

Agriculture and

Agriculture et Agri-Food Canada Agroalimentaire Canada

Canada

Alternative P-Based Manure Applications Evaluated

Elwin G. Smith Lethbridge Research Centre (Science and Technology Branch, AAFC) January 19, 2015 Manure Management Update 2015

Background

- Concern over the potential for nutrients and pathogens in manure to move into water
- Manure rates based on crop nitrogen demand will result in phosphorus accumulation
- Applying manure based on crop phosphorus demand could be costly
- Manure is a disposal 'problem' for livestock feeders

Background

- The impact to producers from P-based manure application rates is not well known
- There could be other strategies to reduce P applied to land
 - Composting to move P out of the region
 - Application strategies
- Use an economic model to evaluate alternatives

Objective

- Maximize the return from crop production, less the cost of manure application, inorganic fertilizer, and all other crop production costs
 - Does not include the animal feeding
 - All manure must be applied to land (not consider composting and removal from the region)
 - Land area is limited, but adequate to accept the manure produced
 - Land is a mix of irrigated and dryland
 - Only consider private benefits and costs

Feedlot and Land Configuration

- Hypothetical feedlot (10,000 head) and quarter section layout
- Not all near-by land can receive manure from the feedlot (other land owners, perennial crops, etc.)
- Roads are on a grid (1 mile E-W, 2 miles N-S)

Model Characteristics

- Crops include barley (grain and silage), corn silage, wheat, canola
- N application constrained by (1) the impact on crop yield (yield equation) or (2) regulation
- P can be applied (1) in excess of annual crop requirements or (2) based on plant requirements
- P strategies: Option of applying manure once every year, or three times the P rate once every third year

Model Characteristics

- Manure handling costs
 - Custom rate: \$/hr for trucks and loader
 - Costs included: loading, hauling to field (distance), applying manure in the field (rate of application)
- Manure benefit
 - Crop yield increased with nitrogen, up to a maximum yield (depended on the crop)
 - Inorganic nitrogen and phosphorus fertilizer could be applied

Systems Evaluated

- Allocation and costs associated with different manure application systems (BMPs)
 - Annual nitrogen based rate (current regulation) (N-Based)
 - Annual phosphorus based rate (P-Based)
 - Triennially three times annual phosphorus based rate (3XP-Based)

General Results

- Without regulations (N or P), manure will be applied at a higher rate nearer the feedlot, but also applied at a distance from the feedlot
- Excessive application had a cost through lower yield at high rates (crop lodging, disease, etc.), and lost value in the over-applied P and N
- An N-Based rate will have reduced manure application rates nearer the feedlot (compared to no regulations)

General Results

- Crops with higher N demand will be grown nearer the feedlot (corn silage)
- With higher fertilizer P costs, there is an incentive to reduce manure rates (< N-Based) and apply manure to more land
- Additional manure is a cost, except when fertilizer costs are very high

P-Based Results

- An annual P-Based manure application rate increased manure application costs (further distance and more time to apply manure in the field)
- Some savings in P fertilizer purchases
- Little impact on cropping (barley vs. corn vs. other crops)
- Fertilizer N applied to all land to meet crop needs (supplement the N from manure)

3XP-Based Results

- Application rate was very similar to N-Based
- Application was rotated over fields with an application every third year
- Little impact on cropping (barley vs. corn vs. other crops)

Manure Application by Quarter

* * * * * * *≵ * * ** * X X * * X ✗ ** * ** * * * ** * * * *

Ν

*

*

*	X ≉	X ≉	*
X	×	X ≉	×
X	X *	×	×
X	×	×	×
X	*	×	*
X *	X	×	×
Xْ⊯	×	X	X *
*	X	X *	*
*	X	×	*

Ρ

Results Summary

	N-Based	P-Based	3XP
Return (\$/hd)	Base	-8.80	-2.80
Manure application cost (\$/t)	7.50	11.93 (+60%)	9.03 (+20%)
Hauling distance (t-km/hd)	7.4	13.2 (+78%)	10.2 (+20%)
Value of additional manure (\$/t)	-1.05	-11.62	-5.13
N purchases (t)	Base	-2.9%	+6.5%
P purchases (t)	Base	-71%	+5.4%

Price Impacts: N-Based

	N-Based	High N\$	High P\$
Return (\$/hd)	Base	-9.8	-6.3
Manure application cost (\$/t)	7.50	7.48	7.55
Hauling distance (t-km/hd)	7.4	7.4	7.4
Value of additional manure (\$/t)	-1.05	2.17	-0.47
N purchases (t)	Base	-17%	-0.1%
P purchases (t)	Base	+3.5%	-1.8%
Urea; MAP (\$/t)	592; 788	900; 788	592; 1250

Summary

- P-Based manure application rates will increase the cost of manure application (cost: +60%)
- Triennially applying 3 times the annual P-Based rate is a lower cost manure application strategy than annual P-Based (cost: +20%)
- 3 times P-Based rate is very similar to annual N-Based rate
- Increased hauling distance with P-Based

Summary

- The cost of N and P fertilizer will have minimal impact on the manure application decision
- High P costs will not impact rates near the feedlot, but for further distances a lower rate can be profitable to reduce P fertilizer cost
- High nutrient using crops are best grown nearer to the feedlot (silage corn vs. wheat) so higher rates can be applied near the feedlot

Thank you