER';
update land_temp set theme2 = 'SWAW' where con >= 5 and con < 8 and
leadcon in ('Sw', 'Fb') and st_used = 'OVER';
update land_temp set theme2 = 'SW' where con >= 8 and leadcon in ('Sw',
'Fb') and st used = 'OVER';
rem use understory as the main strata selection
******
update land_temp set theme2 = 'PJP' where uleadcon = 'Pj' and ucon >= 8
and st_used = 'UNDER';
update land_temp set theme2 = 'PJMX' where uleadcon = 'Pj' and ucon < 8
and st used = 'UNDER';
```
```
ALBERTA-PACIFIC
FOREST INDUSTRIES INC.
                 Vanderwell
                                 2004 Timber Supply Analysis - FMU L1 Timber Supply
                                         Alberta-Pacific & Vanderwell Contractors
update land_temp set theme2 = 'SB' where uleadcon = 'Sb' and st_used =
'UNDER';
update land_temp set theme2 = 'SB' where uleadcon = 'Lt' and st_used =
'UNDER';
update land_temp set theme2 = 'AW' where ucon <= 2 and udec > 0 and
st used = 'UNDER';
update land temp set theme2 = 'AWSW' where ucon > 2 and ucon < 5 and
uleadcon in ('Sw', 'Fb') and st_used = 'UNDER';
update land_temp set theme2 = 'SWAW' where ucon >= 5 and ucon < 8 and
uleadcon in ('Sw', 'Fb') and st_used = 'UNDER';
update land_temp set theme2 = 'SW' where ucon >= 8 and uleadcon in
('Sw', 'Fb') and st_used = 'UNDER';
rem understory new definition
rem only White spruce and Black spruce can be understory
update land_temp set theme2 = 'AWU' where theme2 = 'AW' and st_used =
'OVER' and uleadcon in ('Lt', 'P', 'Pj', 'Pa', 'Pl', 'Sb', 'Sw', 'Se');
update land_temp set theme7 = 'X';
update land_temp set theme7 = 'N' where theme2 = 'AWU' and tsa_sph <
400;
update land_temp set theme7 = 'A' where theme2 = 'AWU' and tsa_sph >=
400 and tsa sph < 600;
update land_temp set theme7 = 'Y' where theme2 = 'AWU' and tsa_sph >=
600;
update land_temp set theme2 = 'AWA' where net_state = 'ADEN';
commit;
update land_temp set theme2 = 'INOP' where theme2 is null;
rem where no AVI information is present, use Timberline strata
update land_temp set theme2 = 'AW' where theme2 = 'INOP' and net_strata
= 'Aw-S-C-S';
update land_temp set theme2 = 'AW' where theme2 = 'INOP' and net_strata
= 'Aw-S-O';
update land_temp set theme2 = 'AW' where theme2 = 'INOP' and net_strata
= 'Aw-comp';
update land temp set theme2 = 'AWSW' where theme2 = 'INOP' and
net strata = 'AwS-S';
update land_temp set theme2 = 'SWAW' where theme2 = 'INOP' and
net_strata = 'SAw-S';
update land_temp set theme2 = 'SW' where theme2 = 'INOP' and net_strata
= 'Sw-C-FM';
update land_temp set theme2 = 'SW' where theme2 = 'INOP' and net_strata
= 'Sw-C-G';
update land_temp set theme2 = 'SW' where theme2 = 'INOP' and net_strata
= 'Sw-O';
update land_temp set theme2 = 'PJMX' where theme2 = 'INOP' and
net_strata = 'Pj-O-C-FM';
rem theme3
rem update land_temp set theme3 = tpr;
update land_temp set theme3 = '1' where tpr = 'G';
update land_temp set theme3 = '2' where tpr = 'M';
```

update land_temp set theme3 = '3' where tpr = 'F';

```
2004 Timber Supply Analysis - FMU L1 Timber Supply
```

```
Alberta-Pacific & Vanderwell Contractors
```

update land_temp set theme3 = tpr where theme3 is null; update land_temp set theme3 = 'X' where theme3 is null; commit; rem theme4 update land_temp set theme4 = 'REGEN' where cc_yr > 0; update land temp set theme4 = 'REGEN' where q cc yr > 0;update land temp set theme4 = 'REGEN' where q cc yr > 0;update land_temp set theme4 = 'REGEN' where year_cut > 0; update land_temp set theme4 = 'REGEN' where mtu_yr = '2001/2002'; rem update land_temp set theme4 = 'REGEN' where status >= 25 and status <= 50; update land_temp set theme4 = 'REGEN' where year_class = 'pre 2002'; update land_temp set theme4 = 'FIRE' where theme4 is null; rem add back in cutblocks where tpr is U update land_temp set theme3 = '2' where theme3 = 'U' and theme4 = 'REGEN'; rem theme5 update land temp set theme5 = 'NONE'; update land_temp set theme5 = 'OIL' where net_label = '2.b Oil and Gas'; update land_temp set theme5 = 'BURNT' where fire_year > 0; update land_temp set theme5 = 'BURNT' where fire2002 = 'FIREX'; rem theme6 update land_temp set theme6 = 'UNSCH'; update land temp set theme6 = 'NONOP' where ((ex1 <> 'NOEXCL' and ex1 <> 'GRA-RES' and ex1 <> 'PNT-MN') or (ex2 <>'NOEXCL' and ex2 <> 'CARIBOU') or ex3 <> 'NOBUF'); update land_temp set theme6 = 'NONOP' where theme3 in ('U', 'X'); update land_temp set theme6 = 'NONOP' where theme1 = 'OUTFMA'; update land_temp set theme6 = 'NONOP' where steep = 'yes'; update land_temp set theme6 = net_den where net_den in ('A', 'B', 'C', 'D') and theme6 = 'UNSCH'; rem core analysis strata update land temp set core mesic = 'MX' where theme2 in ('AWSW', 'SWAW'); update land_temp set core_mesic = 'AW' where theme2 in ('AW', 'AWA', 'AWU'); update land_temp set core_mesic = 'SW' where theme2 = 'SW'; update land_temp set core_mesic = 'PJ' where theme2 in ('PJP', 'PJMX'); update land_temp set core_mesic = 'SB' where theme2 = 'SB'; update land_temp set core_mesic = 'INOP' where theme2 in ('X', 'INOP'); update land_temp set core_strat = core_mesic; update land_temp set core_strat = 'Mesic' where core_mesic in ('AW', 'MX', 'SW'); rem pre-seismic strata update land_temp set pre_seis = core_strat; rem Remove Seismic

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

Vanderwell

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

update land_temp set core_strat = 'INOP' where theme5 = 'OIL'; update land_temp set core_mesic = 'INOP' where theme5 = 'OIL'; update land_temp set theme6 = 'NONOP' where theme5 = 'OIL';

Vanderwell

commit;

nha > 0;

8.5. UPDATE_AGE_AREA.SQL

rem items cc_yr, q_cc_yr, avi_yr, g_cc_yr, year_cut indicate cutblocks
(use curr_age for cutblocks)
rem tsa age - in years for patchworks
update land_temp set tsa_age = 1;

rem tline is subtracting 1 from the currage to allow correct period calcualtions, therefore, these ages will be off by one year. update land_temp set tsa_age = curr_age where curr_age > 0; update land temp set tsa age = ucurr age where ucurr age > 0 and theme4 = 'FIRE' and st_used = 'UNDER'; update land_temp set tsa_age = 2002 - cc_yr where cc_yr > 0; update land_temp set tsa_age = 2002 - q_cc_yr where q_cc_yr > 0; update land_temp set tsa_age = 2002 - avi_yr where avi_yr > 0; update land_temp set tsa_age = 2002 - g_cc_yr where g_cc_yr > 0; update land_temp set tsa_age = 2002 - year_cut where year_cut > 0; update land_temp set tsa_age = 2002 - log_year where year_class = 'pre 2002'; update land temp set tsa age = 1 where mtu yr = '2001/2002'; update land temp set tsa age = 1 where fire year > 0;update land temp set tsa age = 1 where fire2002 = 'FIREX'; rem Assign years to pre-block stands update land_temp set pre_blk = 2002 where van_2002 = 'YES'; update land_temp set pre_blk = 2004 where van_2004 = 'YES'; update land_temp set pre_blk = 2004 where mtu_2004 = 'YES'; update land_temp set pre_blk = 2006 where van_pre = 'YES' and van_2004 is null; update land_temp set pre_blk = log_year where year_class = '2002+ Planned' or year_class = '2002+ Harvested'; update land_temp set pre_blk = m_log_year where m_year_class = '2002+ Planned'; rem re-calc age for younger stands in planned block areas to make them eligible for harvest update land temp set tsa age = 61 where theme2 in ('AW', 'AWSW', 'AWU') and pre blk > 0 and tsa age <= 60; update land temp set tsa age = 81 where theme2 in ('PJP', 'PJMX', 'SW', 'SWAW') and pre_blk > 0 and tsa_age <= 80; update land_temp set tsa_age = 121 where theme2 = 'SB' and pre_blk > 0 and tsa_age <= 120; rem recalculate non-spatial areas based on old nha, priha and horzha update land_temp set nha_per = nha / (nha + priha + horzha) where nha > 0; update land_temp set priha_per = priha / (nha + priha + horzha) where

2004 Timber Supply Analysis - FMU L1 Timber Supply

Alberta-Pacific & Vanderwell Contractors

```
update land_temp set horzha_per = horzha / (nha + priha + horzha) where
nha > 0;
update land_temp set nha_per = 1 where link_key = 0;
update land_temp set priha_per = 0 where link_key = 0;
update land_temp set horzha_per = 0 where link_key = 0;
update land_temp set n_ha = (area / 10000) * nha_per;
update land_temp set pri_ha = (area / 10000) * priha_per;
update land_temp set horz_ha = (area / 10000) * horzha_per;
rem reset thmla to allow for 'J' control at compartment level
```

update land_temp set thmla = thml; update land_temp set thmla = 'nonJin' where theme1 = 'L1' and thm1 = 'c00' and theme2 in ('PJP','PJMX','SB','SW','SWAW','AWSW'); update land_temp set thmla = 'nonJout' where theme1 = 'L1' and thm1 = 'c00' and theme2 in ('AW','AWU','AWA','INOP'); update land_temp set thmla = 'preblk' where pre_blk > 0 or pre_blk < 0;</pre>

commit;

8.6. CREATE_LAND_FINAL.SQL

REM create_land_final.sql
REM script to create land_final table from land_temp table.

drop table land_final;

ALBERTA-PACIFIC

FOREST INDUSTRIES INC.

Vanderwell

create table land_final as select l1_fin#, block_sps, l1_fin_id, link_key, new_link, thm1, thm1a, theme1, theme2, theme3, theme4, theme5, theme6, theme7, tsa_age, nha_per, priha_per, horzha_per, n_ha, pri_ha, horz_ha, tsa_sph, pre_blk, pre_seis, core_strat, core_mesic from land_temp;

commit;

9. MWM ADDENDUM - FMU L11 PREFERRED FOREST MANAGEMENT STRATEGY

(Note: Currently, available as a separate Portable Document File) (Will be added to final printed document after approval)

Alberta-Pacific & Vanderwell Contractors

10. APPENDIX 3 – L1 TIMBER SUPPLY RUNS

(Note: Appendix 3 is available in digital format)

Vanderwell Contractors (1971) Ltd.

Alberta-Pacific & Vanderwell Contractors