

Methane emissions and RFI of gentec

Repeatability of short-term spot measurement of CH₄ and CO₂ from beef cattle using GEM system

CCEMC

perta

Ghader Manafiazar, Scott Zimmerman and John A. Basarab University of Alberta, c-lock Inc., Alberta Agriculture & Forestry

Workshop on metabolic gas emission measurements and GreenFeed, Melbourne, Australia, 13-14 February 2016

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Improving feed efficiency, product quality, profitability, environmental impact and food security

Canadian Opportunities and Global Challenges

Canadian Opportunities

- \$20 B/year industry
- Increasing global demand for meat
- \$1 to \$2.3B profit over 15yr
- Reduce GHG emissions and environmental impact
- Improve image and demand for Canadian beef
- GE³LS shows increased willingness to pay for sustainable beef using genomics

Global Challenges

- Continually improve efficiency to be globally competitive
- safe, affordable, and environmentally responsible beef
 - Limited vertical integration
- many breeds, crossbreeding, natural mating
- Leading to weak genetic linkage among populations
- Traits difficult and expensive to measure

Livestock are a producer of man-made Greenhouse Gases (GHG) through the belching of methane from cattle, sheep and goats. Methane is 25 times more powerful as a GHG than CO_2 .

Environmental Sustainability

- Global livestock production is <u>14.5%</u> of global man-made GHG
- □ Global beef production is <u>5.95%</u> of global man-made GHG (41%)
- **Canada's beef production is** <u>0.072%</u> of global man-made GHG,
- □ Canada's beef production is <u>3.6%</u> of Canada's man-made GHG and while lands that grow grasses and legumes for cattle sequester carbon

Repeatability of short-term spot measurement of CH₄ and CO₂ from beef cattle using GEM system

Hypothesis

How many individual animal daily visit fluxes and days of sampling will be required to obtain moderate repeatability (0.5-0.7) and certainty of estimating daily CH_4 and CO_2 emission and yield

Animals and Facility

TowSafe

Grow Safe

Beef Cattle Monitoring Facility for Feed Intake and Efficiency

> Agriculture and Agn-Food Canada

> > 11 1

109

griculture et groalimentaire Canada Government of Alberta

28 heifers 344 kg BW (SD=30) 326 days of age (SD=23) Feb-Apr 2015 (59 d), 8 GrowSafe nodes Lacombe Research Centre GreenFeed 69

Experimental Design

Two Daily Averaging Methods:

Mean and Time of Day (4 h bins, 6 per day; starting at 00:00-04:00h)

Four Averaging Periods:

- 1 day (max n=1652); 3 day (max n=532)
- 7 day (max n=224); 14 day (max n=112)

Repeatability of each trait was calculated as: $r = \sigma_{within indvidual}^2 / (\sigma_{within indvidual}^2 + \sigma_{among indvidual}^2)$ where σ_2 is variance.

Mean daily CH₄ and CO₂ emission (±SD) by averaging period and averaging method

	Arithr	netic	Averaging		
	Mean		Diurnal Pattern		
Averaging	CH ₄	CO ₂	CH ₄	CO ₂	
Period	(g/d)	(g/d)	(g/d)	(g/d)	
1d	204.7±49.6	6532±915	204.7±49.5	6535±914	
3d	203.5±37.6	6479±815	201.3±39.3	6453±824	
7d	201.8±34.8	6456±812	199.2±36.4	6425±822	
14d	201.4±33.7	6422±780	196.8±33.8	6377±778	

R² between averaging method: 0.968-0.998

Diurnal pattern of CH₄ and CO₂ emissions in beef heifers fed (1) twice per day

Enteric methane visit fluxes by hour of feed intake test period for 28 beef heifers

Time from start of test, hours

Uncertainty of CH4 and CO2 visit fluxes

Normalized 95% CI = (CV/square root of n) x 1.96

Repeatability of SDMI, and CH₄ and CO₂ emission and yield for different averaging periods

Averaging Period	n	SDMI kg/d	CH ₄ g/d	CO ₂ g/d	CH ₄ yield g/kg SDMI	CO ₂ yield g/kg SDMI		
Mean	1035-	8.55	204.7	6532	24.77	799		
(SD)	1652	(1.72)	(49.6)	(915)	(9.59)	(301)		
	Repeatability							
1d	1035	0.36	0.33	0.58	0.08	0.06		
3d	272	0.52	0.62	0.78	0.28	0.20		
7d	137	0.67	0.69	0.82	0.40	0.33		
14d	68	0.71	0.79	0.86	0.51	0.28		

Relationship of standardized DMI on enteric methane emission for a 1 day averaging period in beef heifers

Standardized DMI, kg/day

Relationship of standardized DMI on enteric methane emission for a 14 day averaging period in beef heifers

Standardized DMI, kg/day

Two basic hypotheses: low RFI & low CH₄

<u>Feed intake driven</u> low RFI, lower DMI and lower CH_4 production (g/day) but no effect on digestibility or CH_4 yield (g/kg DMI)

Two basic hypotheses: low RFI & low CH₄

<u>Inherent differences</u> in feeding behaviours, lower feed intake, longer rumen retention time \rightarrow differences in rumen microbial communities, increased digestibility, more H⁺ and increased <u>?</u> CH₄ yield (g/kg DMI)

What did we observe?LOW RFI heifersconsumed 7.1% less feed8.09±0.26 vs. 8.71±0.21 kg DM/day

emitted 6.5% less daily CH₄ 196±1.4 vs. 210±1.4 g/day

BUT

emitted 2.7% more CH₄/kg DMI compared to HIGH RFI heifers

Methane Emissions

WINTER DRYLOT

SUMMER GRAZING

SUMMER GRAZING

Fall SWATH GRAZING

Multiple short-term visit fluxes averaged over 14 days, with 20+ visit fluxes per animal and 28+ animals per group,

- produced moderate repeatability for CH₄ and CO₂ emissions,
- moderate to high correlations with DMI, and
- may consistently represent individual animal CH₄ and CO₂ emissions, and to a lessor extent, yield.

However, different production environments (i.e., grazing, feedlot) will likely require different GEM sampling intensities.