Agriculture et Agroalimentaire Canada

Agriculture and

Agri-Food Canada

Compost: What's the Scoop?

Francis J. Larney

¹ Agriculture & Agri-Food Canada, Lethbridge, AB

Getting the Most from Nutrient Management Workshop February 23, 2017, Lethbridge, AB

Traditional manure handling

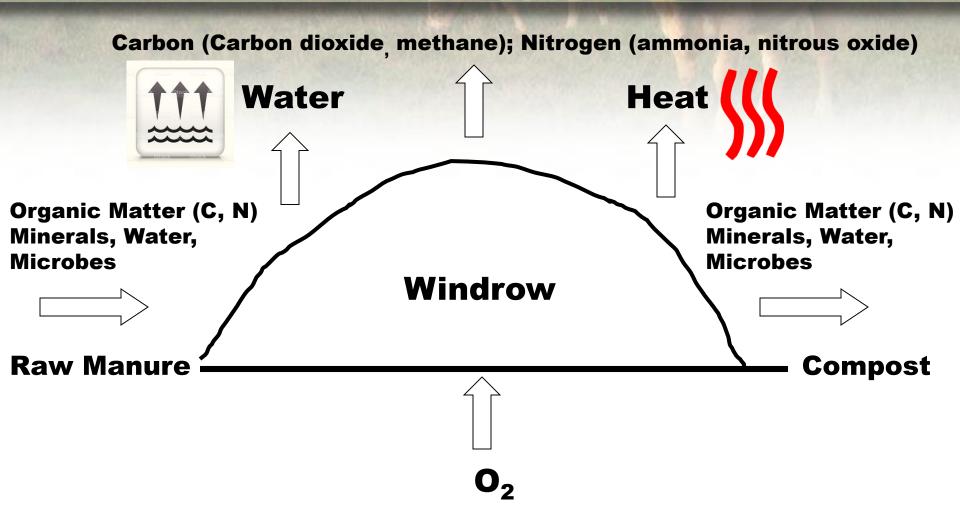
- "Bull's-eye" effect
 - fresh manure hauled short distances from feedlot pen to field
- Land close to feedlots:
 - can receive too much manure
 - affects soil, water and air quality
- Land distant from feedlots:
 - nutrient deficient
- Can composting help?

"What's in a name? That which we call a rose / By any other name would smell as sweet."

Compost

- Manure compost, e.g. cattle, hog, sheep, horse, poultry
- Leaf and yard waste compost
- Food waste compost
- Municipal solid waste (MSW)/biosolids compost
- Papermill sludge compost
- Vermicompost
- Etc.

Composting 101


- A natural process whereby organic matter is turned into stable humus-like material under managed conditions
- Manure is formed into long
 narrow windrows
- Composting involves incorporation of air into manure by turning 6-8 times over 3 months
- Followed by 3 months curing

Tractor-pulled windrow turner

Composting 101

Backyard composting

http://www.lethbridge.ca/living-here/Waste-Recycling/Pages/Backyard-Composters.aspx

https://tinyhouseambitions.wordpress.com/2016/02/21/homesteading-diy-compost-bin/

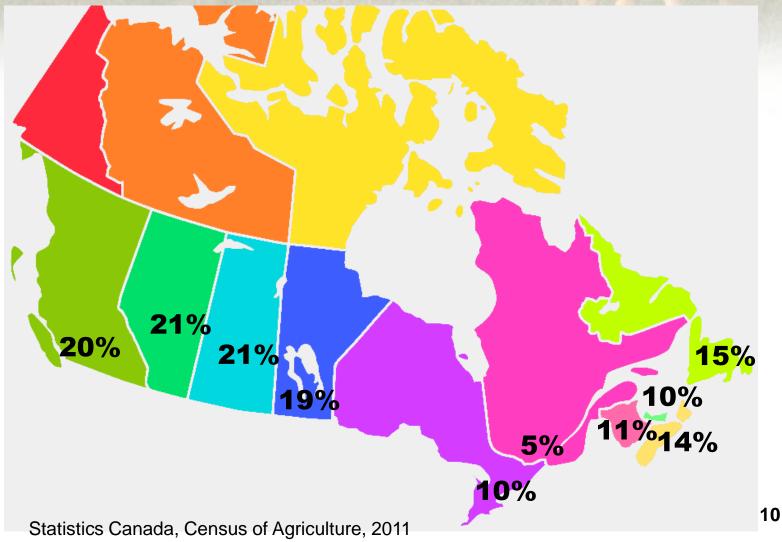
Self-propelled units

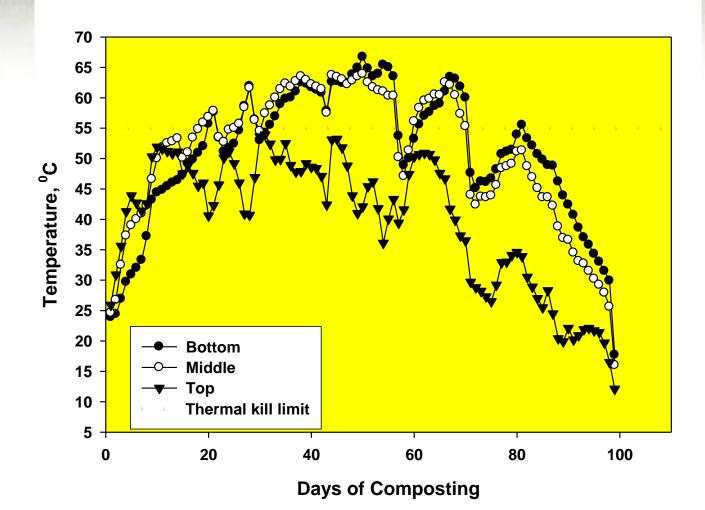
http://midwestbiosystems.com/compost-windrow-turner

Benefits of compost and composting

- Reduced volume/transport requirements
- Saleable product
- Improved handling
- More uniform land application
- Less variable nutrient content
- Lower pollution potential: lower application rates
- Less odour nuisance complaints
- Pathogen/weed seed elimination
- Disease suppression

Drawbacks of composting


- Land (compost pad/site)
- Odour
- Weather:
 - hot & dry: moisture loss
 - cold: freezing of windrows
 - rain: runoff, limited windrow access
 - wind: finished compost blows!


- Marketing: finding buyers, managing inventory, quality control
- Slower nutrient release
- Carbon and nitrogen losses (happens with all types of handling)
- Greenhouse gas emissions (CO₂, nitrous oxide, methane): happens with all types of manure handling

No. of farms using "other manure" (composted, processed, dried, stored etc.) × 100 No. of farms producing or using manure (all types)

Not percent cropland area!

Wood-chip bedded manure: windrow temperature

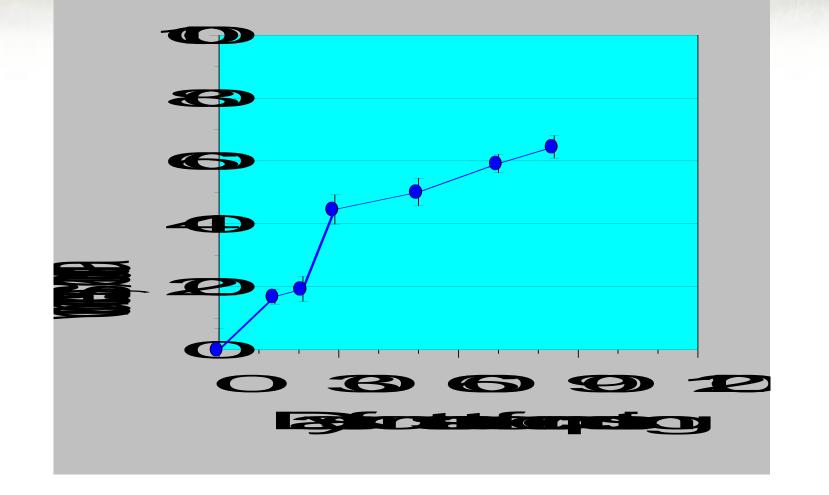
Moisture

- A major drawback of summer composting is loss of water on turning
- If too dry (<40%) microbes shut down and end up with dry manure not compost
- If too wet (>70%) not enough oxygen
- "Just right" moisture content for composting is 50-60%

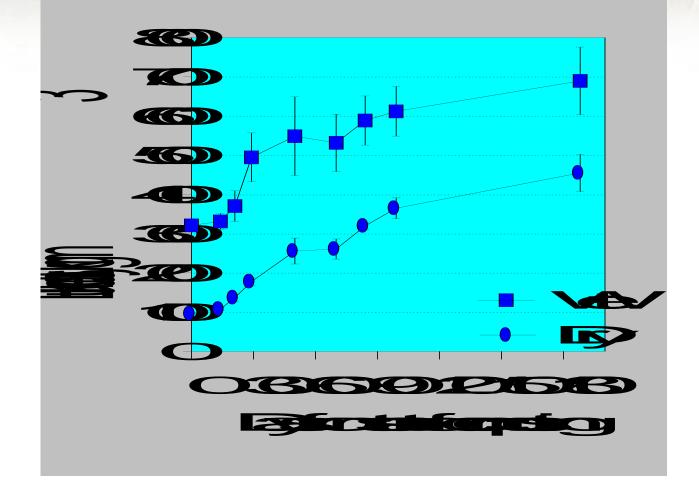
Winter composting:

- Better water retention as no evaporation
- Temperatures can be maintained in cold weather if windrow dimensions are large enough

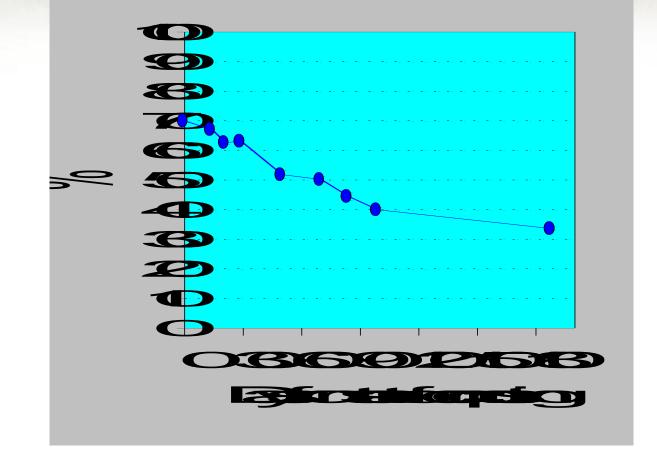
Nutrient dynamics during composting:


- N concentration decreases
 - However, the N remaining is in a more stable form than in raw manure
- C concentration decreases
 - but again the carbon remaining is more stable
- P concentration increases during composting
 - P losses are minimal, so same mass of P in less dry matter

Weed seed viability


Effect of length of composting period on weed seed viability. Values are expressed as percent total viable seeds (germinated seeds + seeds with a positive tetrazolium test).

Day	14	21	29	50	70
Day	14	21	ZJ	50	10
	Redroot	oigweed (Am	aranthus retro	oflexusL.)	
Control	73	78	74	78	77
Composted	5	4	0.4	0	0
	Wild buc	kwheat (<i>Poly</i>	gonum convo	Ivulus L.)	
Control	27	36	33	34	32
Composted	26	11	12	1	1


Volume loss (shrinkage)

Bulk density: weight in a given volume

Moisture content

Cost of haulage requirements

- Shrinkage = 70% of initial volume
- Truck volume: 12 m³

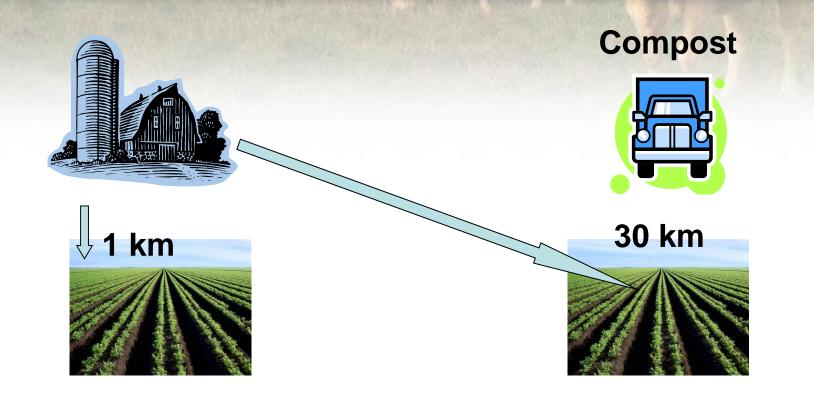
<u>Fresh Manure</u> Volume: 100 cu. m

<u>Compost</u> Volume: 30 cu. m

Truckloads = 2.5

Treatment	H ₂ O	Dry Matter	N	Ρ
		kg/tonne	wet wt.	
Fresh	651	349	5.6	1.6

Treatment	H ₂ O	Dry Matter	Ν	Ρ
		kg/tonne	wet wt.	
Fresh	651	349	5.6	1.6
Compost	360	640	9.0	3.3


Treatment	H ₂ O	Dry Matter	N	Ρ
		kg/tonne v	vet wt.	
Fresh	651	349	5.6	1.6
Compost	360	640	9.0	3.3

Treatment	H ₂ O	Dry Matter	Ν	Ρ
		kg/tonne	wet wt.	
Fresh	651	349	5.6	1.6
Compost	360	640	9.0	3.3
		+	83%	

Treatment	H ₂ O	Dry Matter	N	Ρ
		kg/tonne	wet wt.	
Fresh	651	349	5.6	1.6
Compost	360	640	9.0	3.3

Treatment	H ₂ O	Dry Matter	Ν	Ρ
		kg/tonne	wet wt.	
Fresh	651	349	5.6	1.6
Compost	360	640	9.0	3.3

More economical to haul N and P as compost instead of manure

High soil N and P

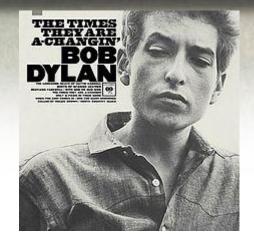
Low soil N and P

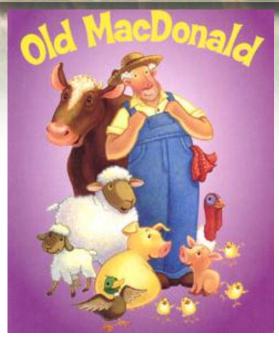
Cross-sectoral benefits

- Livestock sector
 - Move nutrients further afield
- Crop sector
 - Enhance soil quality/soil health
- Oil and gas sector
 - Soil amendment for wellsite/pipeline reclamation

Compost Knowledge Gaps

- Soil health/microbial activity
- Nutrient release characteristics
- Behaviour in cropping systems
- Plant disease suppression
- Imported vs. indigenous organic matter in soil reclamation
- Economics


Thank you!


Jean-François Millet (1814-1875), *Peasant spreading manure*, 1854-1855, French. Oil on canvas. 81.3×111.8 cm. Courtesy of the North Carolina Museum of Art, Raleigh, NC

The times they are a-changin'.....

- Specialization has made farms less diverse
- Traditional link between crop and livestock production not what it was
- Manure management has become an environmental issue