Management of Field Pea Diseases

Robyne Bowness

Alberta Agriculture and Rural Development
Lacombe, AB

Agronomy Update
January 18th, 2012
Field Pea

- Field Pea
 - Pulse crop produced for food, ingredients, and feed
 - Valuable in crop rotation (N$_2$ fixation, soil benefits)
 - Important economic crop
 - Canadian prairies are the world’s largest producer and exporter
 - Demand is increasing every year
 - Market relies on healthy production and high quality

- In 2011
 - Over 725,000 acres of peas harvested in Alberta
 - An average yield of 38.8 bu/ac (13% higher than 10 yr avg)

Source: Statistics Canada
Pea Diseases

• Ascochyta Blight
 ▫ Common disease
 ▫ Made up of complex of three pathogens
 • *Mycosphaerella pinodes*
 • *Ascochyta pisi*
 • *Phoma pinodella*

• Fusarium root rot
 ▫ Common disease
 ▫ Part of a complex of 4-5 pathogens
 • “Root Rot complex”
Pea Diseases

- Caused by fungal pathogens
- Can attack the crop at various growth stages
- Prefer wet conditions
- Problematic in Alberta during summers of 2010 and 2011
Ascochyta Blight

- Most serious foliar disease of field pea in Western Canada
- Found in all commercial pea fields
- Interferes with photosynthesis
- Crop lodges
- Reduces seed weight, size, number and quality
- Yield losses are common from 20-50%
 - In wet years even higher
Ascochyta Blight - Pea

• Symptoms
 ▫ Appear within 2-4 days of infection
 ▫ Small purple to brown lesions on leaves, stems and pods
 ▫ Small pinpoint lesions on the flowers
 ▫ Crop lodges due to breakdown of stem strength (lignin)
 • increases the humidity in the canopy
 • problems for harvest
 ▫ Seeds - shrunken with dark brown discoloration
Ascochyta Blight - Pea

• Survives in seed, in the soil and on plant debris

• Two types of spores - spread by wind or rain splash

• Infections occur repeatedly throughout the season

• Most critical factor is leaf wetness
Ascochyta Blight - Management

- Strategies include
 - Crop rotation
 - Disease free seed
 - Seed treatment
 - Cultural practices

- No cultivars resistant to this pathogen

- Most effective strategy is repeated application of fungicides

- Fungicide options include:
 - Bravo 500
 - Headline EC
 - Lance
 - Quadris
Ascochyta - Fungicide Timing

• Timing is critical

• Considerations
 ▫ Protectants – won’t kill the disease
 ▫ Level disease
 ▫ Canopy type
 ▫ Before canopy closes
 ▫ Wet vs dry weather
 ▫ Yield increase is expected

• Is yield loss higher than cost of application?
Ascochyta - Prediction system

• Crop Canopy
 ▫ Thin, moderate, or thick

• Leaf wetness (at noon)
 ▫ None, low, moderate, or high

• Percent of plants showing symptoms
 ▫ None, low (<20%), moderate (20-50%) or high (50-100%)

• 5 day weather forecast
 ▫ Dry, unsettled, showers, wet

Source: Lopetinsky and Hoy, 2008
Ascochyta - Prediction system

<table>
<thead>
<tr>
<th>Estimation Risk Scale</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Canopy</td>
<td></td>
</tr>
<tr>
<td>Thin</td>
<td>0</td>
</tr>
<tr>
<td>Moderate</td>
<td>10</td>
</tr>
<tr>
<td>Mod/ Thick</td>
<td>15</td>
</tr>
<tr>
<td>Thick</td>
<td>30</td>
</tr>
<tr>
<td>Leaf wetness / humidity</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>10</td>
</tr>
<tr>
<td>Moderate</td>
<td>20</td>
</tr>
<tr>
<td>High</td>
<td>40</td>
</tr>
<tr>
<td>Percentage of plants with symptoms</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Low (<20%)</td>
<td>15</td>
</tr>
<tr>
<td>Moderate (20-50%)</td>
<td>25</td>
</tr>
<tr>
<td>High (50-100%)</td>
<td>40</td>
</tr>
<tr>
<td>5 day weather forecast</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>0</td>
</tr>
<tr>
<td>Unsettled</td>
<td>10</td>
</tr>
<tr>
<td>Showers</td>
<td>15</td>
</tr>
<tr>
<td>Wet</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>---</td>
</tr>
</tbody>
</table>

Source: Lopetinsky and Hoy, 2008
Ascochyta - Prediction system

- Field inspections done bi-weekly

- Add up score for each factor
 - $1 + 2 + 3 + 4 = ?$

Source: Lopetinsky and Hoy, 2008
Ascochyta - Prediction system

<table>
<thead>
<tr>
<th>Estimation Risk Scale</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Canopy</td>
<td></td>
</tr>
<tr>
<td>Thin 0</td>
<td></td>
</tr>
<tr>
<td>Moderate 10</td>
<td></td>
</tr>
<tr>
<td>Mod/ thick 15</td>
<td></td>
</tr>
<tr>
<td>Thick 30</td>
<td>30</td>
</tr>
<tr>
<td>Leaf wetness / humidity</td>
<td></td>
</tr>
<tr>
<td>None 0</td>
<td></td>
</tr>
<tr>
<td>Low 10</td>
<td></td>
</tr>
<tr>
<td>Moderate 20</td>
<td></td>
</tr>
<tr>
<td>High 40</td>
<td>10</td>
</tr>
<tr>
<td>Percentage of plants with symptoms</td>
<td></td>
</tr>
<tr>
<td>None 0</td>
<td></td>
</tr>
<tr>
<td>Low (<20%) 15</td>
<td></td>
</tr>
<tr>
<td>Moderate (20-50%) 25</td>
<td></td>
</tr>
<tr>
<td>High (50-100%) 40</td>
<td>25</td>
</tr>
<tr>
<td>5 day weather forecast</td>
<td></td>
</tr>
<tr>
<td>Dry 0</td>
<td></td>
</tr>
<tr>
<td>Unsettled 10</td>
<td></td>
</tr>
<tr>
<td>Showers 15</td>
<td></td>
</tr>
<tr>
<td>Wet 20</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>1+2+3+4</td>
</tr>
</tbody>
</table>

Source: Lopetinsky and Hoy, 2008
Ascochyta - Prediction system

<table>
<thead>
<tr>
<th>Estimation Risk Scale</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Canopy</td>
<td></td>
</tr>
<tr>
<td>Thin</td>
<td>0</td>
</tr>
<tr>
<td>Moderate</td>
<td>10</td>
</tr>
<tr>
<td>Mod/ thick</td>
<td>15</td>
</tr>
<tr>
<td>Thick</td>
<td>30</td>
</tr>
<tr>
<td>Leaf wetness / humidity</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>10</td>
</tr>
<tr>
<td>Moderate</td>
<td>20</td>
</tr>
<tr>
<td>High</td>
<td>40</td>
</tr>
<tr>
<td>Percentage of plants with symptoms</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Low (<20%)</td>
<td>15</td>
</tr>
<tr>
<td>Moderate (20-50%)</td>
<td>25</td>
</tr>
<tr>
<td>High (50-100%)</td>
<td>40</td>
</tr>
<tr>
<td>5 day weather forecast</td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>0</td>
</tr>
<tr>
<td>Unsettled</td>
<td>10</td>
</tr>
<tr>
<td>Showers</td>
<td>15</td>
</tr>
<tr>
<td>Wet</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Source: Lopetinsky and Hoy, 2008
Ascochyta - Prediction system

- Field inspections done bi-weekly
- Add up score for each factor
 - $1+2+3+4 = ?$
- Magic number is 65
 - Score above 65 points..
 - Fungicide application is recommended
 - Score below 65 points..
 - Fungicide applications not necessary at this time
 - Field inspections should continue

Source: Lopetinsky and Hoy, 2008
Considerations

• Prediction system is a tool

• May help make the decision as to whether to spray or not easier

• Increased value of easier harvest
 ▫ Crop is not lodged as much

• Increased value for lower levels of *Ascochyta* in the seed

• Increased value for higher grade of the harvested product
Considerations

- More than 2 applications in a season is not recommended
- Must be starting with a healthy crop
- No disease.....don’t spray!
- Is the cost of spraying less than the cost of not spraying?
Fusarium Root Rot

- Important widespread disease of field pea in Western Canada
- Found in all commercial pea fields
- Interferes with nodulation, nitrogen fixation
- Deteriorates the roots
- Reduces plant biomass
- Yield losses are common
 - harder to measure

Photo courtesy of Dr. Kan-Fa Chang
Fusarium Root Rot

• Soil-borne disease

• Affects plants from seeding to flowering

• Soils are wet and warm

• Part of a complex that includes:
 ▫ Seed rot, Seeding blight, Root rots, Wilt

• Combination of three pathogens:
 ▫ *Fusarium sp.*, *Rhizoctonia solani*, *Pythium sp.*
Fusarium species

- Three species:
 - *Fusarium oxysporum*
 - Fusarium Wilt – distinct
 - Not found in the root rot complex
 - *Fusarium solani f. sp pisi*
 - and
 - *Fusarium avenaceum*
 - Found in root rot complex
 - Identical symptoms

F. avenaceum dominant species in Alberta
Fusarium avenaceum

• Huge variation within isolates:
 ▫ aggressiveness or pathogenicity
 ▫ some cause very little damage to roots
 ▫ some cause complete root disintegration

• Variation not due to:
 ▫ geographical areas
 ▫ dryland vs irrigated areas

Photo courtesy of Dr. Kan-Fa Chang
Fusarium Root Rot

- **Symptoms**

 - Early in season
 - No emergence
 - Seedlings collapse
 - Stunted growth

 - Rotting seeds
 - Primary and secondary roots are brown/reddish
 - Vascular discoloration
 - Reddish / brownish/ pinkish

Source: www.info-biovision.org
Fusarium Root Rot

• Symptoms

Late in season
 ▫ Stunted growth
 ▫ Stand collapse after flowering
 ▫ Yellowing in patches
 ▫ Weak, non-existent root system
 ▫ Roots are brown
 ▫ Vascular discoloration
 • Reddish / brownish/ pinkish

Source: www.info-biovision.org

Photo courtesy of Dr. Kan-Fa Chang
Fusarium Root Rot

- Survives in the soil as a resting spore

- Spores can survive for a very long time
 - up to 10 years

- Infections can occur throughout the season

- Most critical factor soil conditions, stress and aggressiveness of the pathogen
Fusarium Root Rot - Management

- Strategies include
 - Crop rotation
 - Seed treatments
 - Cultural practices
 - Good tillage practices (reduce compaction)
 - High quality seed

- There are no cultivars resistant to this pathogen

- Most effective strategies are:
 - crop rotation and seed treatments
Considerations

- Tough...really nothing you can do in season.
- Depends on pathogen aggressiveness
- Water logged soils - warm
- Could be other pathogens involved
 - later in the season
- Rotate your crops
- Treat your seed
Summary - Disease Management

• Crop Rotation

• Seed treatments

• Land / weed management

• Cultural practices

• Disease-free, high quality seed

• Fungicide applications
 ▫ proper timing
 ▫ cost effective
Thanks! Questions?