

Life Cycle Assessment for Green Buildings

Getachew Assefa W., Ph.D.

Associate Professor

Athena Chair for Life Cycle Assessment

ISEEE Fellow

Faculty of Environmental Design

University of Calgary

gassefa@ucalgary.ca

Life Cycle Assessment (LCA)

- A method for analysis and assessment of the environmental impacts (e.g. climate change) associated with:
 - products (e.g. building materials, buildings)
 - services (e.g. waste management, renewable energy supply, transport)
 - activities (e.g. consumption activity)
- throughout the entire life cycle

LCA as **Modeling**

 calculation of impact of a product, service or activity from <u>cradle to grave</u> (<u>cradle to cradle</u>)

LCA as a procedure

ISO (2006)

Impact Categories

		Reference and indicator results
1	Abiotic Depletion (DE)	kg antimony(Sb)-equivalent
2	Global warming Potentials (GWP)	kg CO ₂ -equivalent
3	Ozone Depletion Potentials (ODP)	kg CFC-11-equivalent
4	Acidification Potentials (AP)	kg SO ₂ -equivalent
5	Eutrophication Potentials(EP)	kg PO ₄ ³⁻ -equivalent
6	Human Toxicity Potentials (HTP)	kg 1,4 dichlorobenzene-equivalent
7	Freshwater Aquatic Ecotoxicity(FAETP)	kg 1,4 dichlorobenzene-equivalent
8	Marine Aquatic Ecotoxicity (MAETP)	kg 1,4 dichlorobenzene-equivalent
9	Terrestrial Ecotoxicity (TETP)	kg 1,4 dichlorobenzene-equivalent
10	Photochemical ozone creation Potentials(POCP)	kg Ethylene-equivalent

LCA for Buildings

- Provides a consistent and systematic approach to identification and assessment of impacts of "building products" over their life cycle
 - Materials
 - Energy
- Example: University Building (Scheuer et al, 2003)

Scheuer et al, 2003

	1		•	•
IV	la:	te	ria	IS

R ⁽	Material	Ton	MJ/kg
1	Sand	8030	0.6
2	Gravel	2350	0.2
3	Cement (in concrete)	1320	3.7
4	Water (in concrete , drywall, mud, paint)	622	0.2
5	Steel, EAF	471	12.3
6	Brick	386	2.7
7	Mortar	173	< 0.1
8	Fly-ash (in concrete)	168	< 0.1
9	Cement (fireproofing)	110	3.7
10	Steel, primary, cold rolled	84	28.0
11	Gypsum, synthetic	80	< 0.1
12	Steel, primary, electro-galvanized	76	30.6
13	Steel, secondary, hot rolled	72	14.1
14	Gypsum, primary	66	0.9
15	Kraft paper	61	37.7
16	Bauxite ore(fireproofing)	53	0.6

...materials

R ⁽	Material	Ton	MJ/kg
17	Cast iron	49	32.8
18	Glass	47	6.8
19	Granite	35	0.1
20	SBR latex	31	70.0
21	Polyamide/nylon, primary	30	125
22	Copper, primary, extruded	21	71.6
23	Glass fiber, primary	21	17.6
24	Starch	18	15.0
25	Steel, stainless	17	8.2
26	Aluminum, primary	15	207
27	Paver tile	14	0.5
28	Copper tube	12	65.8
29	Limestone	12	0.1
30	Clay (fireproofing)	11	32.4
31	Paper, secondary	10	6.9
32	Polypropylene	10	75.0

	1	materials		
ENVIR:		Material	Ton	MJ/kg
DE	33	Polyisocyanurate	9	70.0
	34	Titanium dioixide	8	73.8
	35	Rubber	7	143
	36	EPDM	7	183
	37	Kaolin (ceiling tiles)	7	1.3
	38	Ceramic and quarry tile	6	5.5
	39	Polystyrene	6	94.4
	40	Glass fiber, post-industrial secondary	5	11.9
	41	Polyamide, secondary	3	< 0.1
	42	Wood	3	10.8
	43	Vinyl resilient flooring	3	50.8
	44	Poly-vinyl chloride (piping, wiring)	2	60.7
	45	Brass	1	239
	46	Ethylene glycol	1	85.1
	47	Argon	<1	6.8
	48	Waxes	<1	52.0

... materials

	Material	Ton	MJ/kg
49	Acrylate lacquer (carpet grout)	<1	30.8
50	Xylene (paint, waterproofing)	<1	60.2
51	Asphalt	<1	50.2
52	Polyethylene	<1	79.5
53	Toluene diisocyanate	<1	101
54	Toluene	<1	67.9

cheuer et al, 200

18 materials(99% of mass)

21 materials (94% energy)

74% of total building mass

Life Cycle Energy

% Contribution

Life cycle energy consumption: 2260 x 10⁶ MJ

Global Warming

% Contribution

Life cycle CO₂ equivalent: 135 x 10³ tonnes

Impact Summary

Life Cycle Conclusions

- Priority: reducing operation burdens
 - For more than 83%, except for waste generation
 - High performance buildings
 - Design with future innovations in mind
 - Use LCA to resolve tradeoffs
- Maximizing service life of Materials
 - High replacement rate materials often have high embodied energy
- Design buildings to enable integration of more sustainable technologies
 - Energy generation technologies

Why Life Cycle Assessment

Non-Green Built Environment

Global raw material extraction

Non-Green Built Environment

Global Energy and GHG

Non-Green Built Environment

Where to change?

How LCA is being used in the Green Building industry

LCA in Building Sector

LCA of products and processes

- 1. construction products selection
- 2. construction systems/process evaluation

LCA of whole structures:

- 1. Residential buildings
- 2. Non-residential buildings
- 3. Civil engineering structures

Approaches related to industry

- 1. Tools and databases
- 2. Methodological developments

- 1. Rating and Certification Schemes
 - guide building products comparison
- 2. Environmental Product Declarations
 - verify performance claims

Rating and Certification

Critics of non-LCA based rating

- "does not provide a consistent, organized structure for achievement of environmental goals" from a life cycle perspective
 - 2002: analyzed Material and Resources (MR) and Energy and Atmosphere
 (EA) categories in LEED credits for an institutional building from energy and solid waste impacts perspective
 - recommended incorporating LCA for further development of the LEED system
- significant variations in overall environmental benefits represented by various LEED credits
 - 2007: LEED-certified office building from a life- cycle perspective
 - criticized certain LEED credits for having negative effects on environment
 - proposed a new scoring system for LEED credits

Merits of LCA

- Verifiable information
 - science-based
 - Peer-review
 - Consistent
- comparable information
- green marketing: fighting green-washing

LEED

- LEED 2009
 - 1. Sustainable Sites
 - 2. Water Efficiency
 - 3. Energy and Atmosphere
 - 4. Material and Resources
 - Indoor Environmental Quality
 - 6. Innovation in Design
 - 7. Regional Priority
- LEED v4 : Life Cycle Credits (New and Modified) as part of Materials and Resources

LCA Credits in LEED

Building Product Disclosure and Optimization – Environmental Product Declarations

- "encourage the use of products and materials for which life cycle information is available and that have environmentally, economically, and socially preferable life cycle impacts."
- Rewards selection of products from manufacturers who have verified improved environmental life cycle impacts

Building Life Cycle Impact Reduction

- "encourage reuse of products and materials to optimize their environmental performance."
- Rewards reuse of existing building resources, maintaining or renovating existing structures or reusing salvaged materials, or reduction in materials use through LCA

Green Guide to Specification

- Used in BREEAM:
 - > 250, 000 buildings assessed and certified
 - over 1 million registered for certification
- LCA-based <u>ranking</u> of building elements (A⁺ to E)
- > 1500 specifications
- Designers and builders: choosing assessed materials

Building Types

- 1. Residential
- 2. Commercial buildings (e.g. offices)
- 3. Educational
- 4. Healthcare
- 5. Retail
- 6. Industrial

Building Elements

- 1. External walls
- 2. Internal walls and partitions
- 3. Roofs
- 4. Ground floors
- 5. Upper floors
- 6. Floor finishes
- 7. Insulation
- 8. Windows
- 9. Landscaping

Impacts and Weights

- 1. Climate change: 21.6
- 2. Water extraction: 11.7
- 3. Mineral resource extraction: 9.8
- 4. Stratospheric ozone depletion: 9.1
- 5. Human toxicity: 8.6
- 6. Ecotoxicity to Freshwater: 8.6
- 7. Nuclear waste (higher level): 8.2

- 8. Ecotoxicity to land: 8.0
- 9. Waste disposal: 7.7
- 10. Fossil fuel depletion: 3.3
- 11. Eutrophication: 3.0
- 12. Photochemical ozone creation: 0.20
- 13. Acidification: 0.05

Weighting: developed by Panel of 10 experts

Environmental Product Declarations(EPDs)

EPDs

Shall be based on LCA

Non-tariff trade barrier

Nutrition Facts Serving Size 2 CUPS (30g) Servings per Container VARIED	
Amount per Serving	
	Calories from Fat 70
% Daily Value*	
Total Fat 7g	11%
Saturated Fat	1.5a 6%
Cholesterol 0m	
Sodium 120mg	5%
Total Carbohydi	
Dietary Fiber 4g 15%	
Sugars 9g	1070
Protein 1g	
Vitamin A 0%	Vitamin C 0%
Calcium 0%	Iron 2%
* Percent Daily Values are based on a 2,000 calorie diet. Your daily values may be higher or lower depending on your calorie needs: Calories 2,000 2,500	
Total Fat Less that Sat Fat Less that Cholesterol Less that Sodium Less that Total Carbohydrate Dietary Fiber	n 20g 25g n 300mg 300mg
Calories per gram: Fat 9 ● Carbohydrate 4 ● Protein 4	

ISO 14025:2006

"Environmental labels and declarations -- Type III environmental declarations -- Principles and procedures"

- International
- •Establishes: principles and procedures for developing EPD programs and EPDS
- •Establishes: use of the LCA standards (ISO 14040 and ISO 14044) in development of EPD programs and EPDs
- •EPDs are primarily intended for use in:
 - business-to-business communication
 - business-to-consumer communication under certain conditions

ISO 21930:2007

"Sustainability in building construction -- Environmental declaration of **building products**"

- International
- Contains principles, specifications and requirements for EPDs of building products
- Provides framework and basic requirements for <u>PCRs</u> for EPDs of building products
- Primarily intended for use in:
 - business-to-business communication
 - business-to-consumer communication under certain conditions

EN 15804:2012

"Sustainability of construction works - Environmental product declarations - Core rules for the product category of construction products"

- European Standard
- Provides core PCRs for all construction products and services
- Provides a structure to ensure harmony in all EPDS of construction:
 - -Products
 - -Services
 - –Processes
- Harmony: in deriving, verifying and presenting EPDs

Guidance for Product Category Rule Development

Version 1.0 August 28, 2013

Product Category Rules

- North American Structural and Architectural Wood Products
 - 15 products
- North American Gypsum Boards
 - 13 gypsum board products
- North American Market Pulp under development

Opportunities and Challenges of conducting LCAs

March 2012
Full Report: http://nrtee-trnee.ca/canadas-opportunity

Opportunities

- International Competitiveness
 - Trade restrictions
 - Lack of market access
- Firm Competitiveness
 - Enhancing supply chain efficiencies
 - Enhancing internal operation efficiencies
- Integration in Rating and Certification systems

Challenges

Data Availability

Canadian Database

Canadian Raw Material Database: 18 datasets

http://crmd.uwaterloo.ca

Quebec Life Cycle Inventory Database:

http://www.ciraig.org

- Quebec adaptation from Swiss ecoinvent database
- beginning with data from: energy, mines and metals, and pulp and paper
- Athena Impact Estimator:

http://calculatelca.com

 can model over 1200 structural and envelope assembly combinations, allowing for comparisons of various design options

Challenges

- Data Availability
- Data Quality
 - Western Red Cedar example in BREEAM
- Methodological challenges: allocation, cut-off, weighting
- Buildings: complex "product"

Recommendations on Data

- 1. Canadian Industry Association
- 2. North American Industry Association
- 3. Specific Canadian Manufacturer
- 4. Specific North American Manufacturer
- In the absence of the above:
 - 1. commercial databases
 - 2. published or unpublished literature sources
 - 3. Extrapolation from similar products

Contact: Getachew Assefa W., Ph.D. Faculty of Environmental Design University of Calgary

gassefa@ucalgary.ca

403 220 6961