Nutrient Loading Calculator

Manure Management Update 2015 January 19, 2015 Trevor Wallace

Government of Alberta

Objectives are to:

- Introduce the NLC and it's purpose
- Briefly explain how it works and how it can be used

Albertan Government

- Developed cooperatively • ARECA members
 - Alberta Agriculture,
 - Manitoba Agriculture,
 - Saskatchewan Agriculture,
 - Agriculture Canada,
 - \circ Industry

- It is an Excel-based tool.
- For imported, in-field feeding systems
 Bale Grazing

• Bales unrolled or processed feed is fed in **windrows** on the snow.

 Hay or processed feed fed in feeders, bunks or troughs.

- Assist with planning a feeding system
- Estimate nutrient additions • N, P, K S
- Goal:
 - To take advantage of the Nutrients!
 - Minimize impacts

What's in that Feed?

	Bale Density (bales/ac)					
	22 45'x45'	27 40'x40'	36 35'x35'	48 30'x30'	70 25'x25'	
Nitrogen Ioad (Ibs/ac)	570	700	933	1244	1814	
Phosphorus load (lbs/ac) (P_2O_5)	45 (103)	55 (125)	73 (167)	98 (224)	143 (327)	

Using the Calculator

1. Cow Management				4. Supplementary Feed Type	Grain		My Ov
Number of cows		100	My Own		Barley		Value
Average cow weight (lbs)		1300	Value	Dry matter content of feed (%)		89	1
Daily feed requirement of cow (lb dry mat	atter/day)	33.8		Protein content of feed (%, dry matter basis)		12.5	
Area of land used for feeding (acres)		10.7		Nitrogen content of feed (%, dry matter basis)		2.00	1
Number of feeding days		120		Phosphorus content of feed (%, dry matter basis)		0.38	
Cow Days per Acre		1121		Potassium content of feed (%, dry matter basis)		0.54	
Animal Unit Days per Acre		1458		Sulfur content of feed (%, dry matter basis)		0.14	
Net feed density (tons dry matter/acre)	•	18.9					
				5. Supplementary Feed Management			1
A Drimony Bolo Type	y_Perennials		My Own	Amount of feed provided at one time (lbs)		300	,
2. Filliary Bale Type Bro	ome		Values	Number of feedings per day (eg. 2 = twice per	day)	1	
Dry matter content of feed (%)		90		Contribution to daily feed requirement of cow (lbs of	Iry matter/day)	2.66	
Protein content of feed (%, dry matter ba	asis)	10.6		Total supplementary feed needed (actual tons)	_	18.0	1
Nitrogen content of feed (%, dry matter b	basis)	1.70		Supplementary feed density (tons dry matter/acre)		1.49	1
Phosphorus content of feed (%, dry math	ter basis)	0.17					
Potassium content of feed (%, dry matte	er basis)	1.50		6. Whole Bale Management			
Sulfur content of feed (%, dry matter bas	sis)	0.14		Feed density (tons dry matter/acre)		19.2	1
Percent of total bales provided by pri	imary type	75		Bale density (#/acre)		33.6	i i
Average bale weight (actual lbs)		1300		Number of bales needed		360)
Percentage of primary feed on a dry mat	tter basis	76.6		Bales fed per day		3.0)
Feed wastage of primary bale type (%)	10		Bale spacing			
				-within row (feet)	•	36	
Str	raw		My Own	-between row (feet)	•	36	,
3. Secondary Bale Type Wr	heat		Values				1
Dry matter content of feed (%)		89					
Protein content of feed (%, dry matter ba	asis)	3.9					
Nitrogen content of feed (%, dry matter b	basis)	0.62					
Phosphorus content of feed (%, dry mat	ter basis)	0.08		Z Nutrient Denseite en Lond Nitrogen	Phosphorus	Potassium	Sulfu
Potassium content of feed (%, dry matte	er basis)	1.40		7. Nutrient Deposits on Land	(lb/ac	re)	
Sulfur content of feed (%, dry matter bas	sis)	0.12		Nutrient loading from imported feed 615	68.5	583	56.
Percent of total bales provided by secon	dary type	25		Nutrients removed by cattle weight gain 8.4	2.0	1.2	0.56
Average bale weight (actual lbs)		1200		% of time cattle spend outside of feeding area		15	
Percentage of secondary feed on a dry r	matter basis	23.4		Net putrient loading in feeding area	• • •		
J ,				515	56.5	495	47.2

Using the NLC

- Really Created Two Calculators
 - \circ Cow to Feed
 - \circ Feed to Cow
 - \circ Only difference order of input
- Manual to walk through them

1. Cow Management					
Number of cows	100	My Own			
Average cow weight (lbs)	1300	Value			
Daily feed requirement of cow (lb dry matter/day)	33.8				
Area of land used for feeding (acres)	10.7				
Number of feeding days	120				
Cow Days per Acre	1121				
Animal Unit Days per Acre	1458				
Net feed density (tons dry matter/acre)	18.9				

- Feed requirements set at 2.6%
 Can change this
- Weight Gain set at 0.25 lb/day

 Cannot change this, only small impact

• Threshold warnings

 \circ Animal unit days /ac – 1800

	2. Primary	/ Bale	Туре
--	------------	--------	------

2 Drimany Bala Type	Hay_Perennia	My Own	
Z. Filliary bale type	Brome	Values	
Dry matter content of feed (%)	90		
Protein content of feed (%, dry matte	er basis)	10.6	
Nitrogen content of feed (%, dry mat	1.70		
Phosphorus content of feed (%, dry	0.17		
Potassium content of feed (%, dry m	1.50		
Sulfur content of feed (%, dry matter	0.14		
Percent of total bales provided by	75		
Average bale weight (actual lbs)	1300		
Percentage of primary feed on a dry	76.6		
Feed wastage of primary bale type	10		

- Contains book values for feed types
 - Cowbytes

Can replace with your own

6. Whole Bale Ma	nagement		
Feed density (tons dry	matter/acre)	•	19.2
Bale density (#/acre)	rninge		33.6
Number of bales need	ed mys		360
Bales fed per day			3.0
Bale spacing density	⁷ − 25 D.M. ton /day		
-within row (feet)			36
-between row (feet)			36
6. Whole Bale Ma	nagement		
Feed density (tons dry	Values over 25 result in excessive		102.6
Bale density (#/agre)	nutrient loading. To lower this value		179.5
Number of bales need	as per the comments in cell E19, or		1921
Bales fed per day	reduce the percent of feed waste		<mark>16.0</mark>
Bale spacing	(cells E33 and/or E46).		
-within row (feet)			36
-between row (feet)			7

7 Mutriant Deposite on Land	Nitrogen	Phosphorus	Potassium	Sulfur
· Threshold warnings				
Nutrient loading from imported feed	615	68.5	583	56.1
Nutrients removed by cattle weight gain	8.4	2.0	1.2	0.56
% of time cattle spend outside of fee	u ID/ac ding area		15	
Net nutrient loading in feeding area	⁵¹⁵ 206 lb	56.5	495	47.2

7 Nutrient Deposits on Land	Nitrogen	Phosphorus	Potassium	Sulfur
 Nutrient Loading 				
Nutrient loading from imported feed	3025	316.9	3045	281.8
Nutrients removed by cattle weight gain	42.0	10.1	6.0	2.80
% of time cattle spend outside of fee		15		
Net nutrient loading in feeding area from manure and waste feed	2535	260.8	2584	237.1

What the NLC Does Not Address

NLC Does Not Address

Assumes all nutrients left in the field

 Does not address availability
 Does not address nutrient loss

Nutrient distribution

 Function of feeding system & Mgt
 Something you can comment on

NLC Does Not Address

Summary

- Use the tool to:
 - Estimate N, P, K, S additions
 - Compare & Plan in-field feeding systems
 - Take advantage of the nutrients being imported by in-field feeding systems
 - Minimize impacts of in-field feeding systems

Government

And that's Just **One** Person's point of View!!

Thank You

• General Manure Management

o www.agric.gov.ab.ca/manure

AOPA legislation

o www.agric.gov.ab.ca/aopa

- Nutrient Loading Calculator
 - <u>http://www1.agric.gov.ab.ca/\$Department/so</u> <u>ftdown.nsf/main?openform&type=NLC&page</u> <u>=information</u>

- Manure and Compost Handling Listing
 - <u>http://www.agric.gov.ab.ca/app68/cust</u>
 <u>omservices?cat1=Manure+and+Compo</u>
 <u>st+Handling</u>
- Wintering Site Assessment Tool
 - <u>http://www1.agric.gov.ab.ca/\$Department/de</u> <u>ptdocs.nsf/all/epw12912/\$FILE/aafc-</u> <u>wintering-sites-booklet.pdf</u>
- Manure Transportation Calculator
 - <u>http://www1.agric.gov.ab.ca/\$department/sof</u> <u>tdown.nsf/main?openform&type=MTC&page=</u> <u>information</u>
- Manure and Compost Directory
 - o <u>http://www.agric.gov.ab.ca/app68/manure</u>